The Interplay Between Autoimmune Disorders Affecting the Coagulation and Platelet Systems and Their Implications for Cardiovascular Diseases: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Study Selection
3. Data Extraction and Quality Assessment
4. Results
4.1. Search Results
4.2. Study Characteristics
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
cITP | Chronic immune thrombocytopenia |
ITP | Immune thrombocytopenic purpura |
iTTP | Immune-mediated thrombotic thrombocytopenic purpura |
ADAMTS13 | A disintegrin and metalloproteinase with thrombospondin motifs 13 |
FMD | Flow-mediated dilation |
CIMT | Carotid intima media thickness |
SLE | Systemic lupus erythematosus |
RA | Rheumatoid arthritis |
aPLs | Antiphospholipid antibodies |
APS | Antiphospholipid syndrome |
PAPS | Primary antiphospholipid syndrome |
pSS | Primary Sjögren’s syndrome |
AAV | ANCA-associated vasculitis |
CVD | Cardiovascular disease |
PAD | Peripheral artery disease |
AMI | Acute myocardial infarction |
CHD | Coronary heart disease |
PMPs | Platelet microparticles |
vWF | von Willebrand factor |
tPA | Tissue plasminogen activator |
NETs | Neutrophil extracellular traps |
References
- Wilhelm, G.; Mertowska, P.; Mertowski, S.; Przysucha, A.; Strużyna, J.; Grywalska, E.; Torres, K. The crossroads of the coagulation system and the immune system: Interactions and connections. Int. J. Mol. Sci. 2023, 24, 12563. [Google Scholar] [CrossRef] [PubMed]
- Cugno, M.; Borghi, A.; Garcovich, S.; Marzano, A.V. Coagulation and skin autoimmunity. Front. Immunol. 2019, 10, 1407. [Google Scholar] [CrossRef]
- Porsch, F.; Binder, C.J. Autoimmune diseases and atherosclerotic cardiovascular disease. Nat. Rev. Cardiol. 2024, 21, 780–807. [Google Scholar] [CrossRef]
- Amaya-Amaya, J.; Montoya-Sánchez, L.; Rojas-Villarraga, A. Cardiovascular involvement in autoimmune diseases. BioMed Res. Int. 2014, 2014, 367359. [Google Scholar] [CrossRef]
- Laranjo, L.; Lanas, F.; Sun, M.C.; Chen, D.A.; Hynes, L.; Imran, T.F.; Kazi, D.S.; Kengne, A.P.; Komiyama, M.; Kuwabara, M.; et al. World Heart Federation roadmap for secondary prevention of cardiovascular disease: 2023 update. Glob. Heart 2024, 19, 8. [Google Scholar] [CrossRef]
- Keramat, S.; Karahan, O.; Patel, M.; Fazeli, B. Acute phase reactant proteins in Buerger’s disease: Is it a systemic disease? Vascular 2023, 31, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.-Y.; Tian, H.-M.; Zhu, Y.; Gu, W.-J.; Zou, H.; Wu, X.-Q.; Cheng, R.-J.; Yang, Z. Cardiac damage in autoimmune diseases: Target organ involvement that cannot be ignored. Front. Immunol. 2022, 13, 1056400. [Google Scholar] [CrossRef] [PubMed]
- Adelborg, K.; Kristensen, N.R.; Nørgaard, M.; Bahmanyar, S.; Ghanima, W.; Kilpatrick, K.; Frederiksen, H.; Ekstrand, C.; Sørensen, H.T.; Christiansen, C.F. Cardiovascular and bleeding outcomes in a population-based cohort of patients with chronic immune thrombocytopenia. J. Thromb. Haemost. 2019, 17, 912–924. [Google Scholar] [CrossRef]
- Chandan, J.S.; Thomas, T.; Lee, S.; Marshall, T.; Willis, B.; Nirantharakumar, K.; Gill, P. The association between idiopathic thrombocytopenic purpura and cardiovascular disease: A retrospective cohort study. J. Thromb. Haemost. 2018, 16, 474–480. [Google Scholar] [CrossRef]
- Haseefa, F.; Movahed, M.R.; Hashemzadeh, M.; Hashemzadeh, M. Idiopathic thrombocytopenic purpura is strongly associated with higher prevalence of aortic valve disease. Ann. Hematol. 2020, 99, 2081–2084. [Google Scholar] [CrossRef]
- Brodsky, M.A.; Sukumar, S.; Selvakumar, S.; Yanek, L.; Hussain, S.; Mazepa, M.A.; Braunstein, E.M.; Moliterno, A.R.; Kickler, T.S.; Brodsky, R.A.; et al. Major adverse cardiovascular events in survivors of immune-mediated thrombotic thrombocytopenic purpura. Am. J. Hematol. 2021, 96, 1587–1594. [Google Scholar] [CrossRef] [PubMed]
- Sukumar, S.; Brodsky, M.A.; Hussain, S.; Yanek, L.R.; Moliterno, A.R.; Brodsky, R.A.; Cataland, S.R.; Chaturvedi, S. Cardiovascular disease is a leading cause of mortality among TTP survivors in clinical remission. Blood Adv. 2022, 6, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Somers, E.C.; Zhao, W.; Lewis, E.E.; Wang, L.; Wing, J.J.; Sundaram, B.; Kazerooni, E.A.; McCune, W.J.; Kaplan, M.J.; Kovats, S. Type I interferons are associated with subclinical markers of cardiovascular disease in a cohort of systemic lupus erythematosus patients. PLoS ONE 2012, 7, e37000. [Google Scholar] [CrossRef]
