Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (519)

Search Parameters:
Keywords = mono-layered film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 3646 KB  
Review
Fascinating Frontier, Nanoarchitectonics, as Method for Everything in Materials Science
by Katsuhiko Ariga
Materials 2025, 18(22), 5196; https://doi.org/10.3390/ma18225196 (registering DOI) - 15 Nov 2025
Abstract
Methodological fusion of materials chemistry, which enables us to create materials, with nanotechnology, which enables us to control nanostructures, could enable us to create advanced functional materials with well controlled nanostructures. Positioned as a post-nanotechnology concept, nanoarchitectonics will enable this purpose. This review [...] Read more.
Methodological fusion of materials chemistry, which enables us to create materials, with nanotechnology, which enables us to control nanostructures, could enable us to create advanced functional materials with well controlled nanostructures. Positioned as a post-nanotechnology concept, nanoarchitectonics will enable this purpose. This review paper highlights the broad scope of applications of the new concept of nanoarchitectonics, selecting and discussing recent papers that contain the term ‘nanoarchitectonics’ in their titles. Topics include controls of dopant atoms in solid electrolytes, transforming the framework of carbon materials, single-atom catalysts, nanorobots and microrobots, functional nanoparticles, nanotubular materials, 2D-organic nanosheets and MXene nanosheets, nanosheet assemblies, nitrogen-doped carbon, nanoporous and mesoporous materials, nanozymes, polymeric materials, covalent organic frameworks, vesicle structures from synthetic polymers, chirality- and topology-controlled structures, chiral helices, Langmuir monolayers, LB films, LbL assembly, nanocellulose, DNA, peptides bacterial cell components, biomimetic nanoparticles, lipid membranes of protocells, organization of living cells, and the encapsulation of living cells with exogenous substances. Not limited to these examples selected in this review article, the concept of nanoarchitectonics is applicable to diverse materials systems. Nanoarchitectonics represents a conceptual framework for creating materials at all levels and can be likened to a method for everything in materials science. Developing technology that can universally create materials with unexpected functions could represent the final frontier of materials science. Nanoarchitectonics will play a significant part in achieving this final frontier in materials science. Full article
(This article belongs to the Special Issue Nanoarchitectonics in Materials Science, Second Edition)
30 pages, 5866 KB  
Review
Performance Optimization Strategies for Polymer Organic Field-Effect Transistors as Sensing Platforms
by Yan Wang, Zimin Ye, Tianci Wang, Linxiao Zu and Liwen Chen
Sensors 2025, 25(22), 6891; https://doi.org/10.3390/s25226891 - 11 Nov 2025
Viewed by 340
Abstract
Organic field-effect transistors (OFETs) have emerged as a transformative platform for high-performance sensing technologies, yet their full potential can be realized only through coordinated performance optimization. This article provides a comprehensive review of recent strategies employed in polymer OFETs to enhance key parameters, [...] Read more.
Organic field-effect transistors (OFETs) have emerged as a transformative platform for high-performance sensing technologies, yet their full potential can be realized only through coordinated performance optimization. This article provides a comprehensive review of recent strategies employed in polymer OFETs to enhance key parameters, including carrier mobility (μ), threshold voltage (Vth), on/off current ratio (Ion/Ioff), and operational stability. These strategies encompass both physical and chemical approaches, such as annealing, self-assembled monolayers (SAMs), modification of main and side polymer chains, dielectric-layer engineering, buffer-layer insertion, and blending or doping techniques. The development of high-performance devices requires precise integration of physical processing and chemical design, alongside the anticipation of processing compatibility during the molecular design phase. This article further highlights the limitations of focusing solely on high mobility and advocates a balanced optimization across multiple dimensions—mobility, mechanical flexibility, environmental stability, and consistent functional performance. Adopting a multi-scale optimization framework spanning molecular, film, and device levels can substantially enhance the adaptability of OFETs for emerging applications such as flexible sensing, bioelectronic interfaces, and neuromorphic computing. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

