Moxifloxacin and BH3 Mimetic-MIM1 Demonstrate a Potential Synergistic Anti-Melanoma Mode of Action by Cytotoxic and Proapoptotic Activity Enhancement in A375 and G361 Melanoma Cells
Abstract
1. Introduction
2. Results and Discussion
2.1. MXFL and MIM1 Applied in One-Component Model Exert High Cytotoxic Activity
2.2. Combined Treatment of Melanoma Cells with MXFL and MIM1 Intensified the Cytotoxic Effect
2.3. Combined Treatment of Melanoma Cells with MXFL and MIM1 Augments the Proapoptotic Effect
2.4. Analysis of the Induction of Morphological Changes in A375 and G361 Melanoma Cells After MIM1 and MXFL Treatment
3. Materials and Methods
3.1. Cell Culture and Treatment
3.2. Cell Viability Assessment—WST-1 Assay
3.3. Mitochondrial Potential Assay
3.4. Annexin-V Assay—Confocal Imaging
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Slominski, R.M.; Kim, T.-K.; Janjetovic, Z.; Brożyna, A.A.; Podgorska, E.; Dixon, K.M.; Mason, R.S.; Tuckey, R.C.; Sharma, R.; Crossman, D.K.; et al. Malignant melanoma: An overview, new perspectives, and vitamin D signaling. Cancers 2024, 16, 2262. [Google Scholar] [CrossRef]
- Hopkins, Z.H.; Carlisle, R.P.; Frost, Z.E.; Curtis, J.A.; Ferris, L.K.; Secrest, A.M. Risk Factors and Predictors of Survival Among Patients with Amelanotic Melanoma Compared to Melanotic Melanoma in the National Cancer Database. J. Clin. Aesthetic Dermatol. 2021, 14, 36–43. [Google Scholar]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef]
- Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.E.; de Vries, E.; Whiteman, D.C.; Bray, F. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 2022, 158, 495–503. [Google Scholar] [CrossRef]
- National Cancer Institute Melanoma of the Skin Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/melan.html (accessed on 9 July 2025).
- Belmar, J.; Fesik, S.W. Small molecule Mcl-1 inhibitors for the treatment of cancer. Pharmacol. Ther. 2015, 145, 76–84. [Google Scholar] [CrossRef]
- Respondek, M.; Beberok, A.; Rzepka, Z.; Rok, J.; Wrześniok, D. Mcl-1 inhibitor induces cells death in BRAF-mutant amelanotic melanoma trough GSH depletion, DNA damage and cell cycle changes. Pathol. Oncol. Res. 2020, 26, 1465–1474. [Google Scholar] [CrossRef]
- Respondek, M.; Beberok, A.; Rzepka, Z.; Rok, J.; Wrześniok, D. MIM1 induces COLO829 melanoma cell death through mitochondrial membranę breakdown, GSH depletion, and DNA damage. Fundam. Clin. Pharmacol. 2020, 34, 20–31. [Google Scholar] [CrossRef]
- Respondek, M.; Beberok, A.; Rok, J.; Rzepka, Z.; Wrześniok, D.; Buszman, E. MIM1, the Mcl 1—Specific BH3 mimetic induces apoptosis in human U87MG glioblastoma cells. Toxicol. Vitr. 2018, 53, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.; Talwar, P. Repositioning of fluoroquinolones from antibiotic to anti-cancer agents: An underestimated truth. Biomed. Pharmacother. 2019, 111, 934–946. [Google Scholar] [CrossRef] [PubMed]