- Hassan, A.A.; Habib, H.M.; Eissa, A.A. Peripheral arterial disease in patients with systemic lupus erythematosus: A prospective controlled study. Int. J. Rheum. Dis. 2013, 16, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Bartels, C.M.; Buhr, K.A.; Goldberg, J.W.; Bell, C.L.; Visekruna, M.; Nekkanti, S.; Greenlee, R.T. Mortality and cardiovascular burden of systemic lupus erythematosus in a US population-based cohort. J. Rheumatol. 2014, 41, 680–687. [Google Scholar] [CrossRef]
- Aviña-Zubieta, J.A.; To, F.; Vostretsova, K.; De Vera, M.; Sayre, E.C.; Esdaile, J.M. Risk of myocardial infarction and stroke in newly diagnosed systemic lupus erythematosus: A general population-based study. Arthritis Care Res. 2017, 69, 849–856. [Google Scholar] [CrossRef]
- Pujades-Rodriguez, M.; Duyx, B.; Thomas, S.L.; Stogiannis, D.; Rahman, A.; Smeeth, L.; Hemingway, H.; Schooling, C.M. Rheumatoid arthritis and incidence of twelve initial presentations of cardiovascular disease: A population record-linkage cohort study in England. PLoS ONE 2016, 11, e0151245. [Google Scholar] [CrossRef]
- Baragetti, A.; Ramirez, G.; Magnoni, M.; Garlaschelli, K.; Grigore, L.; Berteotti, M.; Scotti, I.; Bozzolo, E.; Berti, A.; Camici, P.; et al. Disease trends over time and CD4+ CCR5+ T-cells expansion predict carotid atherosclerosis development in patients with systemic lupus erythematosus. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 53–63. [Google Scholar] [CrossRef]
- Chen, Y.-R.; Hsieh, F.-I.; Chang, C.-C.; Chi, N.-F.; Wu, H.-C.; Chiou, H.-Y. The effect of rheumatoid arthritis on the risk of cerebrovascular disease and coronary artery disease in young adults. J. Chin. Med. Assoc. 2018, 81, 772–780. [Google Scholar] [CrossRef]
- Argnani, L.; Zanetti, A.; Carrara, G.; Silvagni, E.; Guerrini, G.; Zambon, A.; Scirè, C.A. Rheumatoid arthritis and cardiovascular risk: Retrospective matched-cohort analysis based on the RECORD study of the Italian Society for Rheumatology. Front. Med. 2021, 8, 745601. [Google Scholar] [CrossRef]
- Di Minno, M.N.D.; Emmi, G.; Ambrosino, P.; Scalera, A.; Tufano, A.; Cafaro, G.; Peluso, R.; Bettiol, A.; Di Scala, G.; Silvestri, E.; et al. Subclinical atherosclerosis in asymptomatic carriers of persistent antiphospholipid antibodies positivity: A cross-sectional study. Int. J. Cardiol. 2019, 274, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Selmi, C.; De Santis, M.; Battezzati, P.M.; Generali, E.; Lari, S.A.; Ceribelli, A.; Isailovic, N.; Zermiani, P.; Neidhöfer, S.; Matthias, T.; et al. Anti-phospholipid antibody prevalence and association with subclinical atherosclerosis and atherothrombosis in the general population. Int. J. Cardiol. 2020, 300, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Ames, P.; Antinolfi, I.; Scenna, G.; Gaeta, G.; Margaglione, M.; Margarita, A. Atherosclerosis in thrombotic primary antiphospholipid syndrome. J. Thromb. Haemost. 2009, 7, 537–542. [Google Scholar] [CrossRef]
- Conti, F.; Spinelli, F.R.; Alessandri, C.; Pacelli, M.; Ceccarelli, F.; Marocchi, E.; Montali, A.; Capozzi, A.; Buttari, B.; Profumo, E.; et al. Subclinical atherosclerosis in systemic lupus erythematosus and antiphospholipid syndrome: Focus on β2GPI-specific T cell response. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 661–668. [Google Scholar] [CrossRef]
- Andrade, D.; Bortolotto, L.; Bonfa, E.; Borba, E. Primary antiphospholipid syndrome: Absence of premature atherosclerosis in patients without traditional coronary artery disease risk factors. Lupus 2016, 25, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Kravvariti, E.; Konstantonis, G.; Tentolouris, N.; Sfikakis, P.P.; Tektonidou, M.G. (Eds.) Carotid and femoral atherosclerosis in antiphospholipid syndrome: Equivalent risk with diabetes mellitus in a case–control study. In Seminars in Arthritis and Rheumatism; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Bettiol, A.; Emmi, G.; Finocchi, M.; Silvestri, E.; Urban, M.L.; Mattioli, I.; Scalera, A.; Lupoli, R.; Vannacci, A.; Di Minno, M.N.D.; et al. Obstetric antiphospholipid syndrome is not associated with an increased risk of subclinical atherosclerosis. Rheumatology 2020, 59, 3709–3716. [Google Scholar] [CrossRef]
