Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (519)

Search Parameters:
Keywords = molybdenum disulfide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5700 KiB  
Article
The Design of Diatomite/TiO2/MoS2/Nitrogen-Doped Carbon Nanofiber Composite Separators for Lithium–Sulfur Batteries
by Wei Zhong, Wenjie Xiao, Jianfei Liu, Chuxiao Yang, Sainan Liu and Zhenyang Cai
Materials 2025, 18(15), 3654; https://doi.org/10.3390/ma18153654 - 4 Aug 2025
Abstract
Severe polysulfide shuttling and sluggish redox kinetics critically hinder lithium–sulfur (Li-S) battery commercialization. In this study, a multifunctional diatomite (DE)/TiO2/MoS2/N-doped carbon nanofiber (NCNF) composite separator was fabricated via hydrothermal synthesis, electrospinning, and carbonization. DE provides dual polysulfide suppression, encompassing [...] Read more.
Severe polysulfide shuttling and sluggish redox kinetics critically hinder lithium–sulfur (Li-S) battery commercialization. In this study, a multifunctional diatomite (DE)/TiO2/MoS2/N-doped carbon nanofiber (NCNF) composite separator was fabricated via hydrothermal synthesis, electrospinning, and carbonization. DE provides dual polysulfide suppression, encompassing microporous confinement and electrostatic repulsion. By integrating synergistic catalytic effects from TiO2 and MoS2 nanoparticles, which accelerate polysulfide conversion, and conductive NCNF networks, which facilitate rapid charge transfer, this hierarchical design achieves exceptional electrochemical performance: a 1245.6 mAh g−1 initial capacity at 0.5 C and 65.94% retention after 200 cycles. This work presents a rational multi-component engineering strategy to suppress shuttle effects in high-energy-density Li-S batteries. Full article
Show Figures

Figure 1

16 pages, 10306 KiB  
Article
Fabrication and Characterization of Flexible pH Sensors Based on Pulsed Laser-Ablated Graphene/MoS2 Interdigitated Electrodes
by Zhaochi Chen, Chengche Liu and Minh-Quang Tran
Nanomaterials 2025, 15(14), 1115; https://doi.org/10.3390/nano15141115 - 18 Jul 2025
Viewed by 407
Abstract
Point-of-care (POC) diagnostic technologies have become essential for the real-time monitoring and management of chronic wounds, where maintaining a moist environment and controlling pH levels are critical for effective healing. In this study, a flexible pH sensor based on a graphene/molybdenum disulfide (graphene/MoS [...] Read more.
Point-of-care (POC) diagnostic technologies have become essential for the real-time monitoring and management of chronic wounds, where maintaining a moist environment and controlling pH levels are critical for effective healing. In this study, a flexible pH sensor based on a graphene/molybdenum disulfide (graphene/MoS2) composite interdigitated electrode (IDE) structure was fabricated using pulsed laser ablation. The pH sensor, with an active area of 30 mm × 30 mm, exhibited good adhesion to the polyethylene terephthalate (PET) substrate and maintained structural integrity under repeated bending cycles. Precise ablation was achieved under optimized conditions of 4.35 J/cm2 laser fluence, a repetition rate of 300 kHz, and a scanning speed of 500 mm/s, enabling the formation of defect-free IDE arrays without substrate damage. The influence of laser processing parameters on the surface morphology, electrical conductivity, and wettability of the composite thin films was systematically characterized. The fabricated pH sensor exhibited high sensitivity (~4.7% change in current per pH unit) across the pH 2–10 range, rapid response within ~5.2 s, and excellent mechanical stability under 100 bending cycles with negligible performance degradation. Moreover, the sensor retained > 95% of its stable sensitivity after 7 days of ambient storage. Furthermore, the pH response behavior was evaluated for electrode structures with different pitches, demonstrating that structural design parameters critically impact sensing performance. These results offer valuable insights into the scalable fabrication of flexible, wearable pH sensors, with promising applications in wound monitoring and personalized healthcare systems. Full article
(This article belongs to the Special Issue Laser-Based Nano Fabrication and Nano Lithography: Second Edition)
Show Figures

