Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,198)

Search Parameters:
Keywords = molecules identification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3853 KiB  
Review
Aroma Formation, Release, and Perception in Aquatic Products Processing: A Review
by Weiwei Fan, Xiaoying Che, Pei Ma, Ming Chen and Xuhui Huang
Foods 2025, 14(15), 2651; https://doi.org/10.3390/foods14152651 - 29 Jul 2025
Viewed by 236
Abstract
Flavor, as one of the primary factors that attracts consumers, has always been a crucial indicator for evaluating the quality of food. From processing to final consumption, the conditions that affect consumers’ perception of the aroma of aquatic products can be divided into [...] Read more.
Flavor, as one of the primary factors that attracts consumers, has always been a crucial indicator for evaluating the quality of food. From processing to final consumption, the conditions that affect consumers’ perception of the aroma of aquatic products can be divided into three stages: aroma formation, release, and signal transmission. Currently, there are few reviews on the formation, release, and perception of aroma in aquatic products, which has affected the product development of aquatic products. This review summarizes aroma formation pathways, the effects of processing methods, characteristic volatile compounds, various identification techniques, aroma-release influencing factors, and the aroma perception mechanisms of aquatic products. The Maillard reaction and lipid oxidation are the main pathways for the formation of aromas in aquatic products. The extraction, identification, and quantitative analysis of volatile compounds reveal the odor changes in aquatic products. The composition of aquatic products and oral processing mainly influence the release of odorants. The characteristic odorants perceived from the nasal cavity should be given more attention. Moreover, the relationship between various olfactory receptors (ORs) and the composition of multiple aromatic compounds remains to be understood. It is necessary to clarify the relationship between nasal cavity metabolism and odor perception, reveal the binding and activation mode of ORs and odor molecules, and establish an accurate aroma prediction model. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

36 pages, 5612 KiB  
Review
The Multifaceted Role of p53 in Cancer Molecular Biology: Insights for Precision Diagnosis and Therapeutic Breakthroughs
by Bolong Xu, Ayitila Maimaitijiang, Dawuti Nuerbiyamu, Zhengding Su and Wenfang Li
Biomolecules 2025, 15(8), 1088; https://doi.org/10.3390/biom15081088 - 27 Jul 2025
Viewed by 410
Abstract
The protein p53, often referred to as the “guardian of the genome,” is essential for preserving cellular balance and preventing cancerous transformations. As one of the most commonly altered genes in human cancers, its impaired function is associated with tumor initiation, development, and [...] Read more.
The protein p53, often referred to as the “guardian of the genome,” is essential for preserving cellular balance and preventing cancerous transformations. As one of the most commonly altered genes in human cancers, its impaired function is associated with tumor initiation, development, and resistance to treatment. Exploring the diverse roles of p53, which include regulating the cell cycle, repairing DNA, inducing apoptosis, reprogramming metabolism, and modulating immunity, provides valuable insights into cancer mechanisms and potential treatments. This review integrates recent findings on p53′s dual nature, functioning as both a tumor suppressor and an oncogenic promoter, depending on the context. Wild-type p53 suppresses tumors by inducing cell cycle arrest or apoptosis in response to genotoxic stress, while mutated variants often lose these functions or gain novel pro-oncogenic activities. Emerging evidence highlights p53′s involvement in non-canonical pathways, such as regulating tumor microenvironment interactions, metabolic flexibility, and immune evasion mechanisms. For instance, p53 modulates immune checkpoint expression and influences the efficacy of immunotherapies, including PD-1/PD-L1 blockade. Furthermore, advancements in precision diagnostics, such as liquid biopsy-based detection of p53 mutations and AI-driven bioinformatics tools, enable early cancer identification and stratification of patients likely to benefit from targeted therapies. Therapeutic strategies targeting p53 pathways are rapidly evolving. Small molecules restoring wild-type p53 activity or disrupting mutant p53 interactions, such as APR-246 and MDM2 inhibitors, show promise in clinical trials. Combination approaches integrating gene editing with synthetic lethal strategies aim to exploit p53-dependent vulnerabilities. Additionally, leveraging p53′s immunomodulatory effects through vaccine development or adjuvants may enhance immunotherapy responses. In conclusion, deciphering p53′s complex biology underscores its unparalleled potential as a biomarker and therapeutic target. Integrating multi-omics analyses, functional genomic screens, and real-world clinical data will accelerate the translation of p53-focused research into precision oncology breakthroughs, ultimately improving patient outcomes. Full article
(This article belongs to the Special Issue DNA Damage and Repair in Cancer Treatment)
Show Figures