- Wu, X.-F.; Huang, J.-Y.; Chiou, J.-Y.; Chen, H.-H.; Wei, J.C.-C.; Dong, L.-L. Increased risk of coronary heart disease among patients with primary Sjögren’s syndrome: A nationwide population-based cohort study. Sci. Rep. 2018, 8, 2209. [Google Scholar] [CrossRef]
- Łuczak, A.; Małecki, R.; Kulus, M.; Madej, M.; Szahidewicz-Krupska, E.; Doroszko, A. Cardiovascular risk and endothelial dysfunction in primary sjogren syndrome is related to the disease activity. Nutrients 2021, 13, 2072. [Google Scholar] [CrossRef]
- Santos, C.S.; Salgueiro, R.R.; Morales, C.M.; Castro, C.Á.; Álvarez, E.D. Risk factors for cardiovascular disease in primary Sjögren’s syndrome (pSS): A 20-year follow-up study. Clin. Rheumatol. 2023, 42, 3021–3031. [Google Scholar] [CrossRef]
- Sun, G.; Fosbøl, E.L.; Yafasova, A.; Faurschou, M.; Lindhardsen, J.; Torp-Pedersen, C.; Køber, L.; Butt, J.H. Long-term risk of heart failure and other adverse cardiovascular outcomes in primary Sjögren’s syndrome. J. Intern. Med. 2023, 293, 457–469. [Google Scholar] [CrossRef]
- Aaramaa, H.-K.; Mars, N.; Helminen, M.; Kerola, A.M.; Palomäki, A.; Eklund, K.K.; Gracia-Tabuenca, J.; Sinisalo, J.; Gen, F.; Isomäki, P. (Eds.) Risk of cardiovascular comorbidities before and after the onset of rheumatic diseases. In Seminars in Arthritis and Rheumatism; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Massicotte-Azarniouch, D.; Petrcich, W.; Walsh, M.; Canney, M.; Hundemer, G.L.; Milman, N.; Hladunewich, M.A.; Fairhead, T.; Sood, M.M. Association of anti-neutrophil cytoplasmic antibody-associated vasculitis and cardiovascular events: A population-based cohort study. Clin. Kidney J. 2022, 15, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Massicotte-Azarniouch, D.; Herrera, C.A.; Jennette, J.C.; Falk, R.J.; Free, M.E. (Eds.) Mechanisms of vascular damage in ANCA vasculitis. In Seminars in Immunopathology; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Nygaard, L.; Polcwiartek, C.; Nelveg-Kristensen, K.E.; Carlson, N.; Kristensen, S.; Torp-Pedersen, C.; DANVAS Investigators; Gregersen, J.W. Increased risk of cardiovascular disease preceding diagnosis of incident ANCA-associated vasculitis: A Danish nationwide study. Rheumatology 2024, 63, 1313–1321. [Google Scholar] [CrossRef]
- Menichelli, D.; Cormaci, V.M.; Marucci, S.; Franchino, G.; Del Sole, F.; Capozza, A.; Fallarino, A.; Valeriani, E.; Violi, F.; Pignatelli, P.; et al. Risk of venous thromboembolism in autoimmune diseases: A comprehensive review. Autoimmun. Rev. 2023, 22, 103447. [Google Scholar] [CrossRef]
- Medina-Leyte, D.J.; Zepeda-García, O.; Domínguez-Pérez, M.; González-Garrido, A.; Villarreal-Molina, T.; Jacobo-Albavera, L. Endothelial dysfunction, inflammation and coronary artery disease: Potential biomarkers and promising therapeutical approaches. Int. J. Mol. Sci. 2021, 22, 3850. [Google Scholar] [CrossRef] [PubMed]
- Steyers, C.M., III; Miller, F.J., Jr. Endothelial dysfunction in chronic inflammatory diseases. Int. J. Mol. Sci. 2014, 15, 11324–11349. [Google Scholar] [CrossRef]
- Ojaroodi, A.F.; Jafarnezhad, F.; Eskandari, Z.; Keramat, S.; Stanek, A. Recent Updates and Advances in the Association Between Vitamin D Deficiency and Risk of Thrombotic Disease. Nutrients 2024, 17, 90. [Google Scholar] [CrossRef]
- Russo, A.; Cannizzo, M.; Ghetti, G.; Barbaresi, E.; Filippini, E.; Specchia, S.; Branzi, A. Idiopathic thrombocytopenic purpura and coronary artery disease: Comparison between coronary artery bypass grafting and percutaneous coronary intervention. Interact. Cardiovasc. Thorac. Surg. 2011, 13, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Anyfanti, P.; Bekiari, E.; Angeloudi, E.; Pagkopoulou, E.; Kitas, G.D.; Dimitroulas, T. Arterial stiffness in rheumatoid arthritis: Current knowledge and future perspectivess. Indian J. Rheumatol. 2022, 17, 157–165. [Google Scholar] [CrossRef]
- Hadi, H.A.; Carr, C.S.; Al Suwaidi, J. Endothelial dysfunction: Cardiovascular risk factors, therapy, and outcome. Vasc. Health Risk Manag. 2005, 1, 183–198. [Google Scholar]
- Mak, A.; Kow, N.Y.; Schwarz, H.; Gong, L.; Tay, S.H.; Ling, L.H. Endothelial dysfunction in systemic lupus erythematosus—A case-control study and an updated meta-analysis and meta-regression. Sci. Rep. 2017, 7, 7320. [Google Scholar] [CrossRef]
