Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (737)

Search Parameters:
Keywords = modification of TiO2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3874 KB  
Article
Enhanced Cyclic Stability of Composite-Modified Iron-Based Oxygen Carriers in Methane Chemical Looping Combustion: Mechanistic Insights from Chemical Calculations
by Dongxu Liang, Xuefeng Yin, Hao Liu, Minjie Huang and Hao Wang
Appl. Sci. 2025, 15(17), 9733; https://doi.org/10.3390/app15179733 - 4 Sep 2025
Viewed by 299
Abstract
Chemical Looping Combustion (CLC) technology has emerged as a promising approach for carbon capture owing to its CO2 separation capability, which addresses the pressing challenge of global climate change. Although iron-based oxygen carriers offer economic advantages owing to their abundance and low [...] Read more.
Chemical Looping Combustion (CLC) technology has emerged as a promising approach for carbon capture owing to its CO2 separation capability, which addresses the pressing challenge of global climate change. Although iron-based oxygen carriers offer economic advantages owing to their abundance and low cost, their limited cyclic stability restricts their industrial deployment. This study focused on optimizing the performance of iron-based oxygen carriers through composite modification with Al2O3 and TiO2. Using Cantera (2.5.0) software and the minimum Gibbs free energy principle, conversion rates and product distributions of Fe2O3, Fe2O3/Al2O3, and Fe2O3/TiO2 were systematically analyzed under varying temperatures (800–950 °C), oxygen carrier-to-fuel molar ratios (O/C = 1–15), and pressures (0.1–1.0 MPa). The optimal conditions were identified as 900 °C, O/C = 8, and 0.1 MPa. After 50 simulation cycles, Fe2O3/Al2O3 and Fe2O3/TiO2 achieved average total reaction counts of 503 and 543, respectively, substantially exceeding 296 cycles for Fe2O3. The results indicated that Al2O3 and TiO2 improved cyclic stability via physical support and structural regulation mechanisms, thereby offering a practical carrier composite modification strategy. This study provides a theoretical basis for the development of high-performance oxygen carriers and supports the industrial application of CLC technology for efficient carbon capture and emission mitigation. Full article
(This article belongs to the Special Issue Advances and Challenges in Carbon Capture, Utilisation and Storage)
Show Figures

Figure 1

16 pages, 3751 KB  
Article
Improving Performance of a Passive Direct Methanol Fuel Cell by Hydrophobic Treatment for Cathode Current Collector
by Xiaozhong Shen, Weibin Yu, Zihao Zhang, Lu Lu, Weiqi Zhang, Huiyuan Liu, Huaneng Su, Lei Xing and Qian Xu
Processes 2025, 13(9), 2757; https://doi.org/10.3390/pr13092757 - 28 Aug 2025
Viewed by 357
Abstract
This study employs hydrophobic modification of the current collector to optimize cathode water management and enhance the performance of passive DMFCs. The surface of the cathode current collector was hydrophobized by polytetrafluoroethylene (PTFE) coating and titanium dioxide/polydimethylsiloxane (PDMS) composite coating. The experimental results [...] Read more.
This study employs hydrophobic modification of the current collector to optimize cathode water management and enhance the performance of passive DMFCs. The surface of the cathode current collector was hydrophobized by polytetrafluoroethylene (PTFE) coating and titanium dioxide/polydimethylsiloxane (PDMS) composite coating. The experimental results showed that the surface hydrophobic treatment significantly improved the cell performance at low methanol concentration and marginally improved the cell performance at high methanol concentration. Among them, the DMFC with bilayer TiO2/PDMS hydrophobic-treated cathode current collector with a contact angle of 153.2° showed the best performance, which achieved superhydrophobicity and led to a peak power density that was 27.25% higher compared to the DMFC with an untreated current collector. With the gradient-based hydrophobic treatment for the cathode current collector, the best performance was achieved when double-layer TiO2/PDMS was used on the MEA side and PTFE coating on the air side. Full article
Show Figures