Figure 1

29 pages, 3064 KiB  
Review
Inelastic Electron Tunneling Spectroscopy of Molecular Electronic Junctions: Recent Advances and Applications
by Hyunwook Song
Crystals 2025, 15(8), 681; https://doi.org/10.3390/cryst15080681 - 26 Jul 2025
Viewed by 338
Abstract
Inelastic electron tunneling spectroscopy (IETS) has emerged as a powerful vibrational spectroscopy technique for molecular electronic junctions, providing unique insights into molecular vibrations and electron–phonon coupling at the nanoscale. In this review, we present a comprehensive overview of IETS in molecular junctions, tracing [...] Read more.
Inelastic electron tunneling spectroscopy (IETS) has emerged as a powerful vibrational spectroscopy technique for molecular electronic junctions, providing unique insights into molecular vibrations and electron–phonon coupling at the nanoscale. In this review, we present a comprehensive overview of IETS in molecular junctions, tracing its development from foundational principles to the latest advances. We begin with the theoretical background, detailing the mechanisms by which inelastic tunneling processes generate vibrational fingerprints of molecules, and highlighting how IETS complements optical spectroscopies by accessing electrically driven vibrational excitations. We then discuss recent progress in experimental techniques and device architectures that have broadened the applicability of IETS. Central focus is given to emerging applications of IETS over the last decade: molecular sensing (identification of chemical bonds and conformational changes in junctions), thermoelectric energy conversion (probing vibrational contributions to molecular thermopower), molecular switches and functional devices (monitoring bias-driven molecular state changes via vibrational signatures), spintronic molecular junctions (detecting spin excitations and spin–vibration interplay), and advanced data analysis approaches such as machine learning for interpreting complex tunneling spectra. Finally, we discuss current challenges, including sensitivity at room temperature, spectral interpretation, and integration into practical devices. This review aims to serve as a thorough reference for researchers in physics, chemistry, and materials science, consolidating state-of-the-art understanding of IETS in molecular junctions and its growing role in molecular-scale device characterization. Full article
(This article belongs to the Special Issue Advances in Multifunctional Materials and Structures)
Show Figures

Figure 1

15 pages, 1136 KiB  
Article
Association of HMGB1, IL-1β, IL-8, IL-10, and MCP-1 with the Development of Systemic Inflammatory Response Syndrome in Pediatric Patients with Recently Diagnosed Acute Lymphoblastic Leukemia
by Carmen Maldonado-Bernal, Horacio Márquez-González, Erandi Pérez-Figueroa, Rocío Nieto-Meneses, Víctor Olivar-López, Aurora Medina-Sanson and Elva Jiménez-Hernández
Life 2025, 15(8), 1187; https://doi.org/10.3390/life15081187 - 25 Jul 2025
Viewed by 280
Abstract
In acute lymphoblastic leukemia (ALL), neutropenia and fever of unknown origin may occur, indicating the use of antimicrobials to control a probable infection. However, in 60–70% of cases there is no obvious infectious focus so treatment is empirical, increasing the risk of developing [...] Read more.
In acute lymphoblastic leukemia (ALL), neutropenia and fever of unknown origin may occur, indicating the use of antimicrobials to control a probable infection. However, in 60–70% of cases there is no obvious infectious focus so treatment is empirical, increasing the risk of developing systemic inflammatory response syndrome (SIRS). The construction of a prognostic model of fever and development of SIRS based on the identification of endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs) and inflammatory cytokines, can help identify children with ALL and fever or SIRS and who do not have an infection. A cohort of 30 children with recently diagnosed ALL and absence of infectious microorganisms before starting the remission induction phase was studied. Two groups were identified: (1) a group with SIRS (fever, tachycardia, tachypnea, and leukopenia, without focus of infection) and (2) a group without SIRS. The DAMPs, namely HMGB1 and S100A8 proteins, were quantified by ELISA and inflammatory mediators were determined by multiple protein analysis. The medians of DAMPs and inflammatory mediators in children with SIRS were higher than in children who did not have SIRS, and the delta values of the biomarkers studied in patients with and without SIRS showed important differences, with statistically higher medians in patients with SIRS compared to those without SIRS. HMGB1 together with IL-1β, IL-8, IL-10, and MCP-1 can serve as biomarkers to identify children with ALL and fever or SIRS who should not receive antimicrobial treatment because the origin of their fever is not due to an infectious agent. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