- Valianatos, G.; Valcikova, B.; Growkova, K.; Verlande, A.; Mlcochova, J.; Radova, L.; Stetkova, M.; Vyhnakova, M.; Slaby, O.; Uldrijan, S. A small molecule drug promoting miRNA processing induces alternative splicing of MdmX transcript and rescues p53 activity in human cancer cells overexpressing MdmX protein. PLoS ONE 2017, 12, e0185801. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Li, R.; Zhang, J. Repositioning of antibiotic levofloxacin as a mitochondrial biogenesis inhibitor to target breast cancer. Biochem. Biophys. Res. Commun. 2016, 471, 639–645. [Google Scholar] [CrossRef]
- Smart, D.J.; Halicka, H.D.; Traganos, F.; Darzynkiewicz, Z.; Williams, G.M. Ciprofloxacin-induced G2 arrest and apoptosis in TK6 lymphoblastoid cells is not dependent on DNA double-strand break formation. Cancer Biol. Ther. 2008, 7, 113–119. [Google Scholar] [CrossRef]
- Gong, J.H.; Liu, X.J.; Shang, B.Y.; Chen, S.Z.; Zhen, Y.S. HERG K+ channel related chemosensitivity to sparfloxacin in colon cancer cells. Oncol. Rep. 2010, 23, 1747–1756. [Google Scholar] [CrossRef] [PubMed]
- Cornaz-Buros, S.; Riggi, N.; DeVito, C.; Sarre, A.; Letovanec, L.; Provero, P.; Stamenkovic, I. Targeting cancer stem-like cells as an approach to defeating cellular heterogeneity in Ewing sarcoma. Cancer Res. 2014, 74, 6610–6622. [Google Scholar] [CrossRef]
- Pinto, A.C.; Moreira, J.N.; Simoes, S. Ciprofloxacin sensitizes hormone-refractory prostate cancer cell lines to doxorubicin and docetaxel treatment on a schedule-dependent manner. Cancer Chemother. Pharmacol. 2009, 64, 445–454. [Google Scholar] [CrossRef]
- Fabian, I.; Reuveni, D.; Levitov, A.; Halperin, D.; Priel, E.; Shalit, I. Moxifloxacin enhances antiproliferative and apoptotic effects of etoposide but inhibits its proinflammatory effects in THP-1 and Jurkat cells. Biochem. Pharmacol. 2006, 95, 1038–1046. [Google Scholar] [CrossRef]
- Beberok, A.; Rzepka, Z.; Respondek, M.; Rok, J.; Stradowski, M.; Wrześniok, D. Moxifloxacin as an inducer of apoptosis in melanoma cells: A study at the cellular and molecular level. Toxicol. Vitr. 2019, 55, 75–92. [Google Scholar] [CrossRef]
- Beberok, A.; Rok, J.; Rzepka, Z.; Marciniec, K.; Boryczka, S.; Wrześniok, D. Interaction between moxifloxacin and Mcl-1 and MITF proteins: The effect on growth inhibition and apoptosis in MDA-MB-231 human triple-negative breast cancer cells. Pharmacol. Rep. 2022, 74, 1025–1040. [Google Scholar] [CrossRef]
- Beberok, A.; Rok, J.; Rzepka, Z.; Marciniec, K.; Boryczka, S.; Wrześniok, D. The role of MITF and Mcl-1 proteins in the antiproliferative and proapoptotic effect of ciprofloxacin in amelanotic melanoma cells: In silico and in vitro study. Toxicol. Vitr. 2020, 66, 104884. [Google Scholar] [CrossRef] [PubMed]
- Slominski, R.M.; Sarna, T.; Płonka, P.M.; Raman, C.; Brożyna, A.A.; Slominski, A.T. Melanoma, melanin, and melanogenesis: The Yin and Yang relationship. Front. Oncol. 2022, 12, 842496. [Google Scholar] [CrossRef] [PubMed]
- Medically Reviewed by Drugs.com. Last Updated on 25 March 2025. Available online: https://www.drugs.com/cons/dacarbazine.html (accessed on 9 July 2025).
