Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (23,567)

Search Parameters:
Keywords = molecular role

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 546 KiB  
Review
The Inflammatory Bridge Between Type 2 Diabetes and Neurodegeneration: A Molecular Perspective
by Housem Kacem, Michele d’Angelo, Elvira Qosja, Skender Topi, Vanessa Castelli and Annamaria Cimini
Int. J. Mol. Sci. 2025, 26(15), 7566; https://doi.org/10.3390/ijms26157566 (registering DOI) - 5 Aug 2025
Abstract
Chronic low-grade inflammation is a hallmark of both metabolic and neurodegenerative diseases. In recent years, several studies have highlighted the pivotal role of systemic metabolic dysfunction, particularly insulin resistance, in shaping neuroinflammatory processes and contributing to impaired cognitive performance. Among metabolic disorders, type [...] Read more.
Chronic low-grade inflammation is a hallmark of both metabolic and neurodegenerative diseases. In recent years, several studies have highlighted the pivotal role of systemic metabolic dysfunction, particularly insulin resistance, in shaping neuroinflammatory processes and contributing to impaired cognitive performance. Among metabolic disorders, type 2 diabetes mellitus has emerged as a major risk factor for the development of age-related neurodegenerative conditions, suggesting a complex and bidirectional crosstalk between peripheral metabolic imbalance and central nervous system function. This review aims to explore the cellular and molecular mechanisms underlying the interaction between metabolic dysregulation and brain inflammation. By integrating current findings from endocrinology, immunology, and neuroscience, this work provides a comprehensive overview of how chronic metabolic inflammation may contribute to the onset and progression of neurodegenerative conditions. This interdisciplinary approach could offer novel insights into potential therapeutic strategies targeting both metabolic and neuroinflammatory pathways. Full article
(This article belongs to the Collection Latest Review Papers in Endocrinology and Metabolism)
Show Figures

Figure 1

10 pages, 826 KiB  
Article
Differential Associations of PIVKA-II with Epithelial and Mesenchymal Features in HCC and PDAC
by Farina Antonella, Cicolani Gaia, Viggiani Valentina, Maini Matteo, Angeloni Antonio and Anastasi Emanuela
Int. J. Mol. Sci. 2025, 26(15), 7581; https://doi.org/10.3390/ijms26157581 (registering DOI) - 5 Aug 2025
Abstract
Hepatocellular carcinoma (HCC) and pancreatic ductal adenocarcinoma (PDAC) are aggressive malignancies characterized by a poor prognosis and resistance to conventional therapies. Mounting evidence suggests the pivotal role of epithelial–mesenchymal transition (EMT) in tumor progression, metastasis, and therapeutic resistance in these cancers. Protein induced [...] Read more.
Hepatocellular carcinoma (HCC) and pancreatic ductal adenocarcinoma (PDAC) are aggressive malignancies characterized by a poor prognosis and resistance to conventional therapies. Mounting evidence suggests the pivotal role of epithelial–mesenchymal transition (EMT) in tumor progression, metastasis, and therapeutic resistance in these cancers. Protein induced by vitamin K absence II (PIVKA-II)—a valuable HCC detector—has ultimately emerged as a potentially relevant biomarker in PDAC, serving as both a serum biomarker and a prognostic indicator. This study investigates the putative link between PIVKA-II expression and the EMT process in HCC and PDAC. Using a Western blot analysis and electrochemiluminescence immunoassay (ECLIA), we quantified PIVKA-II serum levels alongside two canonical EMT markers—Vimentin and E-cadherin—in selected cohorts. Emerging data suggest a dual, context-dependent role for PIVKA-II. Beyond its diagnostic value in both malignancies, its co-expression with EMT markers points to a potential mechanistic involvement in tumor invasiveness and phenotypic plasticity. Notably, the selective detection of E-cadherin in HCC implies limited EMT activation and a preservation of the epithelial phenotype, whereas the higher expression of Vimentin in PDAC reflects a more substantial shift toward EMT. We provide a comprehensive analysis of key molecular markers, their involvement in EMT-driven pathophysiological mechanisms, and their potential as novel diagnostic tools. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