14 pages, 4166 KiB  
Article
Development and Characterization of a Novel α-Synuclein-PEST H4 Cell Line for Enhanced Drug Screening in α-Synucleinopathies
by Nancy Carullo, Viktor Haellman, Simon Gutbier, Sonja Schlicht, Thien Thuong Nguyen, Rita Blum Marti, Philippe Hartz, Lothar Lindemann and Lina Schukur
Int. J. Mol. Sci. 2025, 26(15), 7205; https://doi.org/10.3390/ijms26157205 - 25 Jul 2025
Viewed by 174
Abstract
Alpha-Synuclein (α-Syn) is a presynaptic neuronal protein implicated in the pathogenesis of Parkinson’s disease (PD) and other synucleinopathies, primarily through its aggregation into insoluble fibrils. The extended α-Syn half-life necessitates treatment durations that are incompatible with efficient high-throughput drug screening, can risk compound [...] Read more.
Alpha-Synuclein (α-Syn) is a presynaptic neuronal protein implicated in the pathogenesis of Parkinson’s disease (PD) and other synucleinopathies, primarily through its aggregation into insoluble fibrils. The extended α-Syn half-life necessitates treatment durations that are incompatible with efficient high-throughput drug screening, can risk compound stability or cause cellular toxicity. To address this, we inserted a PEST sequence, a motif known to promote rapid protein degradation, at the C-terminus of the SNCA gene using CRISPR/Cas9 to create a novel cell line with reduced α-Syn half-life. This modification accelerates α-Syn turnover, providing a robust model for studying α-Syn dynamics and offering a platform that is applicable to other long-lived proteins. Our results demonstrate a six-fold reduction in α-Syn half-life, enabling the rapid detection of changes in protein levels and facilitating the identification of molecules that modulate α-Syn production and degradation pathways. Using inhibitors of the proteasome, transcription, and translation further validated the model’s utility in examining various mechanisms that impact protein levels. This novel cell line represents a significant advancement for studying α-Syn dynamics and offers promising avenues to develop therapeutics for α-synucleinopathies. Future research should focus on validating this model in diverse experimental settings and exploring its potential in high-throughput screening applications. Full article
(This article belongs to the Special Issue Whole-Cell System and Synthetic Biology, 2nd Edition)
Show Figures