12 pages, 724 KB  
Article
Observation of Direct and Indirect Effects of Surface Stabilizer on the Attenuation Coefficient of CdTe Nanoplatelet Films
by Sergei Bubenov, Aigerim Ospanova, Alexander Vinokurov, Asset Kainarbay, Aizhan Akhmetova, Kirill Cherednichenko, Dulat Daurenbekov and Sergey Dorofeev
Nanomaterials 2025, 15(22), 1688; https://doi.org/10.3390/nano15221688 - 7 Nov 2025
Viewed by 262
Abstract
Absorption spectra are widely used in laboratory practice to measure the content of a great variety of colloidal semiconductor nanocrystals. In the case of atomically thin nanoplatelets, only CdSe has been studied enough to allow such quantification, while CdTe nanoplatelets—a promising material for [...] Read more.
Absorption spectra are widely used in laboratory practice to measure the content of a great variety of colloidal semiconductor nanocrystals. In the case of atomically thin nanoplatelets, only CdSe has been studied enough to allow such quantification, while CdTe nanoplatelets—a promising material for photodetection—are understudied in this regard. In this work, a powerful combination of total XRF spectroscopy, absorption spectroscopy and profilometry was employed for thin films to extract the absorption coefficient values. The morphology and surface composition of nanoplatelets were studied with TEM and IR spectroscopy. The molar absorption coefficient of oleate-terminated CdTe nanoplatelets at the first optical transition was measured at about 5 × 104 L·mol−1·cm−1 (per mole of Te), which is among the highest values for AIIBVI nanomaterials. The exchange of stabilizer with hexadecanethiol induced an approximately 5-fold decrease in the volume fraction of semiconductor material in thin films and a 5-fold decrease in absorbance. The latter effect is linked to the formation of a quasi-type II heterojunction between CdTe cores and effectively half of a monolayer shell of CdS. The density effect is explained by the diminished capacity of nanoscrolls for close packing. The combination of XRF and profilometry is proposed as a technique for fast nanomorphology evaluation. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

28 pages, 1016 KB  
Article
Sustainable Alternatives in Multilayer Packaging: Storage Stability of Pudding Powder Under Accelerated Storage Conditions
by Can Türksever, Banu Koç and Ozlem Kizilirmak Esmer
Foods 2025, 14(22), 3806; https://doi.org/10.3390/foods14223806 - 7 Nov 2025
Viewed by 446
Abstract
Multilayer packaging materials are extensively used in food packaging, particularly for powdered products. In alignment with sustainable development goals, packaging design should aim to minimize material usage while maintaining the protective properties necessary to preserve food quality and safety, thereby reducing environmental impact. [...] Read more.
Multilayer packaging materials are extensively used in food packaging, particularly for powdered products. In alignment with sustainable development goals, packaging design should aim to minimize material usage while maintaining the protective properties necessary to preserve food quality and safety, thereby reducing environmental impact. A key strategy is to simplify multilayer structures to enhance recyclability. This study aims to evaluate the potential of sustainable alternative packaging materials with reduced metal and plastic content and improved recyclability for pudding powder packaging, as substitutes for conventional films. Four packaging structures were tested: a conventional three-layer laminate (polyethylene terephthalate (PET)/aluminum foil (Al-foil)/low-density polyethylene (LDPE)), two two-layer structures (AlOx-coated PET/LDPE and Al-coated PET/LDPE), and a monolayer metallized biaxially oriented polypropylene (MetBOPP). Samples were stored under accelerated conditions (38 °C and 90% relative humidity) for 180 days, and changes in moisture content, water activity, caking degree, glass transition temperature, color, and sensory attributes were monitored. The experimental data were examined for their agreement with various sorption models by creating adsorption isotherms. The acceptable storage period was estimated using the constants calculated from these models. Statistically significant differences (p < 0.05) were observed among the packaging types, primarily associated with their water vapor permeability, affecting moisture content, water activity, caking degree, and color stability. In terms of moisture content, water activity, and caking degree, the conventional PET/Al-foil/LDPE (Polyethylene terephthalate/Aluminum foil/Low density polyethylene) structure demonstrated the best performance, followed by PET.AlOx/LDPE (AlOx-coated Polyethylene terephthalate/Low density polyethylene), MPET/LDPE (Metallized polyethylene terephthalate/Low density polyethylene), and MBOPP (Metallized biaxially oriented polypropylene), respectively. The sensory analysis scores followed the same ranking; however, all samples maintained scores above the threshold value of 3 throughout the storage period, indicating that they remained acceptable. Caking degree increased moderately (from 0.61% to 0.89%) and was negatively correlated with appearance scores (R2 = −0.89, p < 0.01). Despite slight darkening (Browning Index increased from 18.16 to 20.37), sensory scores for appearance, odor, and taste remained above the acceptable threshold (score > 3.0). Based on the WVTR values of the packaging materials and the application of the GAB model, the estimated shelf lives were 800.32 days for PET/Al-foil/LDPE, 577.92 days for PET.AlOx/LDPE, 407.58 days for MPET/LDPE, and 229.26 days for MBOPP. In conclusion, the longest shelf life was achieved with PET/Al-foil/LDPE, and it was observed that as the WVTR of the packaging materials increased, the shelf life of the cocoa-based pudding powder decreased; PET.AlOx/LDPE and MPET/LDPE could be considered for medium-term storage (up to about 1–1.5 years), while MBOPP appeared suitable only for shorter durations (6–8 months). Full article
Show Figures

