Exploring the Structural Effects of Benzaldehyde Derivatives as Corrosion Inhibitors on Mild Steel in Acidic Medium Using Computational and Experimental Approaches
Abstract
1. Introduction
2. Experimental Details
2.1. Materials and Chemicals
2.2. Weight Loss Study
2.3. Electrochemical Studies
2.4. Spectroscopic Studies
2.5. Computational Studies
3. Results and Discussion
3.1. Weight Loss Study
3.2. OCP vs. Time
3.3. Potentiodynamic Polarization (PDP) Study
3.4. Electrochemical Impedance Spectroscopy Study
3.5. Adsorption Isotherm
3.6. Spectroscopic Analysis
3.6.1. Fourier Transform Infrared (FTIR) Spectroscopy
3.6.2. Ultraviolet–Visible Spectrometry
3.7. Quantum Chemical Study
3.8. Molecular Dynamics Simulation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ovri, J.E.O. Corrosion: A Precursor to Environmental stability in the Niger delta of Nigeria, 36th Inaugural lecture. Delta 2020, 3, 4–877. [Google Scholar]
- Ebenso, E.E.; Oguzie, E.E. Corrosion inhibition of mild steel in acidic media by some organic dyes. Mater. Lett. 2005, 59, 2163–2165. [Google Scholar]
- Musa, M.; Javidani, M.; Heidari, M.; Jahazi, M. Enhancing the tribological performance of tool steels for wood-processing applications: A comprehensive review. Metals 2023, 13, 1460. [Google Scholar] [CrossRef]
- Chen, L.; Lu, D.; Zhang, Y. Organic Compounds as Corrosion Inhibitors for Carbon Steel in HCl Solution: A Comprehensive Review. Materials 2022, 15, 2023. [Google Scholar] [CrossRef]
- Dyari, M.M.; Hiwa, M.Q. Corrosion inhibition efficiency and quantum chemical studies of some organic compounds: Theoretical evaluation. Corros. Rev. 2023, 41, 427–441. [Google Scholar]
- Kadhim, A.; Betti, N.; Al-Bahrani, H.A.; Al-Ghezi, M.K.S.; Gaaz, T.; Kadhum, A.H.; Alamiery, A. A mini review on corrosion, inhibitors and mechanism types of mild steel inhibition in an acidic environment. Int. J. Corros. Scale Inhib. 2021, 10, 861–884. [Google Scholar]
- Fu, J.J.; Li, S.N.; Wang, Y.; Cao, L.H.; Lu, L.D. Computational and electrochemical studies of some amino acid compounds as corrosion inhibitors for mild steel in hydrochloric acid solution. J. Mater. Sci. 2010, 45, 6255–6265. [Google Scholar]
- Prabakar, S.R.; Hwang, Y.H.; Bae, E.G.; Lee, D.K.; Pyo, M. Graphene oxide as a corrosion inhibitor for the aluminum current collector in lithium ion batteries. Carbon 2013, 52, 128–136. [Google Scholar]
- Park, J.Y.; Belau, L.; Seo, H.; Somorjai, G.A. Improved oxidation resistance of Ru/Si capping layer for extreme ultraviolet lithography reflector. J. Vac. Sci. Technol. B 2011, 29, 041602. [Google Scholar]
- Shwetha, K.M.; Praveen, B.M.; Devendra, B.K. A review on corrosion inhibitors: Types, mechanisms, electrochemical analysis, corrosion rate and efficiency of corrosion inhibitors on mild steel in an acidic environment. Results Surf. Interfaces 2024, 16, 100258. [Google Scholar]
- Sherif, E.S.M. The role of corrosion inhibitors in protecting metallic structures against corrosion in harsh environments. Role Colloid. Syst. Environ. Prot. 2014, 509–526. [Google Scholar]
- Awad, M.I.; Saad, A.F.; Shaaban, M.R.; Jahdaly, B.A.; Hazazi, O.A. New insight into the mechanism of the inhibition of corrosion of mild steel by some amino acids. Int. J. Electrochem. Sci. 2017, 12, 1657–1669. [Google Scholar]
- Chauhan, D.S.; Verma, C.; Quraishi, M.A. Molecular structural aspects of organic corrosion inhibitors: Experimental and computational insights. J. Mol. Liq. 2021, 1227, 129374. [Google Scholar]