Figure 1

24 pages, 2152 KiB  
Review
A Concise Overview of the Use of Low-Dimensional Molybdenum Disulfide as an Electrode Material for Li-Ion Batteries and Beyond
by Mattia Bartoli, Meltem Babayiğit Cinali, Özlem Duyar Coşkun, Silvia Porporato, Diego Pugliese, Erik Piatti, Francesco Geobaldo, Giuseppe A. Elia, Claudio Gerbaldi, Giuseppina Meligrana and Alessandro Piovano
Batteries 2025, 11(7), 269; https://doi.org/10.3390/batteries11070269 - 16 Jul 2025
Viewed by 452
Abstract
The urgent demand for sustainable energy solutions in the face of climate change and resource depletion has catalyzed a global shift toward cleaner energy production and more efficient storage technologies. Lithium-ion batteries (LIBs), as the cornerstone of modern portable electronics, electric vehicles, and [...] Read more.
The urgent demand for sustainable energy solutions in the face of climate change and resource depletion has catalyzed a global shift toward cleaner energy production and more efficient storage technologies. Lithium-ion batteries (LIBs), as the cornerstone of modern portable electronics, electric vehicles, and grid-scale storage systems, are continually evolving to meet the growing performance requirements. In this dynamic context, two-dimensional (2D) materials have emerged as highly promising candidates for use in electrodes due to their layered structure, tunable electronic properties, and high theoretical capacity. Among 2D materials, molybdenum disulfide (MoS2) has gained increasing attention as a promising low-dimensional candidate for LIB anode applications. This review provides a comprehensive yet concise overview of recent advances in the application of MoS2 in LIB electrodes, with particular attention to its unique electrochemical behavior at the nanoscale. We critically examine the interplay between structural features, charge-storage mechanisms, and performance metrics—chiefly the specific capacity, rate capability, and cycling stability. Furthermore, we discuss current challenges, primarily poor intrinsic conductivity and volume fluctuations, and highlight innovative strategies aimed at overcoming these limitations, such as through nanostructuring, composite formation, and surface engineering. By shedding light on the opportunities and hurdles in this rapidly progressing field, this work offers a forward-looking perspective on the role of MoS2 in the next generation of high-performance LIBs. Full article
(This article belongs to the Section Battery Mechanisms and Fundamental Electrochemistry Aspects)
Show Figures

Figure 1

16 pages, 2823 KiB  
Article
Electronic Properties of Molybdenum Disulfide Rings-Based Chains Associated with Length and Bias
by Yang Shu, Jie Li, Rukai Liu and Junnan Guo
Coatings 2025, 15(7), 827; https://doi.org/10.3390/coatings15070827 - 16 Jul 2025
Viewed by 228
Abstract
Molybdenum disulfide is more attractive and valuable at the molecular level due to its unique structure and exceptional properties. Here, new-type MoS2-ring chains are constructed and theoretically investigated for relevant electronic properties influenced by the length of the chain and the [...] Read more.
Molybdenum disulfide is more attractive and valuable at the molecular level due to its unique structure and exceptional properties. Here, new-type MoS2-ring chains are constructed and theoretically investigated for relevant electronic properties influenced by the length of the chain and the bias. Different from traditional wires, our findings demonstrate that the conductance of such a new-type chain presents unusually non-exponential decay with the length of the chain, with a particularly anomalous length of seven rings, which shows stronger equilibrium conductance than a shorter four-ring chain. Multi-peaks of electron transmission and delocalized electronic states contribute such uniqueness. Mo atoms play a vital role in electron transport. Essentially, a narrower “HOMO-LUMO” (the two closest energy levels to the Fermi level of MoS2-ring chain) gap compensates for the lower device density of states of new-type molybdenum disulfide-ring chains. The usual electronic structure of a seven-ring chain is derived from its slightly arched structure and mainly originates from interference, which is the resonance occurring between the electrodes. Noticeably, the bias could greatly enhance conductance, which could reach 1000 times more than the equilibrium conductance. At a certain bias, the conductance of a seven-ring chain even exceeds the shortest one- or two-ring chain. Furthermore, the threshold voltage (at which the maximum conductance appears) gradually decreases with the length of the chain and eventually remains at 0.7 V. The valuable negative differential resistance (NDR) effect could be found in such a molecular chain, which becomes more obvious as the length rises until the seven-ring chain reaches the peak. Our findings shed light on the relations between electronic properties and the length of a new-type molybdenum disulfide-ring chain, and provide support for such new-type chains in applications of innovative low-power and controllable electronics. Full article
(This article belongs to the Special Issue Research in Laser Welding and Surface Treatment Technology)
Show Figures