Graphical abstract

21 pages, 3317 KB  
Article
Microcontact-Printed Flexible Electrodes for Label-Free Electrochemical Detection of Lung Cancer Biomarker
by Alberto G. Silva-Junior, Abdelhamid Errachid, Nadia Zine, Marie Hangouet, Guy Raffin, Michelly C. Pereira, Maria D. L. Oliveira and Cesar A. S. Andrade
Chemosensors 2025, 13(11), 377; https://doi.org/10.3390/chemosensors13110377 - 27 Oct 2025
Viewed by 562
Abstract
Lung cancer remains one of the deadliest cancers worldwide, which highlights the urgent need for new diagnostic tools to detect reliable biomarkers. To enable scalable and cost-effective production, we developed reusable PDMS stamps patterned with electrodes to print flexible electrodes on PET substrates [...] Read more.
Lung cancer remains one of the deadliest cancers worldwide, which highlights the urgent need for new diagnostic tools to detect reliable biomarkers. To enable scalable and cost-effective production, we developed reusable PDMS stamps patterned with electrodes to print flexible electrodes on PET substrates using a microcontact printing (µCP) approach. PET was chosen not only for its flexibility but also as a more sustainable alternative to conventional rigid materials. On these electrodes, three sensing platforms were tested for neuron-specific enolase (NSE) detection: APTES-based monolayers, electrospun PVA/alginate nanofibers, and electropolymerized polypyrrole (PPy) films. Voltammetric and fluorescence/AFM analyses confirmed that all three platforms could recognize the target analyte, with the PPy-CdTe configuration showing the strongest signal variation. Impedance spectroscopy further supported this finding, revealing a clear linear correlation between charge transfer resistance (RCT) and NSE concentration. The PPy-CdTe sensor demonstrated high sensitivity and consistent performance for NSE detection, achieving a detection limit (LOD) of 8.05 pg·µL−1 and a quantification limit (LOQ) of 26.84 pg·µL−1. Full article
(This article belongs to the Special Issue Advanced Biosensors for Diagnostic Applications)
Show Figures

Figure 1

13 pages, 1798 KB  
Article
Direct Synthesis of Single-Crystalline Bilayer Graphene on Dielectric Substrate
by Zuoquan Tan, Xianqin Xing, Yimei Fang, Le Huang, Shunqing Wu, Zhiyong Zhang, Le Wang, Xiangping Chen and Shanshan Chen
Nanomaterials 2025, 15(21), 1629; https://doi.org/10.3390/nano15211629 - 25 Oct 2025
Viewed by 499
Abstract
Direct growth of high-quality, Bernal-stacked bilayer graphene (BLG) on dielectric substrates is crucial for electronic and optoelectronic devices, yet it remains hindered by poor film quality, uncontrollable thickness, and high-density grain boundaries. In this work, a facile, catalyst-assisted method to grow high-quality, single-crystalline [...] Read more.
Direct growth of high-quality, Bernal-stacked bilayer graphene (BLG) on dielectric substrates is crucial for electronic and optoelectronic devices, yet it remains hindered by poor film quality, uncontrollable thickness, and high-density grain boundaries. In this work, a facile, catalyst-assisted method to grow high-quality, single-crystalline BLG directly on dielectric substrates (SiO2/Si, sapphire, and quartz) was demonstrated. A single-crystal monolayer graphene template was first employed as a seed layer to facilitate the homoepitaxial synthesis of single-crystalline BLG directly on insulating substrates. Nanostructure Cu powders were used as the remote catalysis to provide long-lasting catalytic activity during the graphene growth. Transmission electron microscopy confirms the single-crystalline nature of the resulting BLG domains, which validates the superiority of the homoepitaxial growth technique. Raman spectroscopy and electrical measurement results indicate that the quality of the as-grown BLG is comparable to that on metal substrate surfaces. Field-effect transistors fabricated directly on the as-grown BLG/SiO2/Si showed a room temperature carrier mobility as high as 2297 ± 3 cm2 V−1 s−1, which is comparable to BLG grown on Cu and much higher than that reported on in-sulators. Full article
Show Figures