- Verma, C.; Haque, J.; Quraishi, M.A.; Ebenso, E.E. Aqueous phase environmentally friendly organic corrosion inhibitors derived from one step multicomponent reactions: A review. J. Mol. Liq. 2019, 275, 18–40. [Google Scholar]
- Chauhan, D.S.; Quraishi, M.A.; Nik, W.B.W.; Srivastava, V. Triazines as a potential class of corrosion inhibitors: Present scenario, challenges and future perspectives. J. Mol. Liq. 2021, 321, 114747. [Google Scholar]
- Al-Amiery, A.A.; Kadhum, A.A.H.; Alobaidy, A.H.M.; Mohamad, A.B.; Hoon, P.S. Novel corrosion inhibitor for mild steel in HCl. Mater. 2014, 7, 662–672. [Google Scholar]
- Satrio, J.A.B.; Doraiswamy, L.K. Production of benzaldehyde: A case study in a possible industrial application of phase-transfer catalysis. J. Chem. Eng. 2001, 82, 43–56. [Google Scholar]
- Kazemifard, A.G.; Moore, D.E.; Mohammadi, A.; Kebriyaeezadeh, A. Capillary gas chromatography determination of benzaldehyde arising from benzyl alcohol used as preservative in injectable formulations. J. Pharm. Biomed. Anal. 2003, 31, 685–691. [Google Scholar]
- Hegazy, M.A.; Hasan, A.M.; Emara, M.M.; Bakr, M.F.; Youssef, A.H. Evaluating four synthesized Schiff bases as corrosion inhibitors on the carbon steel in 1 M hydrochloric acid. Corr. Sci. 2012, 65, 67–76. [Google Scholar]
- Shaw, P.; Obot, I.B.; Yadav, M. Functionalized 2-hydrazinobenzothiazole with carbohydrates as a corrosion inhibitor: Electrochemical, XPS, DFT and Monte Carlo simulation studies. Mater. Chem. Front. 2019, 3, 931–940. [Google Scholar]
- Hong, S.; Chen, W.; Luo, H.Q.; Li, N.B. Inhibition effect of 4-amino-antipyrine on the corrosion of copper in 3 wt.% NaCl solution. Corr. Sci. 2012, 57, 270–278. [Google Scholar]
- Soliman, S.A.; Metwally, M.S.; Selim, S.R.; Bedair, M.A.; Abbas, M.A. Corrosion inhibition and adsorption behavior of new Schiff base surfactant on steel in acidic environment: Experimental and theoretical studies. J. Ind. Eng. Chem. 2014, 20, 4311–4320. [Google Scholar]
- Chauhan, D.S.; Mazumder, M.J.; Quraishi, M.A.; Ansari, K.R. Chitosan-cinnamaldehyde Schiff base: A bioinspired macromolecule as corrosion inhibitor for oil and gas industry. Int. J. Bio. Macromole. 2020, 158, 127–138. [Google Scholar]
- Abdallah, M.; Zaafarany, I.; Fouda, A.S.; Abd El-Kader, D. Inhibition of zinc corrosion by some benzaldehyde derivatives in HCl solution. J. Mater. Eng. Perform. 2012, 21, 995–1002. [Google Scholar]
- Arrousse, N.; Salim, R.; Houari, G.A.; Hajjaji, F.E.; Zarrouk, A.; Rais, Z.; Taleb, M.; Chauhan, D.S. Experimental and theoretical insights on the adsorption and inhibition mechanism of (2E)-(acetylamino)-3-(4-nitrophenyl) prop-2-enoic acid and 4-nitrobenzaldehyde on mild steel corrosion. Chem. Sci. J. 2020, 132, 112. [Google Scholar]
- Zhang, H.H.; Chen, Y. Experimental and theoretical studies of benzaldehyde thiosemicarbazone derivatives as corrosion inhibitors for mild steel in acid media. J. Mol. Struct. 2019, 1177, 90–100. [Google Scholar]
- Naik, U.J.; Jha, P.C.; Lone, M.Y.; Shah, R.R.; Shah, N.K. Electrochemical and theoretical investigation of the inhibitory effect of two Schiff bases of benzaldehyde for the corrosion of aluminium in hydrochloric acid. J. Mole. Struct. 2016, 1125, 63–72. [Google Scholar]