Figure 1

12 pages, 3178 KiB  
Article
Terahertz Optoelectronic Properties of Monolayer MoS2 in the Presence of CW Laser Pumping
by Ali Farooq, Wen Xu, Jie Zhang, Hua Wen, Qiujin Wang, Xingjia Cheng, Yiming Xiao, Lan Ding, Altayeb Alshiply Abdalfrag Hamdalnile, Haowen Li and Francois M. Peeters
Physics 2025, 7(3), 27; https://doi.org/10.3390/physics7030027 - 14 Jul 2025
Viewed by 327
Abstract
Monolayer (ML) molybdenum disulfide (MoS2) is a typical valleytronic material which has important applications in, for example, polarization optics and information technology. In this study, we examine the effect of continuous wave (CW) laser pumping on the basic optoelectronic properties of [...] Read more.
Monolayer (ML) molybdenum disulfide (MoS2) is a typical valleytronic material which has important applications in, for example, polarization optics and information technology. In this study, we examine the effect of continuous wave (CW) laser pumping on the basic optoelectronic properties of ML MoS2 placed on a sapphire substrate, where the pump photon energy is larger than the bandgap of ML MoS2. The pump laser source is provided by a compact semiconductor laser with a 445 nm wavelength. Through the measurement of THz time-domain spectroscopy, we obtain the complex optical conductivity for ML MoS2, which are found to be fitted exceptionally well with the Drude–Smith formula. Therefore, we expect that the reduction in conductivity in ML MoS2 is mainly due to the effect of electronic backscattering or localization in the presence of the substrate. Meanwhile, one can optically determine the key electronic parameters of ML MoS2, such as the electron density ne, the intra-band electronic relaxation time τ, and the photon-induced electronic localization factor c. The dependence of these parameters upon CW laser pump intensity is examined here at room temperature. We find that 445 nm CW laser pumping results in the larger ne, shorter τ, and stronger c in ML MoS2 indicating that laser excitation has a significant impact on the optoelectronic properties of ML MoS2. The origin of the effects obtained is analyzed on the basis of solid-state optics. This study provides a unique and tractable technique for investigating photo-excited carriers in ML MoS2. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

21 pages, 7602 KiB  
Article
Visible-Light-Responsive Ag(Au)/MoS2-TiO2 Inverse Opals: Synergistic Plasmonic, Photonic, and Charge Transfer Effects for Photoelectrocatalytic Water Remediation
by Stelios Loukopoulos, Elias Sakellis, Polychronis Tsipas, Spiros Gardelis, Vassilis Psycharis, Marios G. Kostakis, Nikolaos S. Thomaidis and Vlassis Likodimos
Nanomaterials 2025, 15(14), 1076; https://doi.org/10.3390/nano15141076 - 11 Jul 2025
Viewed by 415
Abstract
Titanium dioxide (TiO2) is a benchmark photocatalyst for environmental applications, but its limited visible-light activity due to a wide band gap and fast charge recombination restricts its practical efficiency. This study presents the development of heterostructured Ag (Au)/MoS2-TiO2 [...] Read more.
Titanium dioxide (TiO2) is a benchmark photocatalyst for environmental applications, but its limited visible-light activity due to a wide band gap and fast charge recombination restricts its practical efficiency. This study presents the development of heterostructured Ag (Au)/MoS2-TiO2 inverse opal (IO) films that synergistically integrate photonic, plasmonic, and semiconducting functionalities to overcome these limitations. The materials were synthesized via a one-step evaporation-induced co-assembly approach, embedding MoS2 nanosheets and plasmonic nanoparticles (Ag or Au) within a nanocrystalline TiO2 photonic framework. The inverse opal architecture enhances light harvesting through slow-photon effects, while MoS2 and plasmonic nanoparticles improve visible-light absorption and charge separation. By tuning the template sphere size, the photonic band gap was aligned with the TiO2-MoS2 absorption edge and the localized surface plasmon resonance of Ag, enabling optimal spectral overlap. The corresponding Ag/MoS2-TiO2 photonic films exhibited superior photocatalytic and photoelectrocatalytic degradation of tetracycline under visible light. Ultraviolet photoelectron spectroscopy and Mott–Schottky analysis confirmed favorable band alignment and Fermi level shifts that facilitate interfacial charge transfer. These results highlight the potential of integrated photonic–plasmonic-semiconductor architectures for efficient solar-driven water treatment. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