Figure 1

15 pages, 1118 KiB  
Article
Identification of Novel Bioactive Molecules in Black Chiloe’s Giant Garlic (Allium ampeloprasum L.) by Green Microwave-Assisted Extraction and Effect-Directed Analysis Using High-Performance Thin Layer Chromatography-Bioassay and Mass Spectrometry
by Joaquín Fernández-Martínez, David Arráez-Román, Darlene Peterssen, Gerald Zapata, Karem Henríquez-Aedo and Mario Aranda
Antioxidants 2025, 14(8), 913; https://doi.org/10.3390/antiox14080913 - 25 Jul 2025
Viewed by 352
Abstract
Black Chiloe’s giant garlic is a functional food produced by a mild Maillard reaction that contains relevant bioactive molecules like organosulfur compounds (OSCs) and (poly)phenols (PPs). Compared with raw garlic, black garlic has a higher content of PPs and S-allyl cysteine (SAC), a [...] Read more.
Black Chiloe’s giant garlic is a functional food produced by a mild Maillard reaction that contains relevant bioactive molecules like organosulfur compounds (OSCs) and (poly)phenols (PPs). Compared with raw garlic, black garlic has a higher content of PPs and S-allyl cysteine (SAC), a key OSC due to its bioactivities. The objective of the present work was to optimize by chemometric tools a green microwave-assisted extraction (MAE) of SAC and PPs present in black Chiloe’s giant garlic to detect and identify novel bioactive molecules with antioxidant and/or inhibitory activities over cyclooxygenase, α-glucosidase, and acetylcholinesterase enzymes. The MAE factors were optimized using a central composite design, establishing optimal PP and SAC yields at 67 °C, 0% ethanol, 12 min and 30 °C, 40% ethanol, 3 min, respectively. PP and SAC values were 9.19 ± 0.18 mg GAE/g DW and 2.55 ± 0.10 mg SAC/g DW. Applying effect-directed analysis using high-performance thin layer chromatography-bioassay and mass spectrometry, the bioactive molecules present in the MAE extract with antioxidant and inhibitory activities over cyclooxygenase, α-glucosidase, and acetylcholinesterase enzymes were identified as N-fructosyl-glutamyl-S-(1-propenyl)cysteine, N-fructosyl-glutamylphenylalanine, and Harmane. Full article
Show Figures

Figure 1

26 pages, 1614 KiB  
Review
The Role of LC-MS in Profiling Bioactive Compounds from Plant Waste for Cosmetic Applications: A General Overview
by Gilda D’Urso, Alessandra Capuano, Francesca Fantasma, Maria Giovanna Chini, Vincenzo De Felice, Gabriella Saviano, Gianluigi Lauro, Agostino Casapullo, Giuseppe Bifulco and Maria Iorizzi
Plants 2025, 14(15), 2284; https://doi.org/10.3390/plants14152284 - 24 Jul 2025
Viewed by 246
Abstract
The agro-industrial sector produces large amounts of by-products that have a high environmental impact, so it has become essential to recover food waste at all levels. This is because it often contains bioactive molecules that can be a valuable source of new products [...] Read more.
The agro-industrial sector produces large amounts of by-products that have a high environmental impact, so it has become essential to recover food waste at all levels. This is because it often contains bioactive molecules that can be a valuable source of new products such as animal feed, biopolymers, or products for human use, (e.g., cosmetics and nutraceuticals) due to its antioxidant, antimicrobial, and anti-inflammatory properties. Advanced analytical methodologies such as liquid chromatography coupled to mass spectrometry (LC-MS) are crucial for the characterisation of bioactive chemicals in these waste materials. LC-MS enables both targeted and untargeted metabolomic approaches, facilitating the identification and quantification of a wide range of secondary metabolites, including polyphenols, flavonoids, alkaloids, and terpenoids. The choice of extraction methodology is essential for the precise identification and quantification of these metabolites. This study provides an overview of LC-MS as an effective tool for analysing complex extracts derived from plant waste, discussing both methodological aspects and typical bioactive metabolites identified, and offering examples of their potential applications in cosmeceutics. Full article
(This article belongs to the Special Issue Plant-Based Foods and By-Products)
Show Figures