18 pages, 1899 KiB  
Article
MALAT1 Expression Is Deregulated in miR-34a Knockout Cell Lines
by Andrea Corsi, Tonia De Simone, Angela Valentino, Elisa Orlandi, Chiara Stefani, Cristina Patuzzo, Stefania Fochi, Maria Giusy Bruno, Elisabetta Trabetti, John Charles Rotondo, Chiara Mazziotta, Maria Teresa Valenti, Alessandra Ruggiero, Donato Zipeto, Cristina Bombieri and Maria Grazia Romanelli
Non-Coding RNA 2025, 11(4), 60; https://doi.org/10.3390/ncrna11040060 - 5 Aug 2025
Abstract
Background/Objectives: Non-coding microRNA-34a (miR-34a) regulates the expression of key factors involved in several cellular processes, such as differentiation, apoptosis, proliferation, cell cycle, and senescence. Deregulation of the expression of these factors is implicated in the onset and progression of several human diseases, including [...] Read more.
Background/Objectives: Non-coding microRNA-34a (miR-34a) regulates the expression of key factors involved in several cellular processes, such as differentiation, apoptosis, proliferation, cell cycle, and senescence. Deregulation of the expression of these factors is implicated in the onset and progression of several human diseases, including cancer, neurodegenerative disorders, and pathologies associated with viral infections and inflammation. Despite numerous studies, the molecular mechanisms regulated by miR-34a remain to be fully understood. The present study aimed to generate miR-34a knockout cell lines to identify novel genes potentially regulated by its expression. Methods: We employed the CRISPR-Cas9 gene editing system to knock out the hsa-miR-34a gene in HeLa and 293T cell lines, two widely used models for studying molecular and cellular mechanisms. We compared proliferation rates and gene expression profiles via RNA-seq and qPCR analyses between the wild-type and miR-34a KO cell lines. Results: Knockout of miR-34a resulted in a decreased proliferation rate in both cell lines. Noteworthy, the ablation of miR-34a resulted in increased expression of the long non-coding RNA MALAT1. Additionally, miR-34a-5p silencing in the A375 melanoma cell line led to MALAT1 overexpression. Conclusions: Our findings support the role of the miR-34a/MALAT1 axis in regulating proliferation processes. Full article
(This article belongs to the Section Long Non-Coding RNA)
Show Figures

Figure 1

24 pages, 3788 KiB  
Review
Advances in Photoacoustic Imaging of Breast Cancer
by Yang Wu, Keer Huang, Guoxiong Chen and Li Lin
Sensors 2025, 25(15), 4812; https://doi.org/10.3390/s25154812 - 5 Aug 2025
Abstract
Breast cancer is the leading cause of cancer-related mortality among women world-wide, and early screening is critical for improving patient survival. Medical imaging plays a central role in breast cancer screening, diagnosis, and treatment monitoring. However, conventional imaging modalities—including mammography, ultrasound, and magnetic [...] Read more.
Breast cancer is the leading cause of cancer-related mortality among women world-wide, and early screening is critical for improving patient survival. Medical imaging plays a central role in breast cancer screening, diagnosis, and treatment monitoring. However, conventional imaging modalities—including mammography, ultrasound, and magnetic resonance imaging—face limitations such as low diagnostic specificity, relatively slow imaging speed, ionizing radiation exposure, and dependence on exogenous contrast agents. Photoacoustic imaging (PAI), a novel hybrid imaging technique that combines optical contrast with ultrasonic spatial resolution, has shown great promise in addressing these challenges. By revealing anatomical, functional, and molecular features of the breast tumor microenvironment, PAI offers high spatial resolution, rapid imaging, and minimal operator dependence. This review outlines the fundamental principles of PAI and systematically examines recent advances in its application to breast cancer screening, diagnosis, and therapeutic evaluation. Furthermore, we discuss the translational potential of PAI as an emerging breast imaging modality, complementing existing clinical techniques. Full article
(This article belongs to the Special Issue Optical Imaging for Medical Applications)
Show Figures