- Gupta, N.K.; Haque, J.; Salghi, R.; Lgaz, H.; Mukherjee, A.K.; Quraishi, M.A. Spiro [indoline-3,4′-pyrano [2,3-c] pyrazole] derivatives as novel class of green corrosion inhibitors for mild steel in hydrochloric acid medium: Theoretical and experimental approach. J. Bio-Tribo-Corros. 2018, 4, 16. [Google Scholar]
- Salman, M.; Zondi, Z.; Mashuga, M.E.; Bahadur, I.; Kumar, S.; Haque, J.; Pandey, S.K.; Mohammad, F.; El-khlifi, A. Calotropis procera Latex Extract as an Effective Green Corrosion Inhibitor for Mild Steel in Acidic Medium: Experimental and Quantum Chemical Approaches. Asia-Pac. J. Chem. Eng. 2025, 20, e70010. [Google Scholar]
- Saranya, J.; Sowmiya, M.; Sounthari, P.; Parameswari, K.; Chitra, S.; Senthilkumar, K. N-heterocycles as corrosion inhibitors for mild steel in acid medium. J. Mol. Liq. 2016, 216, 42–52. [Google Scholar]
- Manivel, A.; Ramkumar, S.; Wu, J.J.; Asiri, A.M.; Anandan, S. Exploration of (S)-4,5,6,7-tetrahydrobenzo [d] thiazole-2,6-diamine as feasible corrosion inhibitor for mild steel in acidic media. J. Environ. Chem. Eng. 2014, 2, 463–470. [Google Scholar]
- Jacobsen, H.; Cavallo, L. Re-evaluation of the Mn (Salen) mediated epoxidation of alkenes by means of the B3LYP* density functional. Phys. Chem. Chem. Phys. 2004, 6, 3747–3753. [Google Scholar]
- Guo, L.; Obot, I.B.; Zheng, X.; Shen, X.; Qiang, Y.; Kaya, S.; Kaya, C. Theoretical insight into an empirical rule about organic corrosion inhibitors containing nitrogen, oxygen, and sulfur atoms. Appl. Surf. Sci. 2017, 406, 301–306. [Google Scholar]
- Lgaz, H.; Lee, H. Interfacial adsorption mechanism of hydroxycinnamic acids on iron surfaces: A computational perspective toward eco-friendly corrosion mitigation strategies. Appl. Surf. Sci. 2024, 644, 158763. [Google Scholar]
- Lgaz, H.; Lee, H. Computational Exploration of Phenolic Compounds in Corrosion Inhibition: A Case Study of Hydroxytyrosol and Tyrosol. Materials 2023, 16, 6159. [Google Scholar] [CrossRef]
- Verma, C.; Lgaz, H.; Verma, D.K.; Ebenso, E.E.; Bahadur, I.; Quraishi, M.A. Molecular dynamics and Monte Carlo simulations as powerful tools for study of interfacial adsorption behavior of corrosion inhibitors in aqueous phase: A review. J. Mol. Liq. 2018, 260, 99–120. [Google Scholar]
- Wazzan, N.; Obot, I.B.; Lgaz, H.; Safi, Z.; Al-Qurashi, O. Multiscale computational modeling of phytochemicals for iron corrosion inhibition: Bridging DFT, SCC-DFTB, and molecular dynamics for eco-friendly solutions. J. Mol. Liq. 2024, 406, 125070. [Google Scholar]
- Obot, I.B.; Obi-Egbedi, N.O. Anti-corrosive properties of xanthone on mild steel corrosion in sulphuric acid: Experimental and theoretical investigations. Curr. Appl. Phys. 2011, 11, 382–392. [Google Scholar]
- Yadav, D.K.; Quraishi, M.A. Electrochemical investigation of substituted pyranopyrazoles adsorption on mild steel in acid solution. Ind. Eng. Chem. Res. 2012, 51, 8194–8210. [Google Scholar]
- Olasunkanmi, L.O.; Mashuga, M.E.; Ebenso, E.E. Surface protection activities of some 6-substituted 3-chloropyridazine derivatives for mild steel in 1 M hydrochloric acid: Experimental and theoretical studies. Surf. Interfac. 2018, 12, 8–19. [Google Scholar]
- Rahimi, A.; Abdouss, M.; Farhadian, A.; Guo, L.; Neshati, J. Development of a Novel Thermally Stable Inhibitor Based on Furfuryl Alcohol for Mild Steel Corrosion in a 15% HCl Medium for Acidizing Application. Ind. Eng. Chem. Res. 2021, 60, 11030–11044. [Google Scholar]