Graphical abstract

23 pages, 41967 KB  
Article
Enhancing the Chloride Adsorption and Durability of Sulfate-Resistant Cement-Based Materials by Controlling the Calcination Temperature of CaFeAl-LDO
by Lei Yang, Xin Zhao, Shaonan Cai, Minqi Hua, Jijiang Liu, Hui Liu, Junyi Wu, Liming Pang and Xinyu Gui
Materials 2025, 18(21), 4884; https://doi.org/10.3390/ma18214884 - 24 Oct 2025
Viewed by 307
Abstract
Chloride-ion (Cl)-induced corrosion of steel bars is a major threat to the durability of marine concrete structures. To address this, a type of calcined CaFeAl-layered double oxide (LDO-CFA) with different calcination temperatures was used to enhanced the Cl adsorption, compressive [...] Read more.
Chloride-ion (Cl)-induced corrosion of steel bars is a major threat to the durability of marine concrete structures. To address this, a type of calcined CaFeAl-layered double oxide (LDO-CFA) with different calcination temperatures was used to enhanced the Cl adsorption, compressive strength, and corrosion resistance of sulphate-resistant Portland cement (SRPC)-based materials. Experimental results demonstrated that LDO-CFA exhibited high Cl adsorption capacity in both CPSs and cement-based materials. Specifically, LDO-750-CFA reached 1.98 mmol/g in CPSs—60.1% higher than LDHs-CFA—and followed the Langmuir model, indicating monolayer adsorption. It also reduced the free Cl content of SRPC paste to 0.255–0.293% after 28 days, confirming its sustained adsorption over extended curing. Furthermore, LDO-CFA positively influenced the compressive strength at all curing ages. At an optimal dosage of 0.8 wt.%, LDO-750-CFA paste significantly improved the compressive strength, increasing it by 22.1% at 7 days and 15.6% at 28 days compared to the control. Electrochemical analysis confirmed the superior corrosion resistance of the LDO-750-CFA system. The property enhancement originated from LDO-750-CFA’s synergistic effects, which included pore refinement, increased tortuosity, Cl adsorption by structural memory, a PVP-induced passive film, and PVP-improved dispersion. Overall, this work provides a framework for developing LDO-750-CFA-based composites, paving the way for more durable marine concrete. Full article
Show Figures