20 pages, 2436 KiB  
Article
Advanced Hybrid Nanocatalysts for Green Hydrogen: Carbon-Supported MoS2 and ReS2 as Noble Metal Alternatives
by Maria Jarząbek-Karnas, Zuzanna Bojarska, Patryk Klemczak, Łukasz Werner and Łukasz Makowski
Int. J. Mol. Sci. 2025, 26(14), 6640; https://doi.org/10.3390/ijms26146640 - 10 Jul 2025
Viewed by 509
Abstract
One of the key challenges in commercializing proton exchange membrane (PEM) electrolyzer technology is reducing the production costs while maintaining high efficiency and operational stability. Significant contributors to the overall cost of the device are the electrode catalysts with IrO2 and Pt/C. [...] Read more.
One of the key challenges in commercializing proton exchange membrane (PEM) electrolyzer technology is reducing the production costs while maintaining high efficiency and operational stability. Significant contributors to the overall cost of the device are the electrode catalysts with IrO2 and Pt/C. Due to the high cost and limited availability of noble metals, there is growing interest in developing alternative, low-cost catalytic materials. In recent years, two-dimensional transition metal dichalcogenides (2D TMDCs), such as molybdenum disulfide (MoS2) and rhenium disulfide (ReS2), have attracted considerable attention due to their promising electrochemical properties for hydrogen evolution reactions (HERs). These materials exhibit unique properties, such as a high surface area or catalytic activity localized at the edges of the layered structure, which can be further enhanced through defect engineering or phase modulation. To increase the catalytically active surface area, the investigated materials were deposited on a carbon-based support—Vulcan XC-72R—selected for its high electrical conductivity and large specific surface area. This study investigated the physicochemical and electrochemical properties of six catalyst samples with varying MoS2 and ReS2 to carbon support ratios. Among the composites analyzed, the best sample on MoS2 (containing the most carbon soot) and the best sample on ReS2 (containing the least carbon soot) were selected. These were then used as cathode catalysts in an experimental PEM electrolyzer setup. The results confirmed satisfactory catalytic activity of the tested materials, indicating their potential as alternatives to conventional noble metal-based catalysts and providing a foundation for further research in this area. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