- Lowmunkhong, P.; Ungthararak, D.; Sutthivaiyakit, P. Tryptamine as a corrosion inhibitor of mild steel in hydrochloric acid solution. Corros. Sci. 2010, 52, 30–36. [Google Scholar]
- Döner, A.; Solmaz, R.; Özcan Kardaş, M.G. Experimental and theoretical studies of thiazoles as corrosion inhibitors for mild steel in sulphuric acid solution. Corros. Sci. 2011, 53, 2902–2913. [Google Scholar]
- Verma, C.; Olasunkanmi, L.O.; Ebenso, E.E.; Quraishi, M.A. Substituents effect on corrosion inhibition performance of organic compounds in aggressive ionic solutions: A review. J. Mol. Liq. 2018, 251, 100–118. [Google Scholar]
- Martinez, S.; Metikoš-Huković, M. A nonlinear kinetic model introduced for the corrosion inhibitive properties of some organic inhibitors. J. Appl. Electrochem. 2003, 33, 1137–1142. [Google Scholar]
- Olsen, H.L. CO2 Corrosion of Steel in Formate Brines for Well Applications. Presented at the CORROSION 2004, New Orleans, LA, USA, 27 March–1 April 2004. NACE-04357. [Google Scholar]
- Zarrouk, A.; Hammouti, B.; Zarrok, H.; Al-Deyab, S.S.; Warad, I. Thermodynamic study of metal corrosion and inhibitor adsorption processes in copper/N-1-naphthylethylenediamine dihydrochloride monomethanolate/nitric acid system: Part 2. Res. Chem. Intermed. 2012, 38, 1655–1668. [Google Scholar]
- Chopra, D.; Row, T.N.G. Role of organic fluorine in crystal engineering. Cryst. Eng. Comm. 2011, 13, 2175–2186. [Google Scholar]
- Ramachandran, A.; Anitha, P.; Gnanavel, S.; Angaiah, S. Development of 1-phenyl-3-(4-(pyridin-4-ylmethyl) phenyl) urea derivatives as robust corrosion inhibitors for mild steel in 1 M HCl environment: Insight from, molecular, experimental, and microscopic-scale modelling approaches. J. Environ. Chem. Eng. 2024, 12, 111648. [Google Scholar]
- Iroha, N.B.; Maduelosi, N.J. Corrosion inhibitive action and adsorption behaviour of justicia secunda leaves extract as an eco-friendly inhibitor for aluminium in acidic media. Biointerface Res. Appl. Chem. 2021, 11, 13019–13030. [Google Scholar]
- Mashuga, M.E.; Olasunkanmi, L.O.; Lgaz HEl-Sayed, M.; Sherif Eno, E. Ebenso Aminomethylpyridazine isomers as corrosion inhibitors for mild steel in 1 MHCl: Electrochemical DFT, Monte Carlo simulation studies. J. Mol. Liq. 2021, 344, 117882. [Google Scholar]
- Desai, P. Inhibitory action of extract of ankado (Calotropis gigantea) leaves on mild steel corrosion in hydrochloric acid solution. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 437–447. [Google Scholar]
- Xu, B.; Ji, Y.; Zhang, X.; Jin, X.; Yang, W.; Chen, Y. Experimental and theoretical evaluation of N,N-Bis (2-pyridylmethyl) aniline as a novel corrosion inhibitor for mild steel in hydrochloric acid. J. Taiwan Inst. Chem. Eng. 2016, 59, 526–535. [Google Scholar]
- Dkhireche, N.; Galai, M.; El Kacimi, Y.; Rbaa, M.; Ouakki, M.; Lakhrissi, B.; Touhami, M.E. New quinoline derivatives as sulfuric acid inhibitor’s for mild steel. Anal. Bioanal. Electrochem. 2018, 10, 111–135. [Google Scholar]
- Adejo, S.O.; Ahile, J.U.; Gbertyo, J.A.; Kaior, A.; Ekwenchi, M.M. Resolution of adsorption characterisation ambiguity through the Adejo-Ekwenchi adsorption isotherm: A case study of leaf extract of Hyptis suaveolen poit as green corrosion inhibitor of corrosion of mild steel in 2 M HCl. J. Emerg. Trends Eng. Appl. Sci. 2014, 5, 201–205. [Google Scholar]
- Singh, A.; Ansari, K.R.; Quraishi, M.A.; Kaya, S.; Banerjee, P. The effect of an N-heterocyclic compound on corrosion inhibition of J55 steel in sweet corrosive medium. New J. Chem. 2019, 43, 6303–6313. [Google Scholar]