Figure 1

22 pages, 1008 KiB  
Review
Ap4A in Cancer: A Multifaceted Regulator and Emerging Therapeutic Target
by Kateryna Tkachenko, Tiziana Bachetti and Camillo Rosano
Molecules 2025, 30(15), 3056; https://doi.org/10.3390/molecules30153056 - 22 Jul 2025
Viewed by 286
Abstract
Diadenosine polyphosphates, including diadenosine tetraphosphate (Ap4A), are ubiquitous nucleotides that are present across diverse life forms, gaining considerable interest due to their role as cellular signaling molecules. Ap4A, in particular, has been extensively researched in various biological systems, especially under conditions of environmental [...] Read more.
Diadenosine polyphosphates, including diadenosine tetraphosphate (Ap4A), are ubiquitous nucleotides that are present across diverse life forms, gaining considerable interest due to their role as cellular signaling molecules. Ap4A, in particular, has been extensively researched in various biological systems, especially under conditions of environmental stress. This review provides an in-depth analysis of the current knowledge surrounding Ap4A, focusing on its biosynthesis and degradation pathways, the identification of Ap4A protein targets and the molecular mechanisms underlying its action. Furthermore, this review aims to examine the interplay between the various pathogenetic mechanisms driving tumor development and the potential role of Ap4A which emerges as pivotal signaling molecules orchestrating cellular responses to environmental challenges, positioning them at the nexus of cancer adaptation and progression. Full article
Show Figures

Graphical abstract

13 pages, 1791 KiB  
Article
Symmetries of Confined H2+ Molecule
by Gaia Micca Longo, Grazia Bonasia and Savino Longo
Symmetry 2025, 17(8), 1169; https://doi.org/10.3390/sym17081169 - 22 Jul 2025
Viewed by 273
Abstract
In this work, the symmetries of a H2+ molecule confined within potential energy wells of various shapes are highlighted. This system has been long regarded as a model for small molecules trapped in crystalline cavities and molecular cages; in this context, [...] Read more.
In this work, the symmetries of a H2+ molecule confined within potential energy wells of various shapes are highlighted. This system has been long regarded as a model for small molecules trapped in crystalline cavities and molecular cages; in this context, the role of symmetry assumes significant importance. Symmetries are determined by the well shape, molecular position, and orientation. They allow the classification of H2+ states, the identification of fixed nodal surfaces for the identification of excited states in Monte Carlo simulations, and the estimation of potential energy surfaces. Full article
(This article belongs to the Special Issue Chemistry: Symmetry/Asymmetry—Feature Papers and Reviews)
Show Figures

Figure 1

18 pages, 1698 KiB  
Review
Bioactive Peptides Derived from Tuna: Screening, Extraction, Bioactivity, and Mechanism of Action
by Jing-an Cheng, Di Wang, Gang Yu, Shengjun Chen, Zhenhua Ma, Ya Wei, Xue Zhao, Chunsheng Li, Yueqi Wang, Yi Zhang, Rong Cao and Yongqiang Zhao
Mar. Drugs 2025, 23(7), 293; https://doi.org/10.3390/md23070293 - 21 Jul 2025
Viewed by 399
Abstract
Peptides play a crucial role in the development of pharmaceuticals and functional foods. Multiple studies have shown that natural bioactive peptides possess antioxidant, antihypertensive, anti-tumor, and anti-inflammatory activities. Marine bioactive peptides, especially those sourced from fish, constitute a substantial reservoir of these molecules. [...] Read more.
Peptides play a crucial role in the development of pharmaceuticals and functional foods. Multiple studies have shown that natural bioactive peptides possess antioxidant, antihypertensive, anti-tumor, and anti-inflammatory activities. Marine bioactive peptides, especially those sourced from fish, constitute a substantial reservoir of these molecules. Although considerable research has been undertaken on fish-derived peptides, studies specifically concerning those from tuna are limited. Tuna, a marine fish of high nutritional value, generates substantial by-product waste during fishing and processing. Therefore, it is essential to conduct an evaluation of the advancements in study on tuna-derived active peptides and to offer a perspective on the direction of future investigations. This review integrates prospective bioactive peptides derived from tuna and reports contemporary strategies for their investigation, including extraction, purification, screening, identification, and activity evaluation procedures, including Yeast Surface Display (YSD) and molecular docking. This review seeks to promote the continued investigation and application of bioactive peptides derived from tuna. Full article
(This article belongs to the Special Issue High-Value-Added Resources Recovered from Marine By-Products)
Show Figures