28 pages, 3287 KiB  
Review
Recent Progress in Photocatalytic Hydrogen Production Using 2D MoS2 Based Materials
by Khursheed Ahmad and Tae Hwan Oh
Catalysts 2025, 15(7), 648; https://doi.org/10.3390/catal15070648 - 2 Jul 2025
Viewed by 700
Abstract
Due to the increase in energy demand, photocatalytic hydrogen (H2) production has received enormous interest from the scientific community due to its simplicity and cost-effectiveness. The photocatalyst (PC) plays a vital role in H2 evolution, and it is well understood [...] Read more.
Due to the increase in energy demand, photocatalytic hydrogen (H2) production has received enormous interest from the scientific community due to its simplicity and cost-effectiveness. The photocatalyst (PC) plays a vital role in H2 evolution, and it is well understood that an efficient PC should have a larger surface area and better charge separation and transport properties. Previously, extensive efforts were made to prepare the efficient PC for photocatalytic H2 production. In some cases, pristine catalyst could not catalyze the catalytic reactions due to a fast recombination rate or poor catalytic behavior. Thus, cocatalysts can be explored to boost the photocatalytic H2 production. In this regard, a promising cocatalyst should have a large surface area, more active sites, decent conductivity, and improved catalytic properties. Molybdenum disulfide (MoS2) is one of the two-dimensional (2D) layered materials that have excellent optical, electrical, and physicochemical properties. MoS2 has been widely utilized as a cocatalyst for the photocatalytic H2 evolution under visible light. Herein, we have reviewed the progress in the fabrication of MoS2 and its composites with metal oxides, perovskite, graphene, carbon nanotubes, graphitic carbon nitrides, polymers, MXenes, metal-organic frameworks, layered double hydroxides, metal sulfides, etc. for photocatalytic H2 evolution. The reports showed that MoS2 is one of the desirable cocatalysts for photocatalytic H2 production applications. The challenges and future perspectives are also mentioned. This study may be beneficial for the researchers working on the design and fabrication of MoS2-based PCs for photocatalytic H2 evolution applications. Full article
Show Figures

Figure 1

16 pages, 4935 KiB  
Article
Interlayer-Spacing-Modification of MoS2 via Inserted PANI with Fast Kinetics for Highly Reversible Aqueous Zinc-Ion Batteries
by Shuang Fan, Yangyang Gong, Suliang Chen and Yingmeng Zhang
Micromachines 2025, 16(7), 754; https://doi.org/10.3390/mi16070754 - 26 Jun 2025
Viewed by 445
Abstract
Layered transition metal dichalcogenides (TMDs) have gained considerable attention as promising cathodes for aqueous zinc-ion batteries (AZIBs) because of their tunable interlayer architecture and rich active sites for Zn2+ storage. However, unmodified TMDs face significant challenges, including limited redox activity, sluggish kinetics, [...] Read more.
Layered transition metal dichalcogenides (TMDs) have gained considerable attention as promising cathodes for aqueous zinc-ion batteries (AZIBs) because of their tunable interlayer architecture and rich active sites for Zn2+ storage. However, unmodified TMDs face significant challenges, including limited redox activity, sluggish kinetics, and insufficient structural stability during cycling. These limitations are primarily attributed to their narrow interlayer spacing, strong electrostatic interactions, the large ionic hydration radius, and their high binding energy of Zn2+ ions. To address these restrictions, an in situ organic polyaniline (PANI) intercalation strategy is proposed to construct molybdenum disulfide (MoS2)-based cathodes with extended layer spacing, thereby improving the zinc storage capabilities. The intercalation of PANI effectively enhances interplanar spacing of MoS2 from 0.63 nm to 0.98 nm, significantly facilitating rapid Zn2+ diffusion. Additionally, the π-conjugated electron structure introduced by PANI effectively shields the electrostatic interaction between Zn2+ ions and the MoS2 host, thereby promoting Zn2+ diffusion kinetics. Furthermore, PANI also serves as a structural stabilizer, maintaining the integrity of the MoS2 layers during Zn-ion insertion/extraction processes. Furthermore, the conductive conjugated PANI boosts the ionic and electronic conductivity of the electrodes. As expected, the PANI–MoS2 electrodes exhibit exceptional electrochemical performance, delivering a high specific capacity of 150.1 mA h g−1 at 0.1 A g−1 and retaining 113.3 mA h g−1 at 1 A g−1, with high capacity retention of 81.2% after 500 cycles. Ex situ characterization techniques confirm the efficient and reversible intercalation/deintercalation of Zn2+ ions within the PANI–MoS2 layers. This work supplies a rational interlayer engineering strategy to optimize the electrochemical performance of MoS2-based electrodes. By addressing the structural and kinetic limitations of TMDs, this approach offers new insights into the development of high-performance AZIBs for energy storage applications. Full article
(This article belongs to the Special Issue Advancing Energy Storage Techniques: Chemistry, Materials and Devices)
Show Figures