Figure 1

19 pages, 4531 KB  
Article
Surface Engineering of EB-PBF Ti6Al4V via Anodization: Multifunctional Improvements Through TiO2 Nanotube Arrays
by Alireza Moradi, Sanae Tajalli, Amir Behjat, Abdollah Saboori and Luca Iuliano
Coatings 2025, 15(9), 993; https://doi.org/10.3390/coatings15090993 - 27 Aug 2025
Viewed by 436
Abstract
This study investigates the anodization behavior and surface modification of Ti6Al4V (Ti64) alloy components fabricated via electron beam powder bed fusion (EB-PBF), aiming to enhance their performance in biomedical applications. Ti64 samples were manufactured using optimized EB-PBF parameters to produce a uniform microstructure [...] Read more.
This study investigates the anodization behavior and surface modification of Ti6Al4V (Ti64) alloy components fabricated via electron beam powder bed fusion (EB-PBF), aiming to enhance their performance in biomedical applications. Ti64 samples were manufactured using optimized EB-PBF parameters to produce a uniform microstructure and surface quality. Electrochemical anodization at 40 V and 60 V for 2 h generated self-organized TiO2 nanotube layers, followed by a heat treatment at 550 °C to improve crystallinity while preserving the nanotube morphology. Characterization using scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed that a lower voltage produced uniform, compact nanotubes with moderate roughness and higher hardness, whereas a higher voltage generated thicker, less ordered nanotubes with larger diameters, increased roughness, and slightly reduced mechanical performance. X-ray diffraction (XRD) confirmed the presence of anatase TiO2 phases, and energy-dispersive spectroscopy (EDS) analysis revealed a homogeneous distribution of Ti and O. Mechanical testing via nanoindentation and nanoscratch techniques demonstrated superior hardness and adhesion in nanotubes formed at lower voltage due to their compact structure. Electrochemical measurements indicated significantly enhanced corrosion resistance in anodized samples, attributed to the dense and chemically stable TiO2 layer that acts as a barrier to aggressive ions and reduces active corrosion sites. In vitro bioactivity analysis further confirmed improved apatite formation on anodized surfaces. These results demonstrate the synergistic potential of EB-PBF and controlled anodization for modifying the surface properties of Ti64 implants, leading to improved mechanical behavior, corrosion resistance, and biological performance suitable for biomedical applications. Full article
Show Figures

Figure 1

21 pages, 2861 KB  
Article
Evaluation of the Combustion Process of Pellets from Herbaceous Biomass with the Addition of Kaolin and Urea Solution in Low-Power Boilers
by Małgorzata Dula, Artur Kraszkiewicz, Anna Krawczuk and Stanisław Parafiniuk
Energies 2025, 18(17), 4507; https://doi.org/10.3390/en18174507 - 25 Aug 2025
Viewed by 478
Abstract
In this study, an analysis was carried out of the combustion of pellets made from chamomile and English ryegrass biomass, including those with the addition of kaolin and urea, in terms of their physical and chemical properties. During combustion tests with synchronized timing, [...] Read more.
In this study, an analysis was carried out of the combustion of pellets made from chamomile and English ryegrass biomass, including those with the addition of kaolin and urea, in terms of their physical and chemical properties. During combustion tests with synchronized timing, the concentrations of CO2, CO, NO, and SO2 in the flue gases were measured, along with the temperatures of the supplied air and the flue gases. The addition of kaolin improved combustion parameters, reduced CO emissions, and stabilized the combustion process, despite the deterioration of the mechanical durability of the pellets. Combustion in the drop-in burner (type B tests) showed higher energy efficiency (CEI) and lower flue gas toxicity (TI) than in the grate system (type A tests). The SiO2 content in the chamomile ash explained its higher resistance to slagging, confirmed by characteristic ash temperatures. Comparison with other biofuels (straw, hay, sawdust) showed similarities or advantages in terms of reducing CO, NO, and SO2 emissions. NO emissions were lower for pellets with urea and kaolin added, although in the case of biomass with high nitrogen content these relationships require further improvement. The research results indicate the potential of herbaceous biomass as a fuel in local heating systems. However, modification of such fuels is also associated with the need for further research on reducing emissions during unstabilized combustion phases, with particular emphasis on the ignition phase. Full article
(This article belongs to the Collection Feature Papers in Energy, Environment and Well-Being)
Show Figures