- Ball, P.; Stahlmann, R.; Kubin, R.; Choudhri, S.; Owens, R. Safety profile of oral and intravenous moxifloxacin: Cumulative data from clinical trials and postmarketing studies. Clin. Ther. 2004, 26, 940–950. [Google Scholar] [CrossRef]
- Haverkamp, W.; Kruesmann, F.; Fritsch, A.; van Veenhuyzen, D.; Arvis, P. Update on the cardiac safety of moxifloxacin. Curr Drug Saf. 2012, 7, 149–163. [Google Scholar] [CrossRef]
- Van Bambeke, F.; Tulkens, P.M. Safety profile of the respiratory fluoroquinolone moxifloxacin: Comparison with other fluoroquinolones and other antibacterial classes. Drug Saf. 2009, 32, 359–378. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Dhamija, R.; Batts, D.H.; Ross, S.C.; Loehrke, M.E. Moxifloxacin induced fatal hepatotoxicity in a 72-year-old man: A case report. Cases J. 2009, 20, 8063. [Google Scholar] [CrossRef]
- Chen, W.; Peter van Buren, P.N. A case of severe neutropenia from short-term exposure to moxifloxacin. J. Investig. Med. High Impact Case Rep. 2017, 28, 2324709617700648. [Google Scholar] [CrossRef]
- Roberts, A.W.; Davids, M.S.; Pagel, J.M.; Kahl, B.S.; Puvvada, S.D.; Gerecitano, J.F. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 2016, 374, 311–322. [Google Scholar] [CrossRef]
- Montero, J.; Stephansky, J.; Cai, T.; Griffin, G.K.; Cabal-Hierro, L.; Togami, K. Blastic plasmacytoid dendritic cell neoplasm is dependent on BCL2 and sensitive to venetoclax. Cancer Discov. 2017, 7, 156–164. [Google Scholar] [CrossRef]
- Montero, J.; Haq, R. Adapted to survive: Targeting cancer cells with BH3 mimetics. Cancer Discov. 2022, 12, 1217–1232. [Google Scholar] [CrossRef] [PubMed]
- Montero, J.; Letai, A. Why do BCL-2 inhibitors work and where should we use them in the clinic? Cell Death Differ. 2018, 25, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Vagner, S.; Robert, C. Persistent cancer cells: The deadly survivors. Cell 2020, 183, 860–874. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Lachowiez, C.A.; Takahashi, K.; Loghavi, S.; Xiao, L.; Kadia, T. Venetoclax combined with FLAG-IDA induction and consolidation in newly diagnosed and relapsed or refractory acute myeloid leukemia. J. Clin. Oncol. 2021, 39, 2768–2778. [Google Scholar] [CrossRef]
- Chua, C.C.; Roberts, A.W.; Reynolds, J.; Fong, C.Y.; Ting, S.B.; Salmon, J.M. Chemotherapy and venetoclax in elderly acute myeloid leukemia trial (CAVEAT): A phase Ib dose-escalation study of venetoclax combined with modified intensive chemotherapy. J. Clin. Oncol. 2020, 38, 3506–3517. [Google Scholar] [CrossRef]
- Bomirski, A.; Slominski, A.; Bigda, J. The natural history of a family of transplantable melanomas in hamsters. Cancer Metastasis Rev. 1988, 7, 95–118. [Google Scholar] [CrossRef]
- Bomirski, A.; Wrzolkowa, T.; Arendarczyk, M.; Bomirska, M.; Kuklinska, E.; Slominski, A. Pathology and ultrastructural characteristics of a hypomelanotic variant of transplantable hamster melanoma with elevated tyrosinase activity. J. Investig. Dermatol. 1987, 89, 469–473. [Google Scholar] [CrossRef]