Figure 1

88 pages, 9998 KiB  
Review
Research and Developments of Heterogeneous Catalytic Technologies
by Milan Králik, Peter Koóš, Martin Markovič and Pavol Lopatka
Molecules 2025, 30(15), 3279; https://doi.org/10.3390/molecules30153279 - 5 Aug 2025
Abstract
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation [...] Read more.
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation energies and stabilizing catalytic functionality. Particular attention is given to catalyst deactivation mechanisms and potential regeneration strategies. The application of molecular modeling and chemical engineering analyses, including reaction kinetics, thermal effects, and mass and heat transport phenomena, is identified as essential for R&D_HeCaTe. Reactor configuration is discussed in relation to key physicochemical parameters such as molecular diffusivity, reaction exothermicity, operating temperature and pressure, and the phase and “aggressiveness” of the reaction system. Suitable reactor types—such as suspension reactors, fixed-bed reactors, and flow microreactors—are evaluated accordingly. Economic and environmental considerations are also addressed, with a focus on the complexity of reactions, selectivity versus conversion trade-offs, catalyst disposal, and separation challenges. To illustrate the breadth and applicability of the proposed framework, representative industrial processes are discussed, including ammonia synthesis, fluid catalytic cracking, methanol production, alkyl tert-butyl ethers, and aniline. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts: From Synthesis to Application)
38 pages, 9212 KiB  
Review
Advanced Materials-Based Nanofiltration Membranes for Efficient Removal of Organic Micropollutants in Water and Wastewater Treatment
by Haochun Wei, Haibiao Nong, Li Chen and Shiyu Zhang
Membranes 2025, 15(8), 236; https://doi.org/10.3390/membranes15080236 - 5 Aug 2025
Abstract
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration [...] Read more.
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration (NF) technologies have emerged as a promising solution for water and wastewater treatment. This review begins by examining the sources of OMPs, as well as the risk of OMPs. Subsequently, the key criteria of NF membranes for OMPs are discussed, with a focus on the roles of pore size, charge property, molecular interaction, and hydrophilicity in the separation performance. Against that background, this review summarizes and analyzes recent advancements in materials such as metal organic frameworks (MOFs), covalent organic frameworks (COFs), graphene oxide (GO), MXenes, hybrid materials, and environmentally friendly materials. It highlights the porous nature and structural diversity of organic framework materials, the advantage of inorganic layered materials in forming controllable nanochannels through stacking, the synergistic effects of hybrid materials, and the importance of green materials. Finally, the challenges related to the performance optimization, scalable fabrication, environmental sustainability, and complex separation of advanced materials-based membranes for OMP removal are discussed, along with future research directions and potential breakthroughs. Full article
Show Figures