- Mohammadian, K.; Fakhar, F.; Keramat, S.; Stanek, A. The Role of antioxidants in the treatment of metabolic dysfunction-associated fatty liver disease: A systematic review. Antioxidants 2024, 13, 797. [Google Scholar] [CrossRef] [PubMed]
- Sharebiani, H.; Keramat, S.; Chavoshan, A.; Fazeli, B.; Stanek, A. The influence of antioxidants on oxidative stress-induced vascular aging in obesity. Antioxidants 2023, 12, 1295. [Google Scholar] [CrossRef]
- Boren, J.; Chapman, M.J.; Krauss, R.M.; Packard, C.J.; Bentzon, J.F.; Binder, C.J.; Daemen, M.J.; Demer, L.L.; Hegele, R.A.; Nicholls, S.J.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2020, 41, 2313–2330. [Google Scholar] [CrossRef] [PubMed]
- Keramat, S.; Sharebiani, H.; Patel, M.; Fazeli, B.; Stanek, A. The potential role of antioxidants in the treatment of peripheral arterial disease: A systematic review. Antioxidants 2022, 11, 2126. [Google Scholar] [CrossRef]
- Bucci, T.; Menichelli, D.; Palumbo, I.M.; Pastori, D.; Ames, P.R.J.; Lip, G.Y.H.; Pignatelli, P. Statins as an Adjunctive Antithrombotic Agent in Thrombotic Antiphospholipid Syndrome: Mechanisms and Clinical Implications. Cells 2025, 14, 353. [Google Scholar] [CrossRef] [PubMed]
- Noordermeer, T.; Molhoek, J.E.; Schutgens, R.E.; Sebastian, S.A.; Drost-Verhoef, S.; van Wesel, A.C.; de Groot, P.G.; Meijers, J.C.; Urbanus, R.T. Anti-β2-glycoprotein I and anti-prothrombin antibodies cause lupus anticoagulant through different mechanisms of action. J. Thromb. Haemost. 2021, 19, 1018–1028. [Google Scholar] [CrossRef]
- McDonnell, T.; Wincup, C.; Buchholz, I.; Pericleous, C.; Giles, I.; Ripoll, V.; Cohen, H.; Delcea, M.; Rahman, A. The role of beta-2-glycoprotein I in health and disease associating structure with function: More than just APS. Blood Rev. 2020, 39, 100610. [Google Scholar] [CrossRef]
- Capozzi, A.; Manganelli, V.; Riitano, G.; Recalchi, S.; Truglia, S.; Alessandri, C.; Longo, A.; Garofalo, T.; Misasi, R.; Valesini, G.; et al. Tissue factor over-expression in platelets of patients with anti-phospholipid syndrome: Induction role of anti-β2-GPI antibodies. Clin. Exp. Immunol. 2019, 196, 59–66. [Google Scholar] [CrossRef]
- Capozzi, A.; Riitano, G.; Recalchi, S.; Manganelli, V.; Pulcinelli, F.; Garofalo, T.; Misasi, R.; Longo, A.; Sorice, M. Effect of heparanase inhibitor on tissue factor overexpression in platelets and endothelial cells induced by anti-β2-GPI antibodies: Reply to comment from Mackman et al. J. Thromb. Haemost. 2022, 20, 261–262. [Google Scholar] [CrossRef]
- Eustes, A.S.; Campbell, R.A.; Middleton, E.A.; Tolley, N.D.; Manne, B.K.; Montenont, E.; Rowley, J.W.; Krauel, K.; Blair, A.; Guo, L.; et al. Heparanase expression and activity are increased in platelets during clinical sepsis. J. Thromb. Haemost. 2021, 19, 1319–1330. [Google Scholar] [CrossRef]
- Tohidi-Esfahani, I.; Mittal, P.; Isenberg, D.; Cohen, H.; Efthymiou, M. Platelets and thrombotic antiphospholipid syndrome. J. Clin. Med. 2024, 13, 741. [Google Scholar] [CrossRef] [PubMed]
- Sreejit, G.; Johnson, J.; Jaggers, R.M.; Dahdah, A.; Murphy, A.J.; Hanssen, N.M.J.; Nagareddy, P.R. Neutrophils in cardiovascular disease: Warmongers, peacemakers, or both? Cardiovasc. Res. 2022, 118, 2596–2609. [Google Scholar] [CrossRef]
- Luo, J.; Thomassen, J.Q.; Nordestgaard, B.G.; Tybjærg-Hansen, A.; Frikke-Schmidt, R. Neutrophil counts and cardiovascular disease. Eur. Heart J. 2023, 44, 4953–4964. [Google Scholar] [CrossRef] [PubMed]
- Wigerblad, G.; Kaplan, M.J. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat. Rev. Immunol. 2023, 23, 274–288. [Google Scholar] [CrossRef]
- Capozzi, A.; Manganelli, V.; Riitano, G.; Caissutti, D.; Longo, A.; Garofalo, T.; Sorice, M.; Misasi, R. Advances in the pathophysiology of thrombosis in antiphospholipid syndrome: Molecular mechanisms and signaling through lipid rafts. J. Clin. Med. 2023, 12, 891. [Google Scholar] [CrossRef]
- Müller-Calleja, N.; Hollerbach, A.; Royce, J.; Ritter, S.; Pedrosa, D.; Madhusudhan, T.; Teifel, S.; Meineck, M.; Häuser, F.; Canisius, A.; et al. Lipid presentation by the protein C receptor links coagulation with autoimmunity. Science 2021, 371, eabc0956. [Google Scholar] [CrossRef] [PubMed]
- Riitano, G.; Capozzi, A.; Recalchi, S.; Caissutti, D.; Longo, A.; Mattei, V.; Conti, F.; Misasi, R.; Garofalo, T.; Sorice, M.; et al. Anti-β2-GPI antibodies induce endothelial cell expression of tissue factor by LRP6 signal transduction pathway involving lipid rafts. Cells 2022, 11, 1288. [Google Scholar] [CrossRef]