Figure 1

29 pages, 13649 KiB  
Review
Recent Progress in the Synthesis and Engineering of High-Performance MoS2 Electrocatalysts for the Hydrogen Evolution Reaction
by Xinyue Du, Yuqing Xu, Aixian Shan and Rongming Wang
Catalysts 2025, 15(7), 626; https://doi.org/10.3390/catal15070626 - 25 Jun 2025
Cited by 1 | Viewed by 1014
Abstract
Molybdenum disulfide (MoS2) is a promising earth-abundant electrocatalyst for the hydrogen evolution reaction (HER), attributed to its favorable electronic structure and chemical stability. Nevertheless, its application is limited by poor electrical conductivity and low exposure of active sites. This review highlights [...] Read more.
Molybdenum disulfide (MoS2) is a promising earth-abundant electrocatalyst for the hydrogen evolution reaction (HER), attributed to its favorable electronic structure and chemical stability. Nevertheless, its application is limited by poor electrical conductivity and low exposure of active sites. This review highlights recent progress in the synthesis and structural engineering of MoS2-based catalysts to improve HER performance. Strategies such as morphology tuning, phase modulation, defect engineering, and heterostructure construction are systematically evaluated for their roles in enhancing charge transport, increasing active site density, and improving intrinsic catalytic activity. Additionally, the relationship between atomic structure, electronic properties, and HER kinetics is discussed to elucidate fundamental structure–activity correlations. These insights advance the development of MoS2 as a cost-effective and scalable catalyst for hydrogen production and inform the rational design of future HER materials. Full article
(This article belongs to the Special Issue Two-Dimensional (2D) Materials in Catalysis)
Show Figures

Graphical abstract

6 pages, 1563 KiB  
Proceeding Paper
Contrast Enhancement in 2D Nanomaterial SEM Images
by Angela Longo, Mariano Palomba, Filippo Giubileo and Gianfranco Carotenuto
Eng. Proc. 2025, 87(1), 81; https://doi.org/10.3390/engproc2025087081 - 23 Jun 2025
Viewed by 319
Abstract
Owing to their large size and flexibility, 2D nanostructures (e.g., graphene, graphene oxide, single-layer molybdenum disulfide, etc.) are technologically exploited in a supported form. Glass, silicon, and polymers are typical substrates. In the characterization of these 2D nanostructures, important morphological information (e.g., size, [...] Read more.
Owing to their large size and flexibility, 2D nanostructures (e.g., graphene, graphene oxide, single-layer molybdenum disulfide, etc.) are technologically exploited in a supported form. Glass, silicon, and polymers are typical substrates. In the characterization of these 2D nanostructures, important morphological information (e.g., size, shape factor, presence of defects, etc.) can be obtained through an investigation based on scanning electron microscopy (SEM). However, the observation of these extremely thin 2D nanostructures is characterized by poor contrast, and therefore, all morphological features are not clearly visible in SEM micrographs. Herein, it is shown that under a high sample tilting condition, SEM observations are also capable of providing images with very good contrast. Such high sample tilting can be obtained by positioning the sample vertically and then conveniently reducing this angle (90°) by tilting the sample up to achieve a well-focused image. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