Figure 1

18 pages, 2589 KB  
Article
Synthesis of Nb-Doped TiO2 Nanoparticles for Photocatalytic Degradation of Ciprofloxacin: A Combined Experimental and DFT Approach
by Bouthaina Shili, Othmen Khaldi, Cristian Mendes-Felipe, Maibelin Rosales, Dinis C. Alves, Pedro M. Martins, Rached Ben Younes and Senentxu Lanceros-Mendez
Nanomaterials 2025, 15(17), 1307; https://doi.org/10.3390/nano15171307 - 25 Aug 2025
Viewed by 653
Abstract
The persistence of pharmaceutical pollutants such as ciprofloxacin (CIP) in aquatic environments represents a critical environmental threat due to their potential to induce antimicrobial resistance. Photocatalysis using TiO2-based materials offers a promising solution for their mineralization; however, the limited visible-light response [...] Read more.
The persistence of pharmaceutical pollutants such as ciprofloxacin (CIP) in aquatic environments represents a critical environmental threat due to their potential to induce antimicrobial resistance. Photocatalysis using TiO2-based materials offers a promising solution for their mineralization; however, the limited visible-light response of TiO2 and charge carrier recombination restricts its overall efficiency. In this study, Nb-doped TiO2 nanoparticles were synthesized via the sol–gel method, incorporating Nb5+, ions into the TiO2 lattice to modulate the structural and electronic properties of TiO2 to enhance its photocatalytic performance for CIP degradation under UV and visible irradiation. Comprehensive structural, morphological, and optical analyses revealed that Nb incorporation stabilizes the anatase phase, reduces particle size (from 21.42 nm to 10.29 nm), and induces a slight band gap widening (from 2.85 to 2.87 eV) due to the Burstein–Moss effect. Despite this blue shift, Nb-TiO2 exhibited significantly improved photocatalytic activity under visible light, achieving 86% CIP degradation with a reaction rate 16 times higher than that of undoped TiO2. This enhancement was attributed to improved charge separation and higher hydroxyl radical (OH) generation, driven by excess conduction band electrons introduced by Nb doping. Density Functional Theory (DFT) calculations further elucidated the electronic structure modifications responsible for this behavior, offering molecular-level insights into Nb dopant-induced property tuning. These findings demonstrate how targeted doping strategies can engineer multifunctional nanomaterials with superior photocatalytic efficiencies, especially under visible light, highlighting the synergy between experimental design and theoretical modeling for environmental applications. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

14 pages, 1436 KB  
Article
Enhanced CO2 Capture Using TiO2 Nanoparticle-Functionalized Solvent: A Study on Desorption Experiments
by Mattia Micciancio, Nicola Verdone, Alice Chillè and Giorgio Vilardi
Nanomaterials 2025, 15(17), 1301; https://doi.org/10.3390/nano15171301 - 22 Aug 2025
Viewed by 511
Abstract
Cutting CO2 emissions is crucial to face of climate change, and one of the most tried and true means of post-combustion CO2 capture is by way of chemical absorption. In this work, the effect of titanium dioxide (TiO2) nanoparticles [...] Read more.
Cutting CO2 emissions is crucial to face of climate change, and one of the most tried and true means of post-combustion CO2 capture is by way of chemical absorption. In this work, the effect of titanium dioxide (TiO2) nanoparticles in a 25 wt% potassium carbonate (K2CO3) solution on solvent regeneration is investigated. This research follows the previous work in which the effect of nanofluids was evaluated on CO2 absorption. Desorption was studied at three different temperatures (343.15, 348.15 and 353.15 K), using the absorbent fluid with and without 0.06 wt% TiO2 nanoparticles. The results indicate that the nanofluid enhanced the CO2 release rates, also reducing energy consumption. The mass transfer was intensified by the presence of nanoparticles, which in turn increased CO2 diffusivity and influenced the liquid boundary layer, resulting in an enhanced desorption rate, because of the higher diffusivity. These enhancements were achieved with negligible modifications to the fluid properties, i.e., viscosity. In summary, application of TiO2-enhanced K2CO3 solutions is a practical approach to enhance CO2 removal performance and reduce operating costs such that CO2 capture is beginning to be environmentally and economically more competitive for the existing system retrofit. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