Figure 1

13 pages, 6716 KB  
Article
Enhancing Breakdown Field Strength and Energy Density in Sandwich-Structured P(VDF-HFP)/BT Films with BN Coating
by Yinzhang Cheng, Xueting Bai, Zhenyu Lu, Ruijue Wang, Wei Wang, Ruizhou Guo, Yudong Xu and Zhipeng Lei
Processes 2025, 13(10), 3295; https://doi.org/10.3390/pr13103295 - 15 Oct 2025
Viewed by 315
Abstract
With the rapid development of communication, electronics, medical, and energy industries in modern society, film capacitors have garnered widespread attention and undergone significant growth. However, the low energy density (Ue) resulting from low breakdown strength (Eb) significantly [...] Read more.
With the rapid development of communication, electronics, medical, and energy industries in modern society, film capacitors have garnered widespread attention and undergone significant growth. However, the low energy density (Ue) resulting from low breakdown strength (Eb) significantly limits the application of thin-film capacitors. In this work, we use a low-cost and effective dip-coating method to apply boron nitride (BN) layers onto the outer layers of poly(vinylidene fluoride-co-hexafluoropropylene)/barium titanate (P(VDF-HFP)/BT) composite films to prepare boron nitride-poly(vinylidene fluoride-co-hexafluoropropylene/barium titanate-boron nitride (BN-P(VDF-HFP)/BT-BN) composite films with a sandwich structure that exhibits extremely high Eb and Ue. The experimental results show that the sandwich-structured BN-P(VDF-HFP)/BT-BN films containing 7.5 wt% BT nanoparticles obtained 530 MV/m Eb and 18.12 J/cm3 Ue, both of which are much higher than those of the corresponding monolayer films. In addition, the finite element simulation results show that the designed sandwich-structured films can reduce local field strength distortion, decrease leakage current, and suppress the development of breakdown channels, thereby significantly improving Eb and Ue. In summary, this study presents a low-cost and effective method for enhancing the breakdown strength and energy density of thin-film capacitors. Full article
(This article belongs to the Special Issue Fiber-Reinforced Composites: Latest Advances and Interesting Research)
Show Figures

Figure 1

15 pages, 2880 KB  
Article
Double-Layered Microphysiological System Made of Polyethylene Terephthalate with Trans-Epithelial Electrical Resistance Measurement Function for Uniform Detection Sensitivity
by Naokata Kutsuzawa, Hiroko Nakamura, Laner Chen, Ryota Fujioka, Shuntaro Mori, Noriyuki Nakatani, Takahiro Yoshioka and Hiroshi Kimura
Biosensors 2025, 15(10), 663; https://doi.org/10.3390/bios15100663 - 2 Oct 2025
Viewed by 548
Abstract
Microphysiological systems (MPSs) have emerged as alternatives to animal testing in drug development, following the FDA Modernization Act 2.0. Double-layer channel-type MPS chips with porous membranes are widely used for modeling various organs, including the intestines, blood–brain barrier, renal tubules, and lungs. However, [...] Read more.
Microphysiological systems (MPSs) have emerged as alternatives to animal testing in drug development, following the FDA Modernization Act 2.0. Double-layer channel-type MPS chips with porous membranes are widely used for modeling various organs, including the intestines, blood–brain barrier, renal tubules, and lungs. However, these chips faced challenges owing to optical interference caused by light scattering from the porous membrane, which hinders cell observation. Trans-epithelial electrical resistance (TEER) measurement offers a non-invasive method for assessing barrier integrity in these chips. However, existing electrode-integrated MPS chips for TEER measurement have non-uniform current densities, leading to compromised measurement accuracy. Additionally, chips made from polydimethylsiloxane have been associated with drug absorption issues. This study developed an electrode-integrated MPS chip for TEER measurement with a uniform current distribution and minimal drug absorption. Through a finite element method simulation, electrode patterns were optimized and incorporated into a polyethylene terephthalate (PET)-based chip. The device was fabricated by laminating PET films, porous membranes, and patterned gold electrodes. The chip’s performance was evaluated using a perfused Caco-2 intestinal model. TEER levels increased and peaked on day 5 when cells formed a monolayer, and then they decreased with the development of villi-like structures. Concurrently, capacitance increased, indicating microvilli formation. Exposure to staurosporine resulted in a dose-dependent reduction in TEER, which was validated by immunostaining, indicating a disruption of the tight junction. This study presents a TEER measurement MPS platform with a uniform current density and reduced drug absorption, thereby enhancing TEER measurement reliability. This system effectively monitors barrier integrity and drug responses, demonstrating its potential for non-animal drug-testing applications. Full article
Show Figures