Figure 1

22 pages, 1000 KiB  
Review
Is the Activation of the Postsynaptic Ligand Gated Glycine- or GABAA Receptors Essential for the Receptor Clustering at Inhibitory Synapses?
by Eva Kiss, Joachim Kirsch, Jochen Kuhse and Stefan Kins
Biomedicines 2025, 13(8), 1905; https://doi.org/10.3390/biomedicines13081905 - 5 Aug 2025
Abstract
One major challenge in cellular neuroscience is to elucidate how the accurate alignment of presynaptic release sites with postsynaptic densely clustered ligand-gated ion channels at chemical synapses is achieved upon synapse assembly. The clustering of neurotransmitter receptors at postsynaptic sites is a key [...] Read more.
One major challenge in cellular neuroscience is to elucidate how the accurate alignment of presynaptic release sites with postsynaptic densely clustered ligand-gated ion channels at chemical synapses is achieved upon synapse assembly. The clustering of neurotransmitter receptors at postsynaptic sites is a key moment of synaptogenesis and determinant for effective synaptic transmission. The number of the ionotropic neurotransmitter receptors at these postsynaptic sites of both excitatory and inhibitory synapses is variable and is regulated by different mechanisms, thus allowing the modulation of synaptic strength, which is essential to tune neuronal network activity. Several well-regulated processes seem to be involved, including lateral diffusion within the plasma membrane and local anchoring as well as receptor endocytosis and recycling. The molecular mechanisms implicated are numerous and were reviewed recently in great detail. The role of pre-synaptically released neurotransmitters within the complex regulatory apparatus organizing the postsynaptic site underneath presynaptic terminals is not completely understood, even less for inhibitory synapses. In this mini review article, we focus on this aspect of synapse formation, summarizing and contrasting findings on the functional role of the neurotransmitters glycine and γ-aminobutyric acid (GABA) for initiation of postsynaptic receptor clustering and regulation of Cl channel receptor numbers at inhibitory synapses gathered over the last two decades. Full article
(This article belongs to the Special Issue Synaptic Function and Modulation in Health and Disease)
Show Figures

Figure 1

14 pages, 3099 KiB  
Article
Moxifloxacin and BH3 Mimetic-MIM1 Demonstrate a Potential Synergistic Anti-Melanoma Mode of Action by Cytotoxic and Proapoptotic Activity Enhancement in A375 and G361 Melanoma Cells
by Artur Beberok, Zuzanna Rzepka, Marta Karkoszka-Stanowska and Dorota Wrześniok
Molecules 2025, 30(15), 3272; https://doi.org/10.3390/molecules30153272 - 5 Aug 2025
Abstract
The MIM1-BH3 mimetic, which inhibits the Mcl-1 antiapoptotic protein, may be an efficacious molecule able to induce apoptosis. Previously, we found that moxifloxacin (MXFL) is able to modulate Mcl-1 protein expression. Therefore, in the current study, we assessed the impact of the MXFL, [...] Read more.
The MIM1-BH3 mimetic, which inhibits the Mcl-1 antiapoptotic protein, may be an efficacious molecule able to induce apoptosis. Previously, we found that moxifloxacin (MXFL) is able to modulate Mcl-1 protein expression. Therefore, in the current study, we assessed the impact of the MXFL, MIM1, and MXFL/MIM1 mixtures on viability and apoptosis in amelanotic A375 and melanotic G361 melanoma cells. The obtained results showed that MXFL and MIM1 exerted high cytotoxic and proapoptotic potential. In the case of two-component models, we have demonstrated that the use of the MIM1 and MXFL mixtures resulted in a significant intensification of both cytotoxic and proapoptotic activity, shown as a modulatory effect on the early and late phases of apoptosis toward the analyzed melanoma cells when compared with MIM1 or MXFL alone. We report, for the first time, the high proapoptotic activity of MIM1 and MXFL applied in a two-component model toward melanoma cells, pointing to the Mcl-1 protein as an important molecular target. The observed potential synergistic mode of action—expressed as cytotoxic and proapoptotic activity enhancement, detected for MIM1 and MXFL—may represent a new direction for further in vitro and in vivo experiments concerning the role of the Mcl-1 protein in the treatment of melanoma. Moreover, the presented results certainly contribute to expanding the knowledge of the pharmacology of both fluoroquinolones and BH3 mimetics, and also enable a better understanding of melanoma cell biology. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