28 pages, 2656 KB  
Review
Challenges and Prospects of TiO2-Based Photocatalysis for Wastewater Treatment: Keyword Analysis
by Caressa Munien, Sudesh Rathilal and Emmanuel Kweinor Tetteh
Catalysts 2025, 15(9), 801; https://doi.org/10.3390/catal15090801 - 22 Aug 2025
Viewed by 862
Abstract
Environmental pollution driven by socioeconomic development has intensified the need for advanced and sustainable wastewater treatment technologies. Herein, TiO2-based photocatalysis emerged as a promising solution due to its oxidative potential, chemical stability, and eco-friendliness but does have unavoidable immobilized recoverability challenges. [...] Read more.
Environmental pollution driven by socioeconomic development has intensified the need for advanced and sustainable wastewater treatment technologies. Herein, TiO2-based photocatalysis emerged as a promising solution due to its oxidative potential, chemical stability, and eco-friendliness but does have unavoidable immobilized recoverability challenges. Therefore, this study explored the challenges and prospects of TiO2-based photocatalysis for the degradation of emerging contaminants in wastewater. A comprehensive keyword analysis was conducted by using a decade of publications retrieved from Google Scholar, Scopus, and Web of Science (WOS) databases via Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework. From a pool of 518 refined publications, 318 significant keyword occurrences related to TiO2-based photocatalysis advanced oxidation processes (AOPs) were revealed. The review delved into various types of AOP mechanisms and catalysts and highlighted the synergistic effect of process parameters and magnetization as recoverability potential for TiO2-based photocatalysts. Furthermore, emerging strategies including surface modifications, doping, and hybrid AOP integrations were discussed to improve photocatalysis performance and industrial scalability. The study underscores the economic opportunity and environmental sustainability of degrading persistent organic pollutants by integrating a TiO2-based photocatalytic system with a regenerative magnetic field into the water sector. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

14 pages, 1527 KB  
Article
The Effect of the Metal Impurities on the Stability, Chemical, and Sensing Properties of MoSe2 Surfaces
by Danil W. Boukhvalov, Murat K. Rakhimzhanov, Aigul Shongalova, Abay S. Serikkanov, Nikolay A. Chuchvaga and Vladimir Yu. Osipov
Surfaces 2025, 8(3), 56; https://doi.org/10.3390/surfaces8030056 - 5 Aug 2025
Cited by 2 | Viewed by 449
Abstract
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated [...] Read more.
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated the adsorption enthalpies for various representative analytes, including O2, H2, CO, CO2, H2O, NO2, formaldehyde, and ethanol, and further evaluated their free energies across a range of temperatures. By employing the formula for probabilities, we accounted for the competition among molecules for active adsorption sites during simultaneous adsorption events. Our findings underscore the importance of integrating temperature effects and competitive adsorption dynamics to predict the performance of highly selective sensors accurately. Additionally, we investigated the influence of temperature and analyte concentration on sensor performance by analyzing the saturation of active sites for specific scenarios using Langmuir sorption theory. Building on our calculated adsorption energies, we screened the catalytic potential of doped MoSe2 for CO2-to-methanol conversion reactions. This paper also examines the correlations between the electronic structure of active sites and their associated sensing and catalytic capabilities, offering insights that can inform the design of advanced materials for sensors and catalytic applications. Full article
Show Figures