- Bomirski, A.; Dominiczak, T.; Nowinska, L. Spontaneous Transplantable Melanoma in the Golden Hamster (Mesocricetus Auratus). Acta Unio Int. Contra Cancrum. 1962, 18, 178–180. [Google Scholar]
- Bomirski, A.; Zawrocka-Wrzolkowa, T.; Pautsch, F. Ultrastructure of transplantable melanotic and amelanotic melanoma of Hamsters. Acta Med. Pol. 1971, 12, 101–105. [Google Scholar]
- Slominski, A.; Paus, R. Bomirski melanomas—A versatile and powerful model for pigment cell and melanoma research. Int. J. Oncol. 1993, 2, 221–228. [Google Scholar] [CrossRef]
- Cichorek, M.; Kozlowska, K.; Wachulska, M.; Zielinska, K. Spontaneous apoptosis of melanotic and amelanotic melanoma cells in different phases of cell cycle: Relation to tumor growth. Folia Histochem. Cytobiol. 2006, 44, 31–36. [Google Scholar] [PubMed]
- Kozlowska, K.; Zarzeczna, M.; Cichorek, M. Sensitivity of transplantable melanoma cells to cytokines with regard to their spontaneous apoptosis. Pathobiology 2001, 69, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Kozlowska, K.; Cichorek, M.; Zarzeczna, M.; Brozek, J.; Witkowski, J.M. Heterogeneous susceptibility to spontaneous and induced apoptosis characterizes two related transplantable melanomas with different biological properties. Pigment. Cell Res. 2002, 15, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Scislowski, P.W.; Slominski, A.; Bomirski, A. Biochemical characterization of three hamster melanoma variants–II. Glycolysis and oxygen consumption. Int. J. Biochem. 1984, 16, 327–331. [Google Scholar] [CrossRef]
- Slominski, A.; Scislowski, P.W.; Bomirski, A. Biochemical characterization of three hamster melanoma variants–I. Tyrosinase activity and melanin content. Int. J. Biochem. 1984, 16, 323–326. [Google Scholar] [CrossRef]
- Cichorek, M.; Zarzeczna, M.; Kozlowska, K. Tumoricidal effect of macrophages on transplantable melanoma cells with regard to their sensitivity to exogenous cytokines. Folia Histochem. Cytobiol. 2002, 40, 191–192. [Google Scholar] [PubMed]
- Cichorek, M.; Kozlowska, K.; Bryl, E. The activity of caspases in spontaneous and camptothecin-induced death of melanotic and amelanotic melanoma cell. Cancer Biol. Ther. 2007, 6, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Marciniec, K.; Rzepka, Z.; Chrobak, E.; Boryczka, K.; Latocha, M.; Wrześniok, D.; Beberok, A. Design, synthesis and biological evaluation of quinoline-8-sulfonamides as inhibitors of the tumor cell-specific M2 isoform of pyruvate kinase: Preliminary study. Molecules 2023, 28, 2509. [Google Scholar] [CrossRef] [PubMed]
- Karkoszka, M.; Rok, J.; Kowalska, J.; Rzepka, Z.; Banach, K.; Wrześniok, D. Phototoxic action of meloxicam contributes to dysregulation of redox homeostasis in normal human skin cells—Molecular and biochemical analysis of antioxidant enzymes in melanocytes and fibroblasts. Toxicol. Vitr. 2024, 95, 105745. [Google Scholar] [CrossRef]
(A) | ||
Studied Compound | Cell Viability [% of Control ± SD] | |