- Müller-Calleja, N.; Hollerbach, A.; Ritter, S.; Pedrosa, D.G.; Strand, D.; Graf, C.; Reinhardt, C.; Strand, S.; Poncelet, P.; Griffin, J.H.; et al. Tissue factor pathway inhibitor primes monocytes for antiphospholipid antibody-induced thrombosis. Blood J. Am. Soc. Hematol. 2019, 134, 1119–1131. [Google Scholar] [CrossRef]
- Martín, P.; Sánchez-Madrid, F. T cells in cardiac health and disease. J. Clin. Investig. 2025, 135, e185218. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fernandez, D.M.; Rahman, A.H.; Fernandez, N.F.; Chudnovskiy, A.; Amir, E.-A.D.; Amadori, L.; Khan, N.S.; Wong, C.K.; Shamailova, R.; Hill, C.A.; et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 2019, 25, 1576–1588. [Google Scholar] [CrossRef]
- Chen, J.; Xiang, X.; Nie, L.; Guo, X.; Zhang, F.; Wen, C.; Xia, Y.; Mao, L. The emerging role of Th1 cells in atherosclerosis and its implications for therapy. Front. Immunol. 2023, 13, 1079668. [Google Scholar] [CrossRef] [PubMed]
- Keramat, S.; Sadeghian, M.H.; Keramati, M.R.; Fazeli, B. Assessment of T helper 17-associated cytokines in thromboangiitis obliterans. J. Inflamm. Res. 2019, 12, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.R. The balance of Th17 versus Treg cells in autoimmunity. Int. J. Mol. Sci. 2018, 19, 730. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Jin, H.; Xu, Y. T cell metabolism: A new perspective on Th17/Treg cell imbalance in systemic lupus erythematosus. Front. Immunol. 2020, 11, 1027. [Google Scholar] [CrossRef]
- Jha, S.B.; Rivera, A.P.; Monar, G.V.F.; Islam, H.; Puttagunta, S.M.; Islam, R.; Kundu, S.; Sange, I.; Monar, G.V.F. Systemic lupus erythematosus and cardiovascular disease. Cureus 2022, 14, e22027. [Google Scholar] [CrossRef]
- Nus, M.; Tsiantoulas, D.; Mallat, Z. Plan B (-cell) in atherosclerosis. Eur. J. Pharmacol. 2017, 816, 76–81. [Google Scholar] [CrossRef]
- Fakhar, F.; Mohammadian, K.; Keramat, S.; Stanek, A. The Potential Role of Dietary Polyphenols in the Prevention and Treatment of Acute Leukemia. Nutrients 2024, 16, 4100. [Google Scholar] [CrossRef]
- Anania, C.; Gustafsson, T.; Hua, X.; Su, J.; Vikström, M.; de Faire, U.; Heimbürger, M.; Jogestrand, T.; Frostegård, J. Increased prevalence of vulnerable atherosclerotic plaques and low levels of natural IgM antibodies against phosphorylcholine in patients with systemic lupus erythematosus. Arthritis Res. Ther. 2010, 12, R214. [Google Scholar] [CrossRef]
- Sircana, M.C.; Crisci, G.; Giardino, F.; Pisetta, C.; Bonadia, N.; SIMI SdMdR. Antiphospholipid syndrome: Are old school VKAs still the best choice? Intern. Emerg. Med. 2024, 19, 217–219. [Google Scholar] [CrossRef]
- Sircana, M.C.; Erre, G.L.; Castagna, F.; Manetti, R. Crosstalk between Inflammation and Atherosclerosis in Rheumatoid Arthritis and Systemic Lupus Erythematosus: Is There a Common Basis? Life 2024, 14, 716. [Google Scholar] [CrossRef]
- McRae, H.L.; Militello, L.; Refaai, M.A. Updates in anticoagulation therapy monitoring. Biomedicines 2021, 9, 262. [Google Scholar] [CrossRef] [PubMed]
- Capecchi, M.; Abbattista, M.; Ciavarella, A.; Uhr, M.; Novembrino, C.; Martinelli, I. Anticoagulant therapy in patients with antiphospholipid syndrome. J. Clin. Med. 2022, 11, 6984. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Guan, F. Thrombosis and anticoagulation therapy in systemic lupus erythematosus. Autoimmune Dis. 2022, 2022, 3208037. [Google Scholar] [CrossRef] [PubMed]
- Durcan, L.; O’Dwyer, T.; Petri, M. Management strategies and future directions for systemic lupus erythematosus in adults. Lancet 2019, 393, 2332–2343. [Google Scholar] [CrossRef]
- Gómez-Seguí, I.; Cid, J.; Lozano, M.; Mingot-Castellano, M.E.; Pascual-Izquierdo, C.; del Castillo, L.M.G.; Estevez, J.M.V.; Garcia-Candel, F.; Balarezo, M.J.; Valcarcel, D.; et al. Caplacizumab treatment in elderly patients with iTTP: Experience from the Spanish TTP Registry. HemaSphere 2025, 9, e70109. [Google Scholar] [CrossRef]
Terms 1 | Search Strategy Terms |
---|---|
Term 1 | “Autoimmune disease” “Inflammation” OR “Immune dysregulation” “Thrombosis” OR “Endothelial dysfunction” OR “Autoimmune disorders” OR “Autoimmunity” OR “Autoinflammation” OR “Autoantibodies” |