Figure 1

17 pages, 4203 KB  
Article
Degradation and Disintegration Behavior of PHBV- and PLA-Based Films Under Composting Conditions
by Pavlo Lyshtva, Argo Kuusik and Viktoria Voronova
Sustainability 2025, 17(19), 8657; https://doi.org/10.3390/su17198657 - 26 Sep 2025
Viewed by 781
Abstract
This study investigated the degradation and disintegration behavior of novel biobased multilayered films composed of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) during controlled composting tests performed at the laboratory scale. The compostability of monolayer PLA and PHBV films, hot-pressed bilayers, and coextruded multilayer [...] Read more.
This study investigated the degradation and disintegration behavior of novel biobased multilayered films composed of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) during controlled composting tests performed at the laboratory scale. The compostability of monolayer PLA and PHBV films, hot-pressed bilayers, and coextruded multilayer films produced in industrial or semi-industrial settings was systematically evaluated. Materials supplied by Fraunhofer LBF (Darmstadt, Germany) were tested as specified by the EVS-EN standard ISO 14855-1:2012 and EVS-EN ISO 20200:2016 standards. Composting took place in sealed, aerated vessels at 58 ± 2 °C with 50 ± 5% moisture and >6% oxygen. Biodegradation was measured via CO2 evolution, and disintegration was assessed visually and physically. PLA-1OLA films achieved 98.59% biodegradation and 91.13% disintegration. PHBV-5OLA and multilayer PLA-1OLA/PHBV-5OLA films showed biodegradation rates of 85.49% and 73.14%, with disintegration degrees of 89.93% and 79.18%, respectively. However, modified multilayer structures displayed slightly reduced compostability compared with pure compounds, likely due to the influence of additional components. To meet the 90% biodegradability threshold required by EVS-EN 13432:2003, increasing the PLA-1OLA content is recommended. This study introduces a novel combination of biobased polymers and plasticizers in multilayer formats, offering a deeper understanding of structure–property–degradation relationships. Its significance lies in advancing the design of sustainable packaging materials that balance functionality with environmental compatibility. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

14 pages, 1618 KB  
Article
Microstructure, Mechanical, and Tribological Properties of Mo2N/Ag-SiNx Nanomultilayers with Varying Modulation Periods
by Jing Luan, Lei Wang, Songtao Dong, Fábio Ferreira, Filipe Fernandes, Changpan Mo, Albano Cavaleiro and Hongbo Ju
Coatings 2025, 15(9), 1080; https://doi.org/10.3390/coatings15091080 - 15 Sep 2025
Viewed by 468
Abstract
The multilayered Mo2N/Ag-SiNx self-lubricant films were designed and deposited using a DC (Direct Current) magnetron sputtering system under mixed gas atmosphere of N2 and Ar. The modulation ratio (thickness ratio of Mo2N to Ag-SiNx) was [...] Read more.
The multilayered Mo2N/Ag-SiNx self-lubricant films were designed and deposited using a DC (Direct Current) magnetron sputtering system under mixed gas atmosphere of N2 and Ar. The modulation ratio (thickness ratio of Mo2N to Ag-SiNx) was fixed at 2:1, while the modulation periods (thickness of Mo2N and its adjacent Ag-SiNx layer) were set at 20, 40, and 60 nm. The results indicated that all multilayer films, regardless of modulation period, exhibited a combination of face-centered cubic (fcc) and amorphous phases. Specifically, fcc-Mo2N was detected in the Mo2N layers, while fcc-Ag and amorphous SiNx co-existed in the Ag-SiNx layers. The multilayered architecture induced residual stress and interface strengthening, resulting in hardness values exceeding 21 GPa for all films. Compared to Mo2N and Ag-SiNx monolayer films, the multilayer structure significantly enhanced tribological properties at room temperature, particularly in terms of wear resistance. The Mo2N/Ag-SiNx multilayer films exhibit ~25% lower friction than Ag-SiNx, ~3% lower than Mo2N, and achieve remarkable wear rate reductions of ~71% and ~85% compared to Ag-SiNx and Mo2N, respectively, demonstrating superior tribological performance. The synergistic effects of both modulation layers and relative high hardness were key factors contributing to the enhanced tribological behavior. Full article
Show Figures