14 pages, 2266 KiB  
Article
PCV2 Infection Upregulates SOCS3 Expression to Facilitate Viral Replication in PK-15 Cells
by Yiting Li, Hongmei Liu, Yi Wu, Xiaomei Zhang, Juan Geng, Xin Wu, Wengui Li, Zhenxing Zhang, Jianling Song, Yifang Zhang and Jun Chai
Viruses 2025, 17(8), 1081; https://doi.org/10.3390/v17081081 - 5 Aug 2025
Abstract
Porcine circovirus type 2 (PCV2) is a globally prevalent swine pathogen that induces immunosuppression, predisposing pigs to subclinical infections. In intensive farming systems, PCV2 persistently impairs growth performance and vaccine efficacy, leading to substantial economic losses in the swine industry. Emerging evidence suggests [...] Read more.
Porcine circovirus type 2 (PCV2) is a globally prevalent swine pathogen that induces immunosuppression, predisposing pigs to subclinical infections. In intensive farming systems, PCV2 persistently impairs growth performance and vaccine efficacy, leading to substantial economic losses in the swine industry. Emerging evidence suggests that certain viruses exploit Suppressor of Cytokine Signaling 3 (SOCS3), a key immune checkpoint protein, to subvert host innate immunity by suppressing cytokine signaling. While SOCS3 has been implicated in various viral infections, its regulatory role in PCV2 replication remains undefined. This study aims to elucidate the mechanisms underlying the interplay between SOCS3 and PCV2 during viral pathogenesis. Porcine SOCS3 was amplified using RT-PCR and stably overexpressed in PK-15 cells through lentiviral delivery. Bioinformatics analysis facilitated the design of three siRNA candidates targeting SOCS3. We systematically investigated the effects of SOCS3 overexpression and knockdown on PCV2 replication kinetics and host antiviral responses by quantifying the viral DNA load and the mRNA levels of cytokines. PCV2 infection upregulated SOCS3 expression at both transcriptional and translational levels in PK-15 cells. Functional studies revealed that SOCS3 overexpression markedly enhanced viral replication, whereas its knockdown suppressed viral proliferation. Intriguingly, SOCS3-mediated immune modulation exhibited a divergent regulation of antiviral cytokines: PCV2-infected SOCS3-overexpressing cells showed elevated IFN-β but suppressed TNF-α expressions, whereas SOCS3 silencing conversely downregulated IFN-β while amplifying TNF-α responses. This study unveils a dual role of SOCS3 during subclinical porcine circovirus type 2 (PCV2) infection: it functions as a host-derived pro-viral factor that facilitates viral replication while simultaneously reshaping the cytokine milieu to suppress overt inflammatory responses. These findings provide novel insights into the mechanisms underlying PCV2 immune evasion and persistence and establish a theoretical framework for the development of host-targeted control strategies. Although our results identify SOCS3 as a key host determinant of PCV2 persistence, the precise molecular pathways involved require rigorous experimental validation. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

18 pages, 3940 KiB  
Article
CTCF Represses CIB2 to Balance Proliferation and Differentiation of Goat Myogenic Satellite Cells via Integrin α7β1–PI3K/AKT Axis
by Changliang Gong, Huihui Song, Zhuohang Hao, Zhengyi Zhang, Nanjian Luo and Xiaochuan Chen
Cells 2025, 14(15), 1199; https://doi.org/10.3390/cells14151199 - 5 Aug 2025
Abstract
Skeletal muscle development is a critical economic trait in livestock, governed by myogenic satellite cell regulation. Integrins mediate mechanical anchorage to the ECM and enable ECM–intracellular signaling. CIB2, as an EF-hand-domain protein involved in mechanotransduction, shows significant developmental regulation in goat muscle. [...] Read more.
Skeletal muscle development is a critical economic trait in livestock, governed by myogenic satellite cell regulation. Integrins mediate mechanical anchorage to the ECM and enable ECM–intracellular signaling. CIB2, as an EF-hand-domain protein involved in mechanotransduction, shows significant developmental regulation in goat muscle. Although the role of CIB2 in skeletal muscle growth is poorly characterized, we observed pronounced developmental upregulation of IB2 in postnatal goat muscle. CIB2 expression increased >20-fold by postnatal day 90 (P90) compared to P1, sustaining elevation through P180 (p < 0.05). Functional investigations indicated that siRNA-mediated knockdown of CIB2 could inhibit myoblast proliferation by inducing S-phase arrest (p < 0.05) and downregulating the expression of CDK4/Cyclin D/E. Simultaneously, CIB2 interference treatment was found to decrease the proliferative activity of goat myogenic satellite cells, yet it significantly promoted differentiation by upregulating the expression of MyoD/MyoG/MyHC (p < 0.01). Mechanistically, CTCF was identified as a transcriptional repressor binding to an intragenic region of the CIB2 gene locus (ChIP enrichment: 2.3-fold, p < 0.05). Knockdown of CTCF induced upregulation of CIB2 (p < 0.05). RNA-seq analysis established CIB2 as a calcium signaling hub: its interference activated IL-17/TNF and complement cascades, while overexpression suppressed focal adhesion/ECM–receptor interactions and enriched neuroendocrine pathways. Collectively, this study identifies the CTCF-CIB2–integrin α7β1–PI3K/AKT axis as a novel molecular mechanism that regulates the balance of myogenic fate in goats. These findings offer promising targets for genomic selection and precision breeding strategies aimed at enhancing muscle productivity in ruminants. Full article
Show Figures