47 pages, 1518 KiB  
Review
Advances in MoS2-Based Biosensors: From Material Fabrication and Characterization to Biomedical, Environmental, and Industrial Applications
by Chun-Liang Lai, Arvind Mukundan, Riya Karmakar, Roopmeet Kaur, Kuo-Liang Huang and Hsiang-Chen Wang
Biosensors 2025, 15(6), 371; https://doi.org/10.3390/bios15060371 - 10 Jun 2025
Viewed by 1162
Abstract
The growing demand for low-cost biosensors has stimulated the study of new technologies and materials like molybdenum disulfide (MoS2). Due to its electroconductive nature and high surface-to-volume ratio, it allows for the ultra-sensitive detection of biomarkers. The crystal structure of MoS [...] Read more.
The growing demand for low-cost biosensors has stimulated the study of new technologies and materials like molybdenum disulfide (MoS2). Due to its electroconductive nature and high surface-to-volume ratio, it allows for the ultra-sensitive detection of biomarkers. The crystal structure of MoS2 provides it with a unique micrometer thickness, making it appropriate for biosensing in healthcare, environmental monitoring, and food safety. As compared to traditional materials, MoS2 can work without labels (through field-effect transduction or plasmonic shifts) while maintaining biocompatibility and low-cost fabrication, which fill significant voids in the early diagnosis of diseases. This paper provides an overview of the recent advancements in MoS2-based biosensors, which are primarily focused on the field-effect transistors and surface plasmon resonance techniques and fabrication methods for MoS2-based biosensors like mechanical exfoliation, liquid-phase exfoliation, physical vapor deposition, chemical vapor deposition, and chemical exfoliation, applications in various industries, and their characterization techniques to evaluate the quality and functionality of MoS2 nanosheets in biosensors. While certain challenges remain like improving conductivity and scalability, MoS2-based biosensors serve as a powerful tool for the precise and reliable detection of biomarkers in environmental, food, and healthcare industries. Full article
(This article belongs to the Collection Novel Sensing System for Biomedical Applications)
Show Figures

Figure 1

13 pages, 3815 KiB  
Article
Optimizing Crystalline MoS2 Growth on Technologically Relevant Platinum Substrates Using Ionized Jet Deposition: Interface Interactions and Structural Insights
by Cristian Tomasi Cebotari, Christos Gatsios, Andrea Pedrielli, Lucia Nasi, Francesca Rossi, Andrea Chiappini, Riccardo Ceccato, Roberto Verucchi, Marco V. Nardi and Melanie Timpel
Surfaces 2025, 8(2), 38; https://doi.org/10.3390/surfaces8020038 - 6 Jun 2025
Viewed by 471
Abstract
Transition metal dichalcogenides, especially molybdenum disulfide (MoS2), exhibit exceptional properties that make them suitable for a wide range of applications. However, the interaction between MoS2 and technologically relevant substrates, such as platinum (Pt) electrodes, can significantly influence its properties. This [...] Read more.
Transition metal dichalcogenides, especially molybdenum disulfide (MoS2), exhibit exceptional properties that make them suitable for a wide range of applications. However, the interaction between MoS2 and technologically relevant substrates, such as platinum (Pt) electrodes, can significantly influence its properties. This study investigates the growth and properties of MoS2 thin films on Pt substrates using ionized jet deposition, a versatile, low-cost vacuum deposition technique. We explore the effects of the roughness of Pt substrates and self-heating during deposition on the chemical composition, structure, and strain of MoS2 films. By optimizing the deposition system to achieve crystalline MoS2 at room temperature, we compare as-deposited and annealed films. The results reveal that as-deposited MoS2 films are initially amorphous and conform to the Pt substrate roughness, but crystalline growth is reached when the sample holder is sufficiently heated by the plasma. Further post-annealing at 270 °C enhances crystallinity and reduces sulfur-related defects. We also identify a change in the MoS2–Pt interface properties, with a reduction in Pt–S interactions after annealing. Our findings contribute to the understanding of MoS2 growth on Pt and provide insights for optimizing MoS2-based devices in catalysis and electronics. Full article
Show Figures