A375 | G361 | |
MIM1 10 µM | 97.628 ± 2.343 | 92.041 ± 4.183 |
MIM1 25 µM | 39.148 ± 2.568 | 71.422 ± 3.771 |
MIM1 50 µM | 18.839 ± 1.191 | 53.415 ± 5.110 |
MIM1 100 µM | 17.417 ± 0.873 | 8.212 ± 1.107 |
MXFL 50 µM | 104.687 ± 2.938 | 94.407 ± 6.949 |
MXFL 100 µM | 91.781 ± 1.937 | 89.615 ± 7.542 |
MXFL 500 µM | 53.125 ± 2.581 | 65.247 ± 4.163 |
DTIC 10 µM | 102.169 ± 5.911 | 99.872 ± 5.737 |
DTIC 50 µM | 104.864 ± 4.589 | 96.346 ± 5.502 |
DTIC 100 µM | 98.687 ± 5.378 | 95.498 ± 6.849 |
(B) | ||
Studied compound | Cell viability [% of control ± SD] | |
A375 | G361 | |
MIM1 10 µM | 93.111 ± 2.487 | 96.605 ± 5.145 |
MIM1 25 µM | 27.440 ± 3.221 | 70.550 ± 1.951 |
MIM1 50 µM | 12.970 ± 0.998 | 42.984 ± 4.825 |
MIM1 100 µM | 5.598 ± 0.736 | 10.011 ± 3.877 |
MXFL 50 µM | 102.386 ± 4.728 | 93.806 ± 6.565 |
MXFL 100 µM | 92.354 ± 3.994 | 88.092 ± 4.379 |
MXFL 500 µM | 42.118 ± 2.631 | 43.237 ± 6.606 |
DTIC 10 µM | 85.344 ± 4.856 | 103.447 ± 6.644 |
DTIC 50 µM | 72.532 ± 2.255 | 99.229 ± 7.589 |
DTIC 100 µM | 65.160 ± 5.296 | 87.889 ± 4.129 |
(C) | ||
Studied compound | Cell viability [% of control ± SD] | |
A375 | G361 | |
MIM1 10 µM | 98.200 ± 3.949 | 94.190 ± 3.128 |
MIM1 25 µM | 28.381 ± 1.681 | 69.154 ± 4.555 |
MIM1 50 µM | 1.715 ± 0.431 | 28.753 ± 4.418 |
MIM1 100 µM | 2.435 ± 0.570 | 5.262 ± 1.400 |
MXFL 50 µM | 107.138 ± 4.347 | 88.989 ± 2.524 |
MXFL 100 µM | 95.767 ± 2.090 | 81.183 ± 4.971 |
MXFL 500 µM | 23.027 ± 3.016 | 36.551 ± 3.672 |
DTIC 10 µM | 80.430 ± 4.263 | 95.030 ± 4.417 |
DTIC 50 µM | 68.577 ± 3.806 | 87.539 ± 3.458 |
DTIC 100 µM | 65.715 ± 2.251 | 78.907 ± 5.154 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beberok, A.; Rzepka, Z.; Karkoszka-Stanowska, M.; Wrześniok, D. Moxifloxacin and BH3 Mimetic-MIM1 Demonstrate a Potential Synergistic Anti-Melanoma Mode of Action by Cytotoxic and Proapoptotic Activity Enhancement in A375 and G361 Melanoma Cells. Molecules 2025, 30, 3272. https://doi.org/10.3390/molecules30153272
Beberok A, Rzepka Z, Karkoszka-Stanowska M, Wrześniok D. Moxifloxacin and BH3 Mimetic-MIM1 Demonstrate a Potential Synergistic Anti-Melanoma Mode of Action by Cytotoxic and Proapoptotic Activity Enhancement in A375 and G361 Melanoma Cells. Molecules. 2025; 30(15):3272. https://doi.org/10.3390/molecules30153272
Chicago/Turabian StyleBeberok, Artur, Zuzanna Rzepka, Marta Karkoszka-Stanowska, and Dorota Wrześniok. 2025. "Moxifloxacin and BH3 Mimetic-MIM1 Demonstrate a Potential Synergistic Anti-Melanoma Mode of Action by Cytotoxic and Proapoptotic Activity Enhancement in A375 and G361 Melanoma Cells" Molecules 30, no. 15: 3272. https://doi.org/10.3390/molecules30153272
APA StyleBeberok, A., Rzepka, Z., Karkoszka-Stanowska, M., & Wrześniok, D. (2025). Moxifloxacin and BH3 Mimetic-MIM1 Demonstrate a Potential Synergistic Anti-Melanoma Mode of Action by Cytotoxic and Proapoptotic Activity Enhancement in A375 and G361 Melanoma Cells. Molecules, 30(15), 3272. https://doi.org/10.3390/molecules30153272