- Salman, M.; Ansari, K.R.; Haque, J.; Srivastava, V.; Quraishi, M.A.; Mazumder, M.A. Ultrasound-assisted synthesis of substituted triazines and their corrosion inhibition behavior on N80 steel/acid interface. J. Heterocycl. Chem. 2020, 57, 2157–2172. [Google Scholar]
- Manimegalai, S.; Manjula, P. Thermodynamic and adsorption studies for corrosion inhibition of mild steel in aqueous media by Sargasam swartzii (brown algae). J. Mater. Environ. Sci. 2015, 6, 1629–1637. [Google Scholar]
- de Oliveira, L.F.C.; Edwards, H.G.M.; Velozo, E.S.; Nesbitt, M. Vibrational spectroscopic study of brazilin and brazilein, the main constituents of brazilwood from Brazil, Vib. Spectrosc. 2002, 28, 243–249. [Google Scholar]
- James, C.; Raj, A.A.; Reghunathan, R.; Jayakumar, V.S.; Joe, I.H. Structural conformation and vibrational spectroscopic studies of 2, 6-bis (p-N,N-dimethyl benzylidene) cyclohexanone using density functional theory. JRSPAF 2006, 37, 1381–1392. [Google Scholar]
- Bernstein, M.P.; Sandford, S.A.; Allamandola, L.J. The infrared spectra of nitriles and related compounds frozen in Ar and H2O. Astrophys. J. 1997, 476, 932. [Google Scholar]
- Kang, I.P.S. Spectral Studies of Compounds Containing the Carboxylate Ion, Nitro and Related Groupings. Ph.D. Thesis, The Australian National University, Canberra, Australia, 1970. [Google Scholar]
- Badger, R.M.; Bauer, S.H. Spectroscopic studies of the hydrogen bond I. A photometric investigation of the association equilibrium in the vapor of acetic acid. J. Chem. Phys. 1937, 5, 605–608. [Google Scholar]
- Olasunkanmi, L.O.; Kabanda, M.M.; Ebenso, E.E. Quinoxaline derivatives as corrosion inhibitors for mild steel in hydrochloric acid medium: Electrochemical and quantum chemical studies. Phys. E Low-Dimens. Syst. Nanostruct. 2016, 76, 109–126. [Google Scholar]
- Minami, K.; Ohashi, T.; Suzuki, M.; Aizawa, T.; Adschiri, T.; Arai, K. Estimation of local density augmentation and hydrogen bonding between pyridazine and water under sub-and supercritical conditions using UV-vis spectroscopy. Anal. Sci. 2006, 11, 1417–1423. [Google Scholar]
- Rbaa, M.; Benhiba, F.; Obot, I.B.; Oudda, H.; Warad, I.; Lakhrissi, B.; Zarrouk, A. Two new 8-hydroxyquinoline derivatives as an efficient corrosion inhibitors for mild steel in hydrochloric acid: Synthesis, electrochemical, surface morphological, UV–visible and theoretical studies. J. Mole. Liq. 2019, 276, 120–133. [Google Scholar]
- Verma, C.; Quraishi, M.A.; Ebenso, E.E.; Bahadur, I. A green and sustainable approach for mild steel acidic corrosion inhibition using leaves extract: Experimental and DFT studies. J. Bio-Tribo-Corros. 2018, 4, 33. [Google Scholar]
- Sayin, Koray, and Duran Karakaş. Quantum chemical studies on the some inorganic corrosion inhibitors. Corros. Sci. 2013, 77, 37–45. [Google Scholar]
- Lukovits, I.; Kalman, E.; Zucchi, F. Corrosion inhibitors correlation between electronic structure and efficiency. Corrosion 2001, 57, 3–8. [Google Scholar]
- Salman, M.; Ansari, K.R.; Srivastava, V.; Chauhan, D.S.; Haque, J.; Quraishi, M.A. Chromeno naphthyridines based heterocyclic compounds as novel acidiz-ing corrosion inhibitors: Experimental, surface and computational study. J. Mol. Liq. 2021, 322, 114825. [Google Scholar]