Figure 1

18 pages, 1102 KiB  
Review
Exploring Human Sperm Metabolism and Male Infertility: A Systematic Review of Genomics, Proteomics, Metabolomics, and Imaging Techniques
by Achraf Zakaria, Idrissa Diawara, Amal Bouziyane and Noureddine Louanjli
Int. J. Mol. Sci. 2025, 26(15), 7544; https://doi.org/10.3390/ijms26157544 (registering DOI) - 5 Aug 2025
Abstract
Male infertility is a multifactorial condition often associated with disruptions in sperm metabolism and mitochondrial function, yet traditional semen analysis provides limited insight into these molecular mechanisms. Understanding sperm bioenergetics and metabolic dysfunctions is crucial for improving the diagnosis and treatment of conditions [...] Read more.
Male infertility is a multifactorial condition often associated with disruptions in sperm metabolism and mitochondrial function, yet traditional semen analysis provides limited insight into these molecular mechanisms. Understanding sperm bioenergetics and metabolic dysfunctions is crucial for improving the diagnosis and treatment of conditions such as asthenozoospermia and azoospermia. This systematic review synthesizes recent literature, focusing on advanced tools and techniques—including omics technologies, advanced imaging, spectroscopy, and functional assays—that enable comprehensive molecular assessment of sperm metabolism and development. The reviewed studies highlight the effectiveness of metabolomics, proteomics, and transcriptomics in identifying metabolic biomarkers linked to male infertility. Non-invasive imaging modalities such as Raman and magnetic resonance spectroscopy offer real-time metabolic profiling, while the seminal microbiome is increasingly recognized for its role in modulating sperm metabolic health. Despite these advances, challenges remain in clinical validation and implementation of these techniques in routine infertility diagnostics. Integrating molecular metabolic assessments with conventional semen analysis promises enhanced diagnostic precision and personalized therapeutic approaches, ultimately improving reproductive outcomes. Continued research is needed to standardize biomarkers and validate clinical utility. Furthermore, these metabolic tools hold significant potential to elucidate the underlying causes of previously misunderstood and unexplained infertility cases, offering new avenues for diagnosis and treatment. Full article
Show Figures