Term 2 | “Cardiovascular disease (CVD)” OR “Atherosclerosis” OR “Myocardial infarction” OR “Heart failure” OR “Peripheral arterial disease (PAD)” OR “Coronary heart disease (CHD)” |
Term 3 | “Oxidative stress” OR “Endothelial dysfunction” OR “Platelet dysfunction” OR “ADAMTS13 activity” OR “Complement activation” OR “Chronic inflammation” |
Term 4 | “Clinical Trials” OR “Cohort Study” OR “Case–Control Study” OR “Systematic Review” |
Inclusion Criteria | Exclusion Criteria |
---|---|
Studies about the effect of autoimmune disease on the coagulation system | Animal and in vitro studies |
Studies that clearly stated that autoimmune diseases contribute to the development of cardiovascular disease through their effects on the coagulation system | Studies with no connection between autoimmune disease and the coagulation system |
Studies that involve both men and women or one gender alone | Studies on autoimmune diseases that affect the coagulation system but not the cardiovascular system |
Studies that investigated autoimmune diseases with direct or indirect effects on the coagulation system or platelet function. | Studies lacking information about the effect of autoimmune diseases on the cardiovascular system |
Studies that reported cardiovascular outcomes as a consequence of autoimmune-induced coagulation or platelet abnormalities. | Studies with a very small sample size |
Studies that included an adequate sample size relevant to the disease prevalence and study design. |
Number | Study | Year | Type of Study | Sample Size | Age | Gender | Autoimmune Disease | Mechanisms Affecting Coagulation and Platelets | Cardiovascular Disease |
---|---|---|---|---|---|---|---|---|---|
1 [8] | Adelborg et al. | 2018 | cohort study | 3584 | ≥18 | Both genders: Male: 42% Female: 58% | chronic immune thrombocytopenia (cITP) | Low platelet counts have been associated with increased risks of both hemorrhage and mortality. | CVD events possibly arise due to an imbalance in hemostasis and platelet activation in chronic ITP. |
2 [9] | Chandan et al. | 2018 | cohort study | 6591 | Mean: 48.4 | Both genders: Male: 41.4% Female: 58.6% | ITP | Platelet microparticles (PMPs) released in ITP may increase vascular inflammation and thrombosis. | Atherosclerosis and thrombotic CVD linked to a procoagulant state mediated by PMPs. |
3 [10] | Haseefa et al. | 2020 | cohort study | NA | NA | Both genders | ITP | Some investigators propose that autoantibodies associated with ITP may induce endothelial damage through antigenic mimicry between coronary endothelial cells and platelets. | ITP demonstrated a significant correlation with Aortic valve disease (AVD) over a decade. |
4 [11] | Brodsky et al. | 2021 | cohort study | 181 | Mean: 39 | Both genders: Male: 28.7% Female: 71.3% | Immune-mediated thrombotic thrombocytopenic purpura (iTTP) | iTTP causes ADAMTS13 deficiency, leading to microvascular platelet-rich thrombi. | CVD is a long-term complication due to endothelial damage from recurrent thrombotic episodes. |
5 [12] | Sukumar et al. | 2022 | cohort study | 222 | Mean: 42 | Both genders: Male: 29.7% Female: 70.3% | iTTP | Decreased ADAMTS13 activity contributes to microvascular platelet aggregation, thrombocytopenia, microangiopathic hemolytic anemia, and different end-organ dysfunction. | CVD occurs in survivors of iTTP relapse due to sustained microvascular thrombotic burden. |
6 [13] | C. Somers et al. | 2012 | cohort study | 95 | Mean: 37.66 ± 9.1 | Female: 100% | SLE | Preclinical vascular damage, decreased flow-mediated dilatation (FMD), increased carotid intima media thickness (CIMT), and coronary calcification severity lead to increased risk of SLE. | This study indicates the progression of atherosclerosis in lupus patients |
7 [14] | A. Hassan et al. | 2013 | Case–control study | 120 | Mean: 32 | Both genders: Male: 8.4% Female: 91.6% | SLE | Autoantibodies, immune complex formation, and autoantibody deposition significantly increase thrombotic parameters in SLE patients, including plasma fibrinogen, vWF antigen, tPA antigen, and fibrin D-dimer. | Increased prevalence of PAD in patients with SLE. |
8 [15] | M. Bartels et al. | 2014 | cohort study | 70 | Mean: 52 | Both genders: Male: 19% Female: 81% | SLE | Not reported. Likely chronic inflammation and platelet activation in SLE. | Elevated CVD risk despite mild SLE, possibly due to subclinical thromboinflammation. |