- Pearson, R.G. Absolute electronegativity and hardness correlated with molecular or-bital theory. Proc. Nat. Acad. Sci. USA 1986, 83, 8440. [Google Scholar]
- Pearson, R.G. Absolute electronegativity and hardness: Application to inorganic chemistry. Inorg. Chem. 1988, 27, 734. [Google Scholar]
- Parr, R.G.; and Pearson, R.G. Absolute hardness: Companion parameter to absolute electronegativity. J. Am. Chem. Soc. 1983, 105, 7512. [Google Scholar]
- Salman, M.; Sri-vastava, V.; Quraishi, M.A.; Chauhan, D.S.; Ansari, K.R.; Haque, J. Qui-no-line Carbonitriles as Novel Inhibitors for N80 Steel Corrosion in Oil-Well Acidizing: Experimental and Computational Insights. Russ. J. Electrochem. 2021, 57, 228–244. [Google Scholar]
- Lebrini, M.; Lagrenee, M.; Traisnel, M.; Gengembre, L.; Vezin, H.; Bentiss, F. Enhanced corrosion resistance of mild steel in normal sulfuric acid medium by 2,5-bis (n-thienyl)-1,3,4-thiadiazoles: Electrochemical, X-ray photoelectron spectroscopy andtheoretical studies. Appl. Surf. Sci. 2007, 253, 9267–9276. [Google Scholar]
- Zheng, X.; Zhang, S.; Li, W.; Gong, M.; Yin, L. Experi-mental and theoretical studies of two imidazoli-um-based ionic liquids as inhibitors for mild steel in sulfuric acid solution. Corros. Sci. 2015, 95, 168–179. [Google Scholar]
- Hu, Z.; Meng, Y.; Ma, X.; Zhu, H.; Li, J.; Li, C.; Cao, D. Experimental and theo-retical studies of benzothiazole derivatives as corrosion inhibitors for carbon steel in 1 M HCl. Corros. Sci. 2016, 112, 563–575. [Google Scholar]
- Zarrouk, A.; Hammouti, A.B.; Al-Deyab, S.S.; Salghi, R.; Zarrok, H.; Jama, C.; Bentiss, F. Corrosion inhibition performance of 3, 5-diamino-1, 2, 4-triazole for protection of copper in nitric acid solution. Int. J. Electrochem. Sci. 2012, 7, 5997–6011. [Google Scholar]
- Eddy, N.O.; Ebenso, E.E. Quantum chemical studies on the inhibition potentials of some penicillin compounds for the corrosion of mild steel in 0.1 M HCl. J. Mol. Model. 2010, 16, 1291–1306. [Google Scholar]
- Ansari, K.R.; Ramkumar, S.; Chauhan, D.S.; Salman, M.; Nalini, D.; Srivastava, V.; Quraishi, M.A. Macrocyclic compounds as green corrosion inhibitors for aluminium: Electrochemical, surface and quantum chemical studies. Int. J. Corros. Scale Inhib. 2018, 7, 443–459. [Google Scholar]
- Saini, N.; Pahuja, P.; Lgaz, H.; Chung, I.M.; Selwal, K.; Singhal, S.; Lata, S. PVP oxime-TiO2-adenine as a hybrid material: Decent synthesis and depiction with advanced theoretical measurements for anticorrosive behavior and antibacterial potentiality. J. Mol. Liq. 2019, 278, 438–451. [Google Scholar]
- Lgaz, H.; Salghi, R.; Subrahmanya Bhat, K.; Chaouiki, A.; Shubhalaxmi, S.J. Correlated experimental and theoretical study on inhibition behavior of novel quinoline derivatives for the corrosion of mild steel in hydrochloric acid solution. J. Mol. Liq. 2017, 244, 154–168. [Google Scholar]
- Lgaz, H.; Bhat, K.S.; Salghi, R.; Jodeh, S.; Algarra, M.; Hammouti, B.; Ali, I.H.; Essamri, A. Insights into corrosion inhibitionbehavior of three chalcone derivatives for mild steel in hydrochloric acid solution. J. Mol. Liq. 2017, 238, 71–83. [Google Scholar]
- Lgaz, H.; Lee, H.; Kaya, S.; Salghi, R.; Ibrahim, S.M.; Chafiq, M.; Bazzi, L.; Ko, Y.G. Unraveling Bonding Mechanisms andElectronic Structure of Pyridine Oximes on Fe(110) Surface: Deeper Insights from DFT, Molecular Dynamics and SCC-DFTTight Binding Simulations. Molecules 2023, 28, 3545. [Google Scholar] [PubMed]