Figure 1

19 pages, 3995 KiB  
Article
Lectin Recognition Patterns in the Gut of Meccus (Triatoma) pallidipennis and Their Association with Trypanosoma cruzi Metacyclogenesis
by Berenice González-Rete, Juan Antonio López-Aviña, Olivia Alicia Reynoso-Ducoing, Margarita Cabrera-Bravo, Martha Irene Bucio-Torres, Mauro Omar Vences-Blanco, Elia Torres-Gutiérrez and Paz María Silvia Salazar-Schettino
Microorganisms 2025, 13(8), 1823; https://doi.org/10.3390/microorganisms13081823 - 5 Aug 2025
Abstract
The successful transmission of Trypanosoma cruzi, the causative agent of Chagas disease, depends on intricate interactions with its insect vector. In Mexico, Meccus pallidipennis is a relevant triatomine species involved in the parasite’s life cycle. In the gut of these insects, the parasite [...] Read more.
The successful transmission of Trypanosoma cruzi, the causative agent of Chagas disease, depends on intricate interactions with its insect vector. In Mexico, Meccus pallidipennis is a relevant triatomine species involved in the parasite’s life cycle. In the gut of these insects, the parasite moves from the anterior midgut (AMG) to the posterior midgut (PMG), where it multiplies. Finally, T. cruzi differentiates into its infective form by metacyclogenesis in the proctodeum or rectum (RE). This study aimed to characterize and compare the protein and glycoprotein profiles of the anterior midgut (AMG) and rectum (RE) of M. pallidipennis, and to assess their potential association with T. cruzi metacyclogenesis, with special attention to sex-specific differences. Insects were infected with the T. cruzi isolate ITRI/MX/12/MOR (Morelos). Protein profiles were analyzed by polyacrylamide gel electrophoresis, while glycoproteins were detected using ConA, WGA, and PNA lectins. The metacyclogenesis index was calculated for male and female triatomines. A lower overlap of protein fractions was found in the RE compared to the AMG between sexes, suggesting functional sexual dimorphism. Infected females showed greater diversity in glycoprotein patterns in the RE, potentially related to higher blood intake and parasite burden. The metacyclogenesis index was significantly higher in females than in males. These findings highlight sex-dependent differences in gut protein and glycoprotein profiles in M. pallidipennis, which may influence the efficiency of T. cruzi development within the vector. Further proteomic studies are needed to identify the molecular components involved and clarify their roles in parasite differentiation and suggest new targets for disrupting parasite transmission within the vector. Full article
Show Figures

Figure 1

23 pages, 890 KiB  
Review
Relationship of S100 Proteins with Neuroinflammation
by Mario García-Domínguez
Biomolecules 2025, 15(8), 1125; https://doi.org/10.3390/biom15081125 - 4 Aug 2025
Abstract
S100 proteins, a family of Ca2+-binding proteins, play numerous roles in cellular processes such as proliferation, differentiation, and apoptosis. Recent evidence has highlighted their critical involvement in neuroinflammation, a pathological hallmark of various neurodegenerative disorders including Alzheimer’s disease, multiple sclerosis, and [...] Read more.
S100 proteins, a family of Ca2+-binding proteins, play numerous roles in cellular processes such as proliferation, differentiation, and apoptosis. Recent evidence has highlighted their critical involvement in neuroinflammation, a pathological hallmark of various neurodegenerative disorders including Alzheimer’s disease, multiple sclerosis, and Parkinson’s disease. Among these proteins, S100B and S100A8/A9 are particularly implicated in modulating inflammatory responses in the CNS. Acting as DAMPs, they interact with pattern recognition receptors like RAGE and TLRs, triggering pro-inflammatory signaling cascades and glial activation. While low concentrations of S100 proteins may support neuroprotective functions, increased levels are often associated with exacerbated inflammation and neuronal damage. This review explores the dualistic nature of S100 proteins in neuroinflammatory processes, their molecular interactions, and their potential as biomarkers and therapeutic targets in neurodegenerative disease management. Full article
Show Figures