9 [16] | Antonio Aviña-Zubieta et al. | 2017 | cohort study | 4863 | Mean: 48.9 | Both genders: Male: 14% Female: 86% | SLE | Not clearly stated; implied systemic inflammation and prothrombotic autoimmunity | Increased cardiovascular events in SLE patients likely mediated by inflammatory endothelial dysfunction. |
10 [17] | Pujades-Rodriguez et al. | 2016 | cohort study | 12,120 | Mean: 57 | Both genders: Male: 27.7% Female: 72.3% | Rheumatoid arthritis (RA) | Not clearly stated. | Individuals diagnosed with RA demonstrate increased rates of an acute myocardial infarction (AMI), unanticipated coronary mortality, heart failure, cardiac arrest, and PAD. |
11 [18] | Baragetti et al. | 2018 | cohort study | 40 | Mean: 42 + 9 | Both genders: Male: 10% Female: 90% | SLE | Specific T cell subsets have been associated with the long-term development of atherosclerosis and can be helpful in predicting vascular disease progression. | SLE patients have higher carotid atherosclerosis burden and increased cardiovascular risk, exacerbated by common classical cardiovascular risk factors and systemic inflammation. |
12 [19] | Chen et al. | 2018 | cohort study | 10,568 | less than 45 years | Both genders: Male: 25.95% Female: 74.05% | RA | RA provokes chronic inflammation and immune dysregulation, which subsequently impairs arterial walls through sustained endothelial dysfunction and leads to markedly elevated arterial stiffness. | Independent correlation with CVD in young adults through inflammation-induced vascular dysfunction. |
13 [20] | Argnani et al. | 2021 | cohort study | 21,201 | Mean: 61.7 ± 13.7 | Both genders: Male: 22% Female: 76% | RA | Not detailed. | An increased risk of cardiovascular events, including atrial fibrillation, heart failure, and myocardial infarction, as well as an elevated mortality rate compared with the general population. |
14 [21] | Di Minno et al. | 2019 | cohort study | 192 | Mean: 49.84 ± 12.0 | Both genders: Male: 18% Female: 82% | Antiphospholipid antibodies (aPLs) | Not detailed. | Elevated CVD incidence likely due to hypercoagulability induced by aPLs |
15 [22] | Selmi et al. | 2020 | cohort study | 1712 | Mean: 47.2 | Both genders: Male: 50.2% Female: 49.8% | aPL | Not detailed. | APLs correlate with subclinical atherosclerosis and an increased incidence of cardiovascular events, particularly in individuals with elevated cardiovascular risk. |
16 [23] | P.R.J. AMES et al. | 2009 | Case double- control study | 49 | Mean: 37 ± 11 | Both genders: Male: 36.8% Female: 63.2% | antiphospholipid syndrome (APS) | The persistence of aPL leads to thrombosis in patients with primary antiphospholipid syndrome (PAPS). | Premature atherosclerosis is a clinical characteristic for individuals with thrombotic PAPS. |
17 [24] | Conti et al. | 2014 | cohort study | Total: 68 PAPS: 18 SLE: 50 | Mean of PAPA: 39.9 ± 11.5 Mean of SLE: 40 ± 11.2 | PAPS: Both genders: Male: 22.3% Female: 77.7% SLE: Both genders: Male: 12% Female: 88% | APS and SLE | The immune response to β2 glycoprotein I (β2GPI), the primary target of aPL, may link autoimmune chronic damage with endothelial dysfunction, exacerbating proinflammatory conditions, and maintaining pathogenic antibody release. | A considerable proportion of individuals with SLE and APS correlated with subclinical atherosclerosis. |
18 [25] | Andrade et al. | 2016 | cohort study | 27 | ≥55 | Female: 100% | APS | Not detailed. | Patients with PAPS have no evidence of premature atherosclerosis and do not appear to possess an elevated risk of developing it. |
19 [26] | Kravvariti et al. | 2018 | cohort study | Total: 86 PAPS: 43, Systemic lupus erythematosus-associated APS (SLE/APS): 43 | Mean:46 | PAPS: Both genders: Male: 37% Female: 63% SLE/APS: Both genders: Male: 16% Female: 84% | APS and SLE/APS | Not detailed. | Individuals with PAPS and SLE/APS have a higher risk of atherosclerotic plaques in the carotid and femoral arteries. |
20 [27] | Bettiol et al. | 2020 | cohort study | Total: 167 thromboticAPS: 131, Obstetric APS: 36 | Mean of thrombotic APS: 49.44, Mean of Obstetric APS: 51.14 | thrombotic APS: Female: 100% Obstetric APS: Female: 100% | APS | Not detailed. | Thrombotic APS correlates with elevated markers of subclinical atherosclerosis. |