Graphical abstract

22 pages, 2192 KB  
Article
Visible-Light-Driven Degradation of Biological Contaminants on the Surface of Textile Fabric Modified with TiO2-N Photocatalyst
by Maria Solovyeva, Evgenii Zhuravlev, Yuliya Kozlova, Alevtina Bardasheva, Vera Morozova, Grigory Stepanov, Denis Kozlov, Mikhail Lyulyukin and Dmitry Selishchev
Int. J. Mol. Sci. 2025, 26(15), 7550; https://doi.org/10.3390/ijms26157550 - 5 Aug 2025
Viewed by 391
Abstract
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, [...] Read more.
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, the surface of blended cotton/polyester fabric was functionalized with N-doped TiO2 (TiO2-N) nanoparticles using titanium(IV) isopropoxide as a binder to form durable photoactive coating and additionally decorated with Cu species to promote its self-cleaning properties. The photocatalytic ability of the material with photoactive coating was investigated in oxidation of acetone vapor, degradation of deoxyribonucleic acid (DNA) fragments of various lengths, and inactivation of PA136 bacteriophage virus and Candida albicans fungi under visible light and ultraviolet A (UVA) radiation. The kinetic aspects of inactivation and degradation processes were studied using the methods of infrared (IR) spectroscopy, polymerase chain reaction (PCR), double-layer plaque assay, and ten-fold dilution. The results of experiments showed that the textile fabric modified with TiO2-N photocatalyst exhibited photoinduced self-cleaning properties and provided efficient degradation of all studied contaminants under exposure to both UVA and visible light. Additional modification of the material with Cu species substantially improved its self-cleaning properties, even in the absence of light. Full article
(This article belongs to the Special Issue Fabrication and Application of Photocatalytically Active Materials)
Show Figures

Figure 1

42 pages, 6922 KB  
Review
A Brief Review of Atomistic Studies on BaTiO3 as a Photocatalyst for Solar Water Splitting
by Aisulu U. Abuova, Ulzhan Zh. Tolegen, Talgat M. Inerbaev, Mirat Karibayev, Balzhan M. Satanova, Fatima U. Abuova and Anatoli I. Popov
Ceramics 2025, 8(3), 100; https://doi.org/10.3390/ceramics8030100 - 4 Aug 2025
Viewed by 1638
Abstract
Barium titanate (BaTiO3) has long been recognized as a promising photocatalyst for solar-driven water splitting due to its unique ferroelectric, piezoelectric, and electronic properties. This review provides a comprehensive analysis of atomistic simulation studies of BaTiO3, highlighting the role [...] Read more.
Barium titanate (BaTiO3) has long been recognized as a promising photocatalyst for solar-driven water splitting due to its unique ferroelectric, piezoelectric, and electronic properties. This review provides a comprehensive analysis of atomistic simulation studies of BaTiO3, highlighting the role of density functional theory (DFT), ab initio molecular dynamics (MD), and classical all-atom MD in exploring its photocatalytic behavior, in line with various experimental findings. DFT studies have offered valuable insights into the electronic structure, density of state, optical properties, bandgap engineering, and other features of BaTiO3, while MD simulations have enabled dynamic understanding of water-splitting mechanisms at finite temperatures. Experimental studies demonstrate photocatalytic water decomposition and certain modifications, often accompanied by schematic diagrams illustrating the principles. This review discusses the impact of doping, surface modifications, and defect engineering on enhancing charge separation and reaction kinetics. Key findings from recent computational works are summarized, offering a deeper understanding of BaTiO3’s photocatalytic activity. This study underscores the significance of advanced multiscale simulation techniques for optimizing BaTiO3 for solar water splitting and provides perspectives on future research in developing high-performance photocatalytic materials. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