Inhibitors | Conc. (ppm) | Weight Loss (mg) | CR (mg cm−2 h−1) | %IE with Deviation | Surface Coverage (θ) |
---|---|---|---|---|---|
Blank | 0.0 | 230 | 8.52 | - | - |
BA-1 | 100 | 67 | 2.52 | 71 2.2 | 0.71 |
200 | 36 | 1.50 | 85 1.8 | 0.85 | |
300 | 30 | 1.12 | 87 1.6 | 0.87 | |
400 | 21 | 0.77 | 91 1.7 | 0.91 | |
500 | 18 | 0.73 | 93 2.3 | 0.93 | |
BA-2 | 100 | 50 | 1.88 | 78 3.1 | 0.78 |
200 | 31 | 0.78 | 87 3.2 | 0.87 | |
300 | 21 | 0.77 | 91 1.6 | 0.91 | |
400 | 19 | 0.69 | 92 2.4 | 0.92 | |
500 | 14 | 0.52 | 94 2.2 | 0.94 | |
BA-3 | 100 | 151 | 5.50 | 35 2.5 | 0.35 |
200 | 124 | 4.62 | 46 3.4 | 0.46 | |
300 | 120 | 4.52 | 48 3.6 | 0.48 | |
400 | 80 | 2.90 | 66 3.1 | 0.66 | |
500 | 72 | 2.70 | 69 2.8 | 0.69 | |
BA-4 | 100 | 161 | 5.98 | 30 1.8 | 0.30 |
200 | 135 | 5.03 | 41 2.2 | 0.41 | |
300 | 113 | 4.18 | 51 3.8 | 0.51 | |
400 | 119 | 4.15 | 52 1.5 | 0.52 | |
500 | 133 | 3.66 | 58 1.6 | 0.58 | |
BA-5 | 100 | 170 | 6.30 | 26 2.2 | 0.26 |
200 | 142 | 5.30 | 38 2.9 | 0.38 | |
300 | 138 | 5.10 | 40 3.2 | 0.40 | |
400 | 117 | 4.35 | 49 2.5 | 0.49 | |
500 | 104 | 3.90 | 55 3.1 | 0.55 |
Inhibitor Concentration (ppm) | (mV) | () | () | () | %IEPDP |
---|---|---|---|---|---|
Blank | |||||
0 | 445 | 77.52 | 38.24 | 485.14 | - |
BA 1 | |||||
100 | 488 | 112.62 | 49.27 | 127.1 | 73.8% |
200 | 488 | 112.85 | 61.40 | 87.66 | 81.9% |
300 | 483 | 106.19 | 84.03 | 63.02 | 87.0% |
400 | 478 | 104.98 | 37.27 | 54.69 | 88.7% |
500 | 489 | 86.41 | 41.78 | 42.38 | 91.3% |
BA 2 | |||||
100 | 465 | 73.41 | 38.23 | 114.84 | 76.3% |
200 | 415 | 84.85 | 36.40 | 55.17 | 88.5% |
300 | 432 | 22.31 | 23.26 | 50.06 | 89.7% |
400 | 453 | 27.70 | 14.22 | 37.42 | 92.3% |
500 | 436 | 14.76 | 12.60 | 27.91 | 94.25% |
BA 3 | |||||
100 | 452 | 155.04 | 63.55 | 307.81 | 36.6% |
200 | 464 | 92.822 | 49.98 | 278.37 | 42.62% |
300 | 457 | 129.45 | 60.99 | 250.02 | 48.5% |
400 | 497 | 89.961 | 55.04 | 176.61 | 63.6% |
500 | 466 | 63.548 | 46.90 | 154.93 | 68.1% |
BA 4 | |||||
100 | 477 | 107.60 | 47.69 | 351.07 | 27.6% |
200 | 491 | 117.11 | 53.70 | 301.42 | 37.9% |
300 | 478 | 101.99 | 51.66 | 269.43 | 44.5% |
400 | 485 | 79.46 | 50.53 | 194.68 | 60.0% |
500 | 478 | 99.32 | 59.76 | 169.85 | 65.0% |
BA 5 | |||||
100 | 467 | 77.74 | 45.12 | 319.61 | 34.1% |
200 | 476 | 83.98 | 44.16 | 312.82 | 35.5% |
300 | 473 | 104.50 | 36.83 | 301.85 | 37.8% |
400 | 474 | 115.30 | 49.68 | 223.83 | 53.9% |
500 | 480 | 94.01 | 52.10 | 198.45 | 59.1% |
Inhibitor Conc. (ppm) | Rs ) | Q,Yo | n | Cdl (μFcm−2) | Fit Error (χ2) | ||
---|---|---|---|---|---|---|---|
Blank | - | ||||||
0 | 1.01 | 844 | 0.764 | 8.59 | 152.34 | - | 1.38 10−3 |
BA 1 | |||||||
100 | 2.40 | 449 | 0.782 | 29.4 | 136.53 | 70.8 | 1.56 10−3 |
200 | 3.33 | 272 | 0.825 | 65.0 | 127.26 | 86.8 | 1.62 10−3 |
300 | 2.29 | 233 | 0.850 | 75.9 | 120.33 | 88.7 | 1.48 10−3 |
400 | 1.74 | 224 | 0.853 | 90.7 | 116.30 | 90.5 | 1.64 10−3 |
500 | 3.07 | 188 | 0.854 | 109 | 112.24 | 92.1 | 1.52 10−3 |
BA 2 | |||||||
100 | 3.26 | 320 | 0.855 | 38.3 | 134.63 | 77.6 | 1.58 10−3 |
200 | 1.29 | 205 | 0.862 | 71.6 | 126.82 | 88.0 | 1.46 10−3 |
300 | 1.50 | 199 | 0.860 | 95.4 | 115.64 | 90.1 | 2.46 10−3 |
400 | 2.72 | 212 | 0.851 | 119 | 111.34 | 92.8 | 3.20 10−3 |
500 | 2.30 | 199 | 0.843 | 128 | 110.42 | 93.3 | 4.20 10−3 |
BA 3 | |||||||
100 | 1.88 | 817 | 0.795 | 13.3 | 147.23 | 35.4 | 1.64 10−3 |
200 | 1.72 | 395 | 0.864 | 15.6 | 145.94 | 45.0 | 1.66 10−3 |
300 | 2.88 | 376 | 0.860 | 16.2 | 142.68 | 47.0 | 2.20 10−3 |