Graphical abstract

24 pages, 1164 KiB  
Review
The Aryl Hydrocarbon Receptor in Neurotoxicity: An Intermediator Between Dioxins and Neurons in the Brain
by Eiki Kimura
Toxics 2025, 13(7), 596; https://doi.org/10.3390/toxics13070596 - 16 Jul 2025
Viewed by 539
Abstract
Industrial development has increased environmental dioxin concentrations, sparking concern about human health impacts. Examining dioxin neurotoxicity has highlighted associations with cognitive impairment and behavioral abnormality. Dioxins are ligands of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor; it is speculated that dioxin-induced [...] Read more.
Industrial development has increased environmental dioxin concentrations, sparking concern about human health impacts. Examining dioxin neurotoxicity has highlighted associations with cognitive impairment and behavioral abnormality. Dioxins are ligands of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor; it is speculated that dioxin-induced AHR activation is pivotal for toxic effects. Accurate AHR-expressing cell identification is therefore indispensable for understanding the molecular and cellular mechanisms of dioxin toxicity. Herein, current knowledge regarding AHR expression in the mammalian brain is summarized, and dioxin neurotoxicity mechanisms are discussed. Histological studies show AHR-expressing neurons in multiple brain regions, including the hippocampus and cerebral cortex. Dopaminergic and noradrenergic neurons exhibit AHR expression, suggesting possible roles in the monoaminergic system. AHR overactivation evokes dendritic arborization atrophy, whereas its deficiency increases complexity, implying that AHR-mediated signaling is crucial for neuronal growth and maturation. AHR is also involved in neurogenesis and neuronal precursor migration. Collectively, these findings support the notion that dioxin-induced AHR overactivation in individual neurons disrupts neural circuit structure, ultimately leading to impaired brain function. However, as AHR downstream signaling is intertwined with various molecules and pathways, the precise mechanisms remain unclear. Further studies on the expression, signaling, and roles of AHR are needed to clarify dioxin neurotoxicity. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Figure 1

23 pages, 6890 KiB  
Article
MicroRNA Signatures in Lung Adenocarcinoma Metastases: Exploring the Oncogenic Targets of Tumor-Suppressive miR-195-5p and miR-195-3p
by Yuya Tomioka, Naohiko Seki, Keiko Mizuno, Takayuki Suetsugu, Kentaro Tsuruzono, Yoko Hagihara, Mayuko Kato, Chikashi Minemura, Hajime Yonezawa, Kentaro Tanaka and Hiromasa Inoue
Cancers 2025, 17(14), 2348; https://doi.org/10.3390/cancers17142348 - 15 Jul 2025
Viewed by 282
Abstract
Background: To improve the prognosis of patients with lung adenocarcinoma (LUAD), revolutionary treatments for metastatic lesions are essential. Methods: To identify genes closely involved in LUAD-cell-derived metastasis, we used RNA sequencing to generate microRNA (miRNA) expression signatures of brain metastatic lesions. [...] Read more.
Background: To improve the prognosis of patients with lung adenocarcinoma (LUAD), revolutionary treatments for metastatic lesions are essential. Methods: To identify genes closely involved in LUAD-cell-derived metastasis, we used RNA sequencing to generate microRNA (miRNA) expression signatures of brain metastatic lesions. Once tumor-suppressive miRNAs are identified, it will be possible to explore the numerous tumor-promoting genes that are regulated by miRNAs. Results: By comparison with a previously created LUAD signature, we identified several miRNAs whose expression was significantly suppressed in brain metastases. We focused on both strands of pre-miR-195 (miR-195-5p and miR-195-3p), which were significantly downregulated in brain metastatic tissues, and confirmed by ectopic expression assays that both strands of pre-miR-195 attenuated the aggressive phenotypes (cell proliferation, migration, and invasion) of LUAD cells. These data suggest that both strands of pre-miR-195 have tumor-suppressive functions in LUAD cells. Next, we explored the target molecules that each miRNA strand regulates in LUAD cells. We identified 159 target genes regulated by miR-195-5p and miR-195-3p, of which 12 genes (ANLN, CDC6, CDCA2, CDK1, CEP55, CHEK1, CLSPN, GINS1, KIF23, MAD2L1, OIP5, and TIMELESS) affect cell cycle/cell division and the prognosis of LUAD patients. Finally, we focused on two genes, ANLN (miR-195-5p target) and MAD2L1 (miR-195-3p target), and demonstrated their oncogenic functions and the molecular pathways they regulate in LUAD cells. Conclusions: The miRNA signature derived from lung cancer brain metastasis will be a landmark in the field, and analysis of this miRNA signature will accelerate the identification of genes involved in lung cancer brain metastasis. Full article
Show Figures