Figure 1

20 pages, 10282 KB  
Article
A Highly Sensitive SERS Technique Based on Au NPs Monolayer Film Combined with Multivariate Statistical Algorithms for Auxiliary Screening of Postmenopausal Osteoporosis
by Yun Yu, Jinlian Hu, Qidan Shen, Huifeng Xu, Shanshan Wang, Xiaoning Wang, Yuhuan Zhong, Tingting He, Hao Huang, Quanxing Hong, Erdan Huang and Xihai Li
Biosensors 2025, 15(9), 568; https://doi.org/10.3390/bios15090568 - 30 Aug 2025
Viewed by 738
Abstract
Postmenopausal osteoporosis (PMOP) has become an important public health issue. The diagnosis of PMOP relies on clinical symptoms and radiology. However, most patients with PMOP do not exhibit obvious symptoms in the early stages of this disease. This study aimed to explore the [...] Read more.
Postmenopausal osteoporosis (PMOP) has become an important public health issue. The diagnosis of PMOP relies on clinical symptoms and radiology. However, most patients with PMOP do not exhibit obvious symptoms in the early stages of this disease. This study aimed to explore the feasibility of surface-enhanced Raman scattering (SERS) technology in the auxiliary screening of PMOP. PMOP rats were induced by ovariectomy (OVX) surgery, with a Sham group and an icariin (ICA) treatment group serving as controls. A monolayer film of Au nanoparticles (NPs) was prepared using the Marangoni effect in an oil/water/oil three-phase system, and was used to detect serum SERS signals in the Sham, OVX, and ICA treatment groups. Then, the spectral diagnostic model for PMOP screening was established utilizing partial least squares (PLS) and support vector machine (SVM) algorithms. Histopathology confirmed the establishment of the PMOP rat model. The assignment of Raman peaks and the analysis of spectral differences revealed the biochemical changes associated with PMOP, including the upregulation of tyrosine levels and the downregulation of arginine, tryptophan, lipids, and collagen. When employing the PLS-SVM algorithm to simultaneously classify and discriminate three groups of samples, the diagnostic sensitivity for PMOP is 93.33%, the specificity is 96.67%, and the accuracy of three-class classification is 91.11%. This study demonstrated the potential of SERS for the auxiliary screening of PMOP. Full article
(This article belongs to the Special Issue Surface-Enhanced Raman Scattering in Biosensing Applications)
Show Figures

Graphical abstract

16 pages, 2807 KB  
Article
Evaluating the Impact of Carbon Nanoparticles on the Interfacial Properties of the Pulmonary Surfactant Film
by Yingxue Geng, Qun Zhao, Junfeng Wang, Yan Cao, Yunshan Wang, Wenshi Gou, Linfeng Zhang and Senlin Tian
Nanomaterials 2025, 15(16), 1244; https://doi.org/10.3390/nano15161244 - 14 Aug 2025
Viewed by 507
Abstract
The interaction between carbon nanoparticles (CNs) and Langmuir monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) as a model pulmonary surfactant (PS) film was studied to shed light on the physicochemical bases underlying the potential adverse effects associated with pollutant inhalation. The results indicated that the surface [...] Read more.
The interaction between carbon nanoparticles (CNs) and Langmuir monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) as a model pulmonary surfactant (PS) film was studied to shed light on the physicochemical bases underlying the potential adverse effects associated with pollutant inhalation. The results indicated that the surface pressure–area isotherms of the DPPC monolayers shifted toward lower molecular areas, and the compression modulus was reduced in the presence of CNs, hindering the ability of the DPPC monolayers to reduce the surface tension. The relaxation process of the DPPC monolayers were influenced, and the surface morphology and the continuity of the monolayers were destroyed by the penetration of CNs into the DPPC monolayers. The molecular dynamics simulation revealed that particle incorporation into the DPPC monolayers reduced the packing density of the DPPC molecules, worsening the mechanical performance of the monolayers. This effect was attributed to the strong binding trend between the CNs and the DPPC molecules. These results demonstrated that CNs could alter the relaxation mechanisms of the PS film, and this may cause a modification of the inhaled particle transport at the PS film and contribute to adverse health effects in the respiratory system of workers involved in the CN production process. Full article
Show Figures