21 [28] | Wu et al. | 2018 | cohort study | 4175 | Mean: 50.15 ± 16.80 | Both genders: Male: 24.6% Female: 75.4% | Primary Sjögren’s syndrome (pSS) | Not detailed. | pSS has been associated with a heightened risk of future coronary heart disease (CHD). |
22 [29] | Łuczak et al. | 2021 | cohort study | 46 | Mean: 47.34 ± 11.9 | Both gender: Male: 6.6% Female: 93.4% | pSS | Anti-Ro/SSA antibodies impair Flow-mediated dilation (FMD) and contribute to endothelial dysfunction. | No apparent CVD reported; however, endothelial dysfunction suggests a potential atherogenic risk. |
23 [30] | Sieiro Santos et al. | 2023 | cohort study | 102 | Mean: 65 ± 24 | Both genders: Male: 18% Female: 82% | pSS | Autoantibodies and complement activation promote thrombosis and endothelial injury. | Increased coronary artery disease and venous thrombosis as outcomes of an autoimmune prothrombotic state. |
24 [31] | Sun et al. | 2023 | cohort study | 5092 | Mean: 57 | Both genders: Male: 12.7% Female: 87.3% | pSS | Not specified; assumed chronic immune activation and vascular involvement in pSS. | Elevated risk of heart failure and cardiovascular incidents in pSS, possibly associated with inflammation and thrombosis. |
25 [32] | Aaramaa et al. | 2024 | cohort study | Total: 7558 Seropositive RA: 2368, Seronegative RA: 916, Ankylosing spondylitis (AS): 715 Psoriatic arthritis (PsA): 923, pSS: 412, SLE: 190, Gout: 2034 | Mean of Seropositive RA: 56.2, Seronegative RA: 54.4, AS: 40.4, PsA: 51.6, pSS: 53.3, SLE: 47.5, Gout: 65.7 | Seropositive RA: Both genders: Male: 30.2% Female: 69.8%, Seronegative RA: Both genders: Male: 27.1% Female: 72.9%, AS: Both genders: Male: 49.2% Female: 50.8%, PsA: Both genders: Male: 44.6% Female: 55.4%, pSS: Both genders: Male: 8% Female: 92%, SLE: Both genders: Male: 11.1% Female: 88.9%, Gout: Both genders: Male: 81.1% Female: 18.9% | Seropositive RA, Seronegative RA, AS, PsA, pSS, SLE, Gout | Not detailed. | CVD risk is highest in SLE and gout, possibly associated with autoimmune-driven coagulopathy and vascular inflammation. |
26 [33] | Massicotte-Azarniouch et al. | 2022 | cohort study | 1520 | Mean: 60.8 | Both gender: Male: 49.5% Female: 50.5% | Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) | AAV causes necrotizing vasculitis and endothelial injury, promoting thrombogenesis. | Increased cardiovascular risk following diagnosis attributed to extensive vascular damage and thrombotic tendency. |
27 [34] | Vegting et al. | 2023 | cohort study | 144 | Mean: 62 | Both genders: Male: 56% Female: 44% | AAV | Not detailed. | In this study, there was a substantial association between patients with AAV and cardiovascular events that persisted. |
28 [35] | Nygaard et al. | 2024 | cohort study | 2371 | Mean: 63 | Both genders: Male: 53.7% Female: 46.3% | AAV | Inflammation and necrosis of blood arteries leading to thrombus development and/or narrowing of coronary vessels, and can aggravate pre-existing subclinical atherosclerosis. | CVD was observed as a downstream result of autoimmune-mediated thromboinflammation in AAV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadian, K.; Asayesh, M.; Fakhar, F.; Keramat, S.; Stanek, A. The Interplay Between Autoimmune Disorders Affecting the Coagulation and Platelet Systems and Their Implications for Cardiovascular Diseases: A Systematic Review. Cells 2025, 14, 1023. https://doi.org/10.3390/cells14131023
Mohammadian K, Asayesh M, Fakhar F, Keramat S, Stanek A. The Interplay Between Autoimmune Disorders Affecting the Coagulation and Platelet Systems and Their Implications for Cardiovascular Diseases: A Systematic Review. Cells. 2025; 14(13):1023. https://doi.org/10.3390/cells14131023
Chicago/Turabian StyleMohammadian, Kiana, Melika Asayesh, Fatemeh Fakhar, Shayan Keramat, and Agata Stanek. 2025. "The Interplay Between Autoimmune Disorders Affecting the Coagulation and Platelet Systems and Their Implications for Cardiovascular Diseases: A Systematic Review" Cells 14, no. 13: 1023. https://doi.org/10.3390/cells14131023
APA StyleMohammadian, K., Asayesh, M., Fakhar, F., Keramat, S., & Stanek, A. (2025). The Interplay Between Autoimmune Disorders Affecting the Coagulation and Platelet Systems and Their Implications for Cardiovascular Diseases: A Systematic Review. Cells, 14(13), 1023. https://doi.org/10.3390/cells14131023