400 | 1.99 | 350 | 0.832 | 24.7 | 138.46 | 65.2 | 1.88 10−3 |
500 | 1.88 | 341 | 0.885 | 27.5 | 137.26 | 68.8 | 3.42 10−3 |
BA 4 | |||||||
100 | 1.12 | 606 | 0.852 | 12.4 | 148.20 | 30.7 | 4.20 10−3 |
200 | 2.61 | 787 | 0.845 | 14.5 | 146.10 | 40.8 | 3.66 10−3 |
300 | 1.90 | 558 | 0.791 | 17.6 | 142.18 | 51.2 | 4.46 10−3 |
400 | 1.38 | 993 | 0.853 | 18.3 | 141.82 | 53.1 | 5.22 10−3 |
500 | 1.46 | 443 | 0.682 | 20.0 | 140.73 | 57.1 | 3.68 10−3 |
BA 5 | |||||||
100 | 1.37 | 432 | 0.571 | 11.4 | 148.92 | 24.6 | 1.60 10−3 |
200 | 2.74 | 678 | 0.724 | 13.9 | 147.34 | 38.2 | 1.72 10−3 |
300 | 2.54 | 408 | 0.805 | 14.4 | 146.45 | 40.3 | 1.92 10−3 |
400 | 3.65 | 558 | 0.724 | 16.8 | 142.47 | 48.9 | 2.38 10−3 |
500 | 3.65 | 558 | 0.701 | 19.2 | 141.14 | 55.3 | 4.34 10−3 |
Langmuir Isotherm | R2 (Regression Coefficient Value) | Slope Value |
---|---|---|
BA1 | 0.9997 | 0.9978 |
BA2 | 0.9999 | 1.0123 |
BA3 | 0.9525 | 1.0491 |
BA4 | 0.9956 | 1.3388 |
BA5 | 0.9796 | 1.3389 |
Freundlich Isotherm | R2 (regression coefficient value) | Slop value |
BA1 | 0.9703 | 0.1632 |
BA2 | 0.9792 | 0.1136 |
BA3 | 0.9650 | 0.4261 |
BA4 | 0.9890 | 0.4070 |
BA5 | 0.9865 | 0.4476 |
Temkin Isotherm | R2 (regression coefficient value) | Slop value |
BA1 | 0.9769 | 0.3064 |
BA2 | 0.9847 | 0.2267 |
BA3 | 0.9430 | 0.4905 |
BA4 | 0.9908 | 0.3957 |
BA5 | 0.9766 | 0.3933 |
Inhibitor Molecule | Kads (dm3 mol−1) | () |
---|---|---|
BA 1 | 3856.76 | −27.87 |
BA 2 | 6296.67 | −28.98 |
BA 3 | 884.04 | −24.53 |
BA 4 | 1227.17 | −25.27 |
BA 5 | 423.58 | −22.56 |
Inhibitors Molecules | (eV) | (eV) | (eV) | I (eV) | A (eV) | (eV) | (eV) | eV−1. | μ (D) |
---|---|---|---|---|---|---|---|---|---|
BA 1 | −7.92 | −3.88 | 4.04 | 7.92 | 3.88 | 2.02 | 5.90 | 0.495 | 2.70 |
BA 2 | −7.80 | −3.84 | 3.96 | 7.80 | 3.84 | 1.98 | 5.82 | 0.505 | 3.28 |
BA 3 | −7.72 | −3.62 | 4.10 | 7.72 | 3.62 | 2.05 | 5.67 | 0.487 | 2.49 |
BA 4 | −7.58. | −3.43 | 4.15 | 7.58. | 3.43 | 2.07 | 5.50 | 0.483 | 2.38 |
BA 5 | −8.02 | −3.80 | 4.22 | 8.02 | 3.80 | 2.11 | 5.91 | 0.473 | 2.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baloyi, T.H.; Mashuga, M.E.; El-Khlifi, A.; Salman, M.; Bahadur, I. Exploring the Structural Effects of Benzaldehyde Derivatives as Corrosion Inhibitors on Mild Steel in Acidic Medium Using Computational and Experimental Approaches. Corros. Mater. Degrad. 2025, 6, 29. https://doi.org/10.3390/cmd6030029
Baloyi TH, Mashuga ME, El-Khlifi A, Salman M, Bahadur I. Exploring the Structural Effects of Benzaldehyde Derivatives as Corrosion Inhibitors on Mild Steel in Acidic Medium Using Computational and Experimental Approaches. Corrosion and Materials Degradation. 2025; 6(3):29. https://doi.org/10.3390/cmd6030029
Chicago/Turabian StyleBaloyi, Tumelo Hope, Motsie Elija Mashuga, Abdelilah El-Khlifi, Mohammad Salman, and Indra Bahadur. 2025. "Exploring the Structural Effects of Benzaldehyde Derivatives as Corrosion Inhibitors on Mild Steel in Acidic Medium Using Computational and Experimental Approaches" Corrosion and Materials Degradation 6, no. 3: 29. https://doi.org/10.3390/cmd6030029
APA StyleBaloyi, T. H., Mashuga, M. E., El-Khlifi, A., Salman, M., & Bahadur, I. (2025). Exploring the Structural Effects of Benzaldehyde Derivatives as Corrosion Inhibitors on Mild Steel in Acidic Medium Using Computational and Experimental Approaches. Corrosion and Materials Degradation, 6(3), 29. https://doi.org/10.3390/cmd6030029