Graphical abstract

9 pages, 1337 KB  
Communication
Photonic–Surface Plasmon Coupling Mode: Experimental Study with a Silver Thin-Film Coating on MPCC
by Pengfei Li, Zhanwu Xie, Haitao Yan and Shitong Zhong
Photonics 2025, 12(8), 811; https://doi.org/10.3390/photonics12080811 - 13 Aug 2025
Viewed by 1241
Abstract
In this paper, a silver thin film coating on a monolayer polystyrene colloidal crystal (MPCC) hybrid structure was fabricated, and a photonic–surface plasmon coupling mode was established and experimentally researched. The silver thin film was sputtered onto the MPCC to form Ag-MPCC. The [...] Read more.
In this paper, a silver thin film coating on a monolayer polystyrene colloidal crystal (MPCC) hybrid structure was fabricated, and a photonic–surface plasmon coupling mode was established and experimentally researched. The silver thin film was sputtered onto the MPCC to form Ag-MPCC. The silver film effectively excites surface plasmon polariton (SPP) modes upon the incidence of light, and the MPCC has an intrinsic mode. These two modes couple and result in the extraordinary optical transmission (EOT) phenomenon in the transmission spectrum. Reflection suppression arising from this photon coupling effect was discovered in the reflection spectrum. We etched the single-layer colloidal particles to change the period of the colloidal crystal, thereby forming the MPCC metal hybrid structure with different lattices. We discussed and analyzed the results through experiments. The EOT can be controlled by the incident angle, lattice periodicity, and refractive index distribution of the Ag-MPCC, and the diffraction behavior is determined using the lattice structure and refractive index of the MPCC. The coupling effect of the two models leads to wavelength shifts and intensity variations in the spectral eigenvalues. Reflection suppression is achieved when the reflectivity at a specific wavelength is close to 0.1. Full article
Show Figures

Figure 1

28 pages, 6945 KB  
Article
Exploring the Structural Effects of Benzaldehyde Derivatives as Corrosion Inhibitors on Mild Steel in Acidic Medium Using Computational and Experimental Approaches
by Tumelo Hope Baloyi, Motsie Elija Mashuga, Abdelilah El-Khlifi, Mohammad Salman and Indra Bahadur
Corros. Mater. Degrad. 2025, 6(3), 29; https://doi.org/10.3390/cmd6030029 - 5 Jul 2025
Viewed by 1135
Abstract
In a recent investigation the corrosion-fighting potential of five benzaldehyde derivatives were explored: 4-Formylbenzonitrile (BA1), 4-Nitrobenzaldehyde (BA2), 2-Hydroxy-5-methoxy-3-nitrobenzaldehyde (BA3), 3,5-Bis(trifluoromethyl)benzaldehyde (BA4), and 4-Fluorobenzaldehyde (BA5). Benzaldehyde derivative (BA-2) showed a maximum inhibition efficiency of 93.3% at 500 ppm. Several techniques were used to evaluate [...] Read more.
In a recent investigation the corrosion-fighting potential of five benzaldehyde derivatives were explored: 4-Formylbenzonitrile (BA1), 4-Nitrobenzaldehyde (BA2), 2-Hydroxy-5-methoxy-3-nitrobenzaldehyde (BA3), 3,5-Bis(trifluoromethyl)benzaldehyde (BA4), and 4-Fluorobenzaldehyde (BA5). Benzaldehyde derivative (BA-2) showed a maximum inhibition efficiency of 93.3% at 500 ppm. Several techniques were used to evaluate these compounds’ ability to protect mild steel from corrosion in a 1 M HCl solution, including potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), adsorption isotherms, and computational methods. Supporting techniques Fourier transform infrared spectroscopy (FTIR) and ultraviolet–visible (UV-Vis) spectroscopy were also employed to validate the results. Despite sharing a common benzene ring, the molecules differ in their substituents, allowing for a comprehensive examination of the substituents’ impact on corrosion inhibition. PDP analysis disclosed that the inhibitors exhibited mixed-type inhibition behavior, interacting with anodic as well as cathodic reactions, influencing the corrosion process. EIS analysis revealed that benzaldehyde derivatives formed a protective passive film on the metal, exhibiting high corrosion resistance by shielding the alloy from corrosive attacks. The benzaldehyde inhibitors followed the Langmuir adsorption isotherm, with high R² values near one, indicating a monolayer adsorption mechanism. DFT results indicate that BA 2 is the most effective inhibitor. FTIR and UV-vis spectroscopy revealed the molecular interactions between metal and benzaldehyde derivative molecules, providing insight into the binding mechanism. Experimental results support the outcomes obtained from the molecular dynamic (MD) simulations. Full article
Show Figures

Figure 1

Back to TopTop