16 pages, 24404 KB  
Article
Oxidation of HfB2-HfO2-SiC Ceramics Modified with Ti2AlC Under Subsonic Dissociated Airflow
by Elizaveta P. Simonenko, Aleksey V. Chaplygin, Nikolay P. Simonenko, Ilya V. Lukomskii, Semen S. Galkin, Anton S. Lysenkov, Ilya A. Nagornov, Artem S. Mokrushin, Tatiana L. Simonenko, Anatoly F. Kolesnikov and Nikolay T. Kuznetsov
Corros. Mater. Degrad. 2025, 6(3), 35; https://doi.org/10.3390/cmd6030035 - 1 Aug 2025
Viewed by 422
Abstract
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using [...] Read more.
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using them as an electrode material for energy storage devices with increased oxidation resistance. This study investigates the behavior of ceramic composites based on the HfB2-HfO2-SiC system, obtained using 15 vol% Ti2AlC MAX-phase as a sintering component, under the influence of subsonic flow of dissociated air. It was determined that incorporating the modifying component (Ti2AlC) altered the composition of the silicate melt formed on the surface during ceramic oxidation. This modification led to the observation of a protective antioxidant function. Consequently, liquation was observed in the silicate melt layer, resulting in the formation of spherical phase inhomogeneities in its volume with increased content of titanium, aluminum, and hafnium. It is hypothesized that the increase in the high-temperature viscosity of this melt prevents it from being carried away in the form of drops, even at a surface temperature of ~1900–2000 °C. Despite the established temperature, there is no sharp increase in its values above 2400–2500 °C. This is due to the evaporation of silicate melt from the surface. In addition, the electrochemical behavior of the obtained material in a liquid electrolyte medium (KOH, 3 mol/L) was examined, and it was shown that according to the value of electrical conductivity and specific capacitance, it is a promising electrode material for supercapacitors. Full article
Show Figures

Figure 1

21 pages, 12700 KB  
Article
Optimization of Developed TiO2 NWs-Fe2O3 Modified PES Membranes for Efficient NBB Dye Removal
by Mouna Mansor Hussein, Qusay F. Alsalhy, Mohamed Gar Alalm and M. M. El-Halwany
ChemEngineering 2025, 9(4), 82; https://doi.org/10.3390/chemengineering9040082 - 1 Aug 2025
Viewed by 446
Abstract
Current work investigates the fabrication and performance of nanocomposite membranes, modified with varying concentrations of hybrid nanostructures comprising titanium nanowires coated with iron nanoparticles (TiO2 NWs-Fe2O3), for the removal of Naphthol Blue Black (NBB) dye from industrial wastewater. [...] Read more.
Current work investigates the fabrication and performance of nanocomposite membranes, modified with varying concentrations of hybrid nanostructures comprising titanium nanowires coated with iron nanoparticles (TiO2 NWs-Fe2O3), for the removal of Naphthol Blue Black (NBB) dye from industrial wastewater. A series of analytical tools were employed to confirm the successful modification including scanning electron microscopy and EDX analysis, porosity and hydrophilicity measurements, Fourier-transform infrared spectroscopy, and X-Ray Diffraction. The incorporation of TiO2 NWs-Fe2O3 has enhanced membrane performance significantly by increasing the PWF and improving dye retention rates of nanocomposite membranes. At 0.7 g of nanostructure content, the modified membrane (M8) achieved a PWF of 93 L/m2·h and NBB dye rejection of over 98%. The flux recovery ratio (FRR) analysis disclosed improved antifouling properties, with the M8 membrane demonstrating a 73.4% FRR. This study confirms the potential of TiO2 NWs-Fe2O3-modified membranes in enhancing water treatment processes, offering a promising solution for industrial wastewater treatment. These outstanding results highlight the potential of the novel PES-TiO2 NWs-Fe2O3 membranes for dye removal and present adequate guidance for the modification of membrane physical properties in the field of wastewater treatment. Full article
(This article belongs to the Special Issue New Advances in Chemical Engineering)
Show Figures