Figure 1

28 pages, 3157 KiB  
Review
Deciphering Medulloblastoma: Epigenetic and Metabolic Changes Driving Tumorigenesis and Treatment Outcomes
by Jenny Bonifacio-Mundaca, Sandro Casavilca-Zambrano, Christophe Desterke, Íñigo Casafont and Jorge Mata-Garrido
Biomedicines 2025, 13(8), 1898; https://doi.org/10.3390/biomedicines13081898 - 4 Aug 2025
Abstract
Background/Objectives: Medulloblastoma is the most common malignant brain tumor in children and comprises four molecular subtypes—WNT, SHH, Group 3, and Group 4—each with distinct genetic, epigenetic, and metabolic features. Increasing evidence highlights the critical role of metabolic reprogramming and epigenetic alterations in driving [...] Read more.
Background/Objectives: Medulloblastoma is the most common malignant brain tumor in children and comprises four molecular subtypes—WNT, SHH, Group 3, and Group 4—each with distinct genetic, epigenetic, and metabolic features. Increasing evidence highlights the critical role of metabolic reprogramming and epigenetic alterations in driving tumor progression, therapy resistance, and clinical outcomes. This review aims to explore the interplay between metabolic and epigenetic mechanisms in medulloblastoma, with a focus on their functional roles and therapeutic implications. Methods: A comprehensive literature review was conducted using PubMed and relevant databases, focusing on recent studies examining metabolic pathways and epigenetic regulation in medulloblastoma subtypes. Particular attention was given to experimental findings from in vitro and in vivo models, as well as emerging preclinical therapeutic strategies targeting these pathways. Results: Medulloblastoma exhibits metabolic adaptations such as increased glycolysis, lipid biosynthesis, and altered amino acid metabolism. These changes support rapid cell proliferation and interact with the tumor microenvironment. Concurrently, epigenetic mechanisms—including DNA methylation, histone modification, chromatin remodeling, and non-coding RNA regulation—contribute to tumor aggressiveness and treatment resistance. Notably, metabolic intermediates often serve as cofactors for epigenetic enzymes, creating feedback loops that reinforce oncogenic states. Preclinical studies suggest that targeting metabolic vulnerabilities or epigenetic regulators—and particularly their combination—can suppress tumor growth and overcome resistance mechanisms. Conclusions: The metabolic–epigenetic crosstalk in medulloblastoma represents a promising area for therapeutic innovation. Understanding subtype-specific dependencies and integrating biomarkers for patient stratification could facilitate the development of precision medicine approaches that improve outcomes and reduce long-term treatment-related toxicity in pediatric patients. Full article
(This article belongs to the Special Issue Genomic Insights and Translational Opportunities for Human Cancers)
Show Figures

Figure 1

43 pages, 2191 KiB  
Review
Photochemical Haze Formation on Titan and Uranus: A Comparative Review
by David Dubois
Int. J. Mol. Sci. 2025, 26(15), 7531; https://doi.org/10.3390/ijms26157531 (registering DOI) - 4 Aug 2025
Abstract
The formation and evolution of haze layers in planetary atmospheres play a critical role in shaping their chemical composition, radiative balance, and optical properties. In the outer solar system, the atmospheres of Titan and the giant planets exhibit a wide range of compositional [...] Read more.
The formation and evolution of haze layers in planetary atmospheres play a critical role in shaping their chemical composition, radiative balance, and optical properties. In the outer solar system, the atmospheres of Titan and the giant planets exhibit a wide range of compositional and seasonal variability, creating environments favorable for the production of complex organic molecules under low-temperature conditions. Among them, Uranus—the smallest of the ice giants—has, since Voyager 2, emerged as a compelling target for future exploration due to unanswered questions regarding the composition and structure of its atmosphere, as well as its ring system and diverse icy moon population (which includes four possible ocean worlds). Titan, as the only moon to harbor a dense atmosphere, presents some of the most complex and unique organics found in the solar system. Central to the production of these organics are chemical processes driven by low-energy photons and electrons (<50 eV), which initiate reaction pathways leading to the formation of organic species and gas phase precursors to high-molecular-weight compounds, including aerosols. These aerosols, in turn, remain susceptible to further processing by low-energy UV radiation as they are transported from the upper atmosphere to the lower stratosphere and troposphere where condensation occurs. In this review, I aim to summarize the current understanding of low-energy (<50 eV) photon- and electron-induced chemistry, drawing on decades of insights from studies of Titan, with the objective of evaluating the relevance and extent of these processes on Uranus in anticipation of future observational and in situ exploration. Full article
(This article belongs to the Special Issue Chemistry Triggered by Low-Energy Particles)
Show Figures

Figure 1

Back to TopTop