Figure 1

20 pages, 1591 KiB  
Review
From Molecules to Medicines: The Role of AI-Driven Drug Discovery Against Alzheimer’s Disease and Other Neurological Disorders
by Mashael A. Alghamdi
Pharmaceuticals 2025, 18(7), 1041; https://doi.org/10.3390/ph18071041 - 14 Jul 2025
Viewed by 912
Abstract
The discovery of effective therapeutics against Alzheimer’s disease (AD) and other neurological disorders remains a significant challenge. Artificial intelligence (AI) tools are of considerable interest in modern drug discovery processes and, by exploiting machine learning (ML) algorithms and deep learning (DL) tools, as [...] Read more.
The discovery of effective therapeutics against Alzheimer’s disease (AD) and other neurological disorders remains a significant challenge. Artificial intelligence (AI) tools are of considerable interest in modern drug discovery processes and, by exploiting machine learning (ML) algorithms and deep learning (DL) tools, as well as data analytics, can expedite the identification of new drug targets and potential lead molecules. The current study was aimed at assessing the role of AI-based tools in the discovery of new drug targets against AD and other related neurodegenerative diseases and their efficacy in the discovery of new drugs against these diseases. AD represents a multifactorial neurological disease with limited therapeutics available for management and limited efficacy. The discovery of more effective medications is limited by the complicated pathophysiology of the disease, involving amyloid beta (Aβ), neurofibrillary tangles (NFTs), oxidative stress, and inflammation-induced damage in the brain. The integration of AI tools into the traditional drug discovery process against AD can help to find more effective, safe, highly potent compounds, identify new targets of the disease, and help in the optimization of lead molecules. A detailed literature review was performed to gather evidence regarding the most recent AI tools for drug discovery against AD, Parkinson’s disease (PD), multiple sclerosis (MLS), and epilepsy, focusing on biological markers, early diagnoses, and drug discovery using various databases like PubMed, Web of Science, Google Scholar, Scopus, and ScienceDirect to collect relevant literature. We evaluated the role of AI in analyzing multifaceted biological data and the properties of potential drug candidates and in streamlining the design of clinical trials. By exploring the intersection of AI and neuroscience, this review focused on providing insights into the future of AD treatment and the potential of AI to revolutionize the field of drug discovery. Our findings conclude that AI-based tools are not only cost-effective, but the success rate is extremely high compared to traditional drug discovery methods in identifying new therapeutic targets and in the screening of the majority of molecules for clinical trial purposes. Full article
Show Figures