Figure 1

20 pages, 2102 KiB  
Article
The Detection of Different Cancer Types Using an Optimized MoS2-Based Surface Plasmon Resonance Multilayer System
by Talia Tene, Diego Fabián Vique López, Paulina Elizabeth Valverde Aguirre, Adriana Monserrath Monge Moreno and Cristian Vacacela Gomez
Sci 2025, 7(2), 76; https://doi.org/10.3390/sci7020076 - 3 Jun 2025
Cited by 1 | Viewed by 476
Abstract
The early and accurate detection of cancer remains a critical challenge in biomedical diagnostics. In this work, we propose and investigate a novel surface plasmon resonance (SPR) biosensor platform based on a multilayer configuration incorporating copper (Cu), silicon nitride (Si3N4 [...] Read more.
The early and accurate detection of cancer remains a critical challenge in biomedical diagnostics. In this work, we propose and investigate a novel surface plasmon resonance (SPR) biosensor platform based on a multilayer configuration incorporating copper (Cu), silicon nitride (Si3N4), and molybdenum disulfide (MoS2) for the optical detection of various cancer types. Four distinct sensor architectures (Sys1–Sys4) were optimized through the systematic tuning of Cu thickness, Si3N4 dielectric layer thickness, and the number of MoS2 monolayers to enhance sensitivity, angular shift, and spectral sharpness. The optimized systems were evaluated using refractive index data corresponding to six cancer types (skin, cervical, blood, adrenal, breast T1, and breast T2), with performance metrics including sensitivity, detection accuracy, quality factor, figure of merit, limit of detection, and comprehensive sensitivity factor. Among the configurations, Sys3 (BK7–Cu–Si3N4–MoS2) demonstrated the highest sensitivity, reaching 254.64 °/RIU for adrenal cancer, while maintaining a low detection limit and competitive figures of merit. Comparative analysis revealed that the MoS2-based designs, particularly Sys3, outperform conventional noble-metal architectures in terms of sensitivity while using earth-abundant, scalable materials. These results confirm the potential of Cu/Si3N4/MoS2-based SPR biosensors as practical and effective tools for label-free cancer diagnosis across multiple malignancy types. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

28 pages, 3203 KiB  
Article
From Pollutant Removal to Renewable Energy: MoS2-Enhanced P25-Graphene Photocatalysts for Malathion Degradation and H2 Evolution
by Cristian Martínez-Perales, Abniel Machín, Pedro J. Berríos-Rolón, Paola Sampayo, Enrique Nieves, Loraine Soto-Vázquez, Edgard Resto, Carmen Morant, José Ducongé, María C. Cotto and Francisco Márquez
Materials 2025, 18(11), 2602; https://doi.org/10.3390/ma18112602 - 3 Jun 2025
Viewed by 1097
Abstract
The widespread presence of pesticides—especially malathion—in aquatic environments presents a major obstacle to conventional remediation strategies, while the ongoing global energy crisis underscores the urgency of developing renewable energy sources such as hydrogen. In this context, photocatalytic water splitting emerges as a promising [...] Read more.
The widespread presence of pesticides—especially malathion—in aquatic environments presents a major obstacle to conventional remediation strategies, while the ongoing global energy crisis underscores the urgency of developing renewable energy sources such as hydrogen. In this context, photocatalytic water splitting emerges as a promising approach, though its practical application remains limited by poor charge carrier dynamics and insufficient visible-light utilization. Herein, we report the design and evaluation of a series of TiO2-based ternary nanocomposites comprising commercial P25 TiO2, reduced graphene oxide (rGO), and molybdenum disulfide (MoS2), with MoS2 loadings ranging from 1% to 10% by weight. The photocatalysts were fabricated via a two-step method: hydrothermal integration of rGO into P25 followed by solution-phase self-assembly of exfoliated MoS2 nanosheets. The composites were systematically characterized using X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. Photocatalytic activity was assessed through two key applications: the degradation of malathion (20 mg/L) under simulated solar irradiation and hydrogen evolution from water in the presence of sacrificial agents. Quantification was performed using UV-Vis spectroscopy, gas chromatography–mass spectrometry (GC-MS), and thermal conductivity detection (GC-TCD). Results showed that the integration of rGO significantly enhanced surface area and charge mobility, while MoS2 served as an effective co-catalyst, promoting interfacial charge separation and acting as an active site for hydrogen evolution. Nearly complete malathion degradation (~100%) was achieved within two hours, and hydrogen production reached up to 6000 µmol g−1 h−1 under optimal MoS2 loading. Notably, photocatalytic performance declined with higher MoS2 content due to recombination effects. Overall, this work demonstrates the synergistic enhancement provided by rGO and MoS2 in a stable P25-based system and underscores the viability of such ternary nanocomposites for addressing both environmental remediation and sustainable energy conversion challenges. Full article
(This article belongs to the Special Issue Catalysis: Where We Are and Where We Go)
Show Figures

Graphical abstract

Back to TopTop