Figure 1

18 pages, 836 KiB  
Systematic Review
The Interplay Between Autoimmune Disorders Affecting the Coagulation and Platelet Systems and Their Implications for Cardiovascular Diseases: A Systematic Review
by Kiana Mohammadian, Melika Asayesh, Fatemeh Fakhar, Shayan Keramat and Agata Stanek
Cells 2025, 14(13), 1023; https://doi.org/10.3390/cells14131023 - 4 Jul 2025
Viewed by 529
Abstract
Autoimmune diseases (AIDs) are chronic, heterogeneous conditions developing from an aberrant immune response, impacting particular organs or multiple systems. This systematic review attempted to investigate and evaluate the correlation between autoimmune diseases and cardiovascular disease (CVD), emphasizing immunological and pathophysiological mechanisms. A comprehensive [...] Read more.
Autoimmune diseases (AIDs) are chronic, heterogeneous conditions developing from an aberrant immune response, impacting particular organs or multiple systems. This systematic review attempted to investigate and evaluate the correlation between autoimmune diseases and cardiovascular disease (CVD), emphasizing immunological and pathophysiological mechanisms. A comprehensive search for relevant research was conducted on the PubMed, SCOPUS, and ScienceDirect databases, resulting in the identification of 28 studies that met the inclusion criteria. Of the cohort studies, 26 (92.8%) demonstrated a significant association between autoimmune diseases and increased cardiovascular risk. The major mechanisms include chronic inflammation, endothelial dysfunction, oxidative stress, and immune cell dysregulation. Essential biological components, including T cells, B cells, and neutrophils, were identified as contributors to atherosclerotic processes through cytokine secretion, expression of adhesion molecules, and thrombogenic activity. In contrast, two studies (7.1%) found no statistically significant association. In conclusion, autoimmune diseases significantly increase cardiovascular risk through complicated immunological mechanisms. Comprehending these pathways could influence future therapeutic approaches to reduce cardiovascular complications in affected patients. Full article
(This article belongs to the Special Issue New Research on Immunity and Inflammation in Cardiovascular Disease)
Show Figures

Graphical abstract

15 pages, 2039 KiB  
Article
Homoharringtonine Inhibits CVS-11 and Clinical Isolates of Rabies Virus In Vitro: Identified via High-Throughput Screening of an FDA-Approved Drug Library
by Kalenahalli Rajappa Harisha, Varun Kailaje, Ravinder Reddy Kondreddi, Chandra Sekhar Gudla, Shraddha Singh, Sharada Ramakrishnaiah, Shrikrishna Isloor, Shridhar Narayanan, Radha Krishan Shandil and Gudepalya Renukaiah Rudramurthy
Viruses 2025, 17(7), 945; https://doi.org/10.3390/v17070945 - 4 Jul 2025
Viewed by 542
Abstract
Rabies, a viral encephalitis caused by rabies virus (RABV), is 100% fatal upon the onset of symptoms. Effective post-exposure prophylaxis (PEP) measures are available, but they are often difficult to access in low-income countries. WHO estimates about 59,000 deaths due to rabies globally, [...] Read more.
Rabies, a viral encephalitis caused by rabies virus (RABV), is 100% fatal upon the onset of symptoms. Effective post-exposure prophylaxis (PEP) measures are available, but they are often difficult to access in low-income countries. WHO estimates about 59,000 deaths due to rabies globally, and the majority are contributed by developing countries. Hence, developing drugs for the treatment of post-symptomatic rabies is an urgent and unmet demand. It is worth noting that previous efforts regarding antiviral strategies, such as small-interfering RNA, antibodies and small-molecule inhibitors, against the rabies virus have failed to show efficacy in pre-clinical studies, especially when the virus has reached the central nervous system (CNS). Therefore, drug repurposing seems to be an alternative tool for the development of new anti-rabies drugs. We validated and used a high-throughput, FITC-conjugated antibody-based flow cytometry assay to expedite the identification of repurposable new drug candidates against the RABV. The assay was validated using ribavirin and salinomycin as reference compounds, which showed EC50 values of 10.08 µM and 0.07 µM, respectively. We screened a SelleckChem library comprising 3035 FDA-approved compounds against RABV (CVS-11) at 10 µM concentration. Five compounds (clofazimine, tiamulin, difloxacin, harringtonine and homoharringtonine) were active against RABV, with greater than 90% inhibition. Homoharringtonine (HHT) identified in the present study is active against laboratory-adapted RABV (CVS-11) and clinical isolates of RABV, with an average EC50 of 0.3 µM in both BHK-21 and Neuro-2a cell lines and exhibits post-entry inhibition. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

Back to TopTop