Figure 1

14 pages, 2314 KB  
Article
The Effect of Nematic Liquid Crystal on the Performance of Dye-Sensitized Solar Cells
by Paweł Szubert and Stanisław A. Różański
Crystals 2025, 15(8), 705; https://doi.org/10.3390/cryst15080705 - 31 Jul 2025
Viewed by 399
Abstract
The motivation for increasing the efficiency of renewable energy sources is the basic problem of ongoing research. Currently, intensive research is underway in technology based on the use of dye-sensitized solar cells (DSSCs). The aim of this work is to investigate the effect [...] Read more.
The motivation for increasing the efficiency of renewable energy sources is the basic problem of ongoing research. Currently, intensive research is underway in technology based on the use of dye-sensitized solar cells (DSSCs). The aim of this work is to investigate the effect of modifying the iodide electrolyte with liquid crystals (LCs) known for the self-organization of molecules into specific mesophases. The current–voltage (I-V) and power–voltage (P-V) characteristics were determined for the ruthenium-based dyes N3, Z907, and N719 to investigate the influence of their structure and concentration on the efficiency of DSSCs. The addition of a nematic LC of 4-n-pentyl-4-cyanobiphenyl (5CB) to the iodide electrolyte influences the I-V and P-V characteristics. A modification of the I-V characteristics was found, especially a change in the values of short circuit current (ISC) and open circuit voltage (VOC). The conversion efficiency for cells with modified electrolyte shows a complex dependence that first increases and then decreases with increasing LC concentration. It may be caused by the orientational interaction of LC molecules with the titanium dioxide (TiO2) layer on the photoanode. A too high concentration of LC may lead to a reduction in total ionic conductivity due to the insulating effect of the elongated polar molecules. Full article
(This article belongs to the Collection Liquid Crystals and Their Applications)
Show Figures

Figure 1

18 pages, 16222 KB  
Article
Enhanced Photoelectrochemical Performance of 2D Bi2O3/TiO2 Heterostructure Film by Bi2S3 Surface Modification and Broadband Photodetector Application
by Lai Liu and Huizhen Yao
Materials 2025, 18(15), 3528; https://doi.org/10.3390/ma18153528 - 28 Jul 2025
Viewed by 424
Abstract
Photoelectrochemical devices have garnered extensive research attention in the field of smart and multifunctional photoelectronics, owing to their lightweight nature, eco-friendliness, and cost-effective manufacturing processes. In this work, Bi2S3/Bi2O3/TiO2 heterojunction film was successfully fabricated [...] Read more.
Photoelectrochemical devices have garnered extensive research attention in the field of smart and multifunctional photoelectronics, owing to their lightweight nature, eco-friendliness, and cost-effective manufacturing processes. In this work, Bi2S3/Bi2O3/TiO2 heterojunction film was successfully fabricated and functioned as the photoelectrode of photoelectrochemical devices. The designed Bi2S3/Bi2O3/TiO2 photoelectrochemical photodetector possesses a broad light detection spectrum ranging from 400 to 900 nm and impressive self-powered characteristics. At 0 V bias, the device exhibits an on/off current ratio of approximately 1.3 × 106. It achieves a commendable detectivity of 5.7 × 1013 Jones as subjected to a 0.8 V bias potential, outperforming both bare TiO2 and Bi2O3/TiO2 photoelectrochemical devices. Moreover, the Bi2S3/Bi2O3/TiO2 photoelectrode film shows great promise in pollutant decomposition, achieving nearly 97.7% degradation efficiency within 60 min. The appropriate band energy alignment and the presence of an internal electric field at the interface of the Bi2S3/Bi2O3/TiO2 film serve as a potent driving force for the separation and transport of photogenerated carriers. These findings suggest that the Bi2S3/Bi2O3/TiO2 heterojunction film could be a viable candidate as a photoelectrode material for the development of high-performance photoelectrochemical optoelectronic devices. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

18 pages, 2518 KB  
Article
NiO/TiO2 p-n Heterojunction Induced by Radiolysis for Photocatalytic Hydrogen Evolution
by Ana Andrea Méndez-Medrano, Xiaojiao Yuan, Diana Dragoe, Christophe Colbeau-Justin, José Luis Rodríguez López and Hynd Remita
Materials 2025, 18(15), 3513; https://doi.org/10.3390/ma18153513 - 26 Jul 2025
Viewed by 588
Abstract
Titanium dioxide (TiO2), a widely used semiconductor in photocatalysis owing to its adequate potential for water hydrolysis, chemical stability, low toxicity, and low cost. However, its efficiency is limited by fast charge-carrier recombination and poor visible light absorption. Coupling TiO2 [...] Read more.
Titanium dioxide (TiO2), a widely used semiconductor in photocatalysis owing to its adequate potential for water hydrolysis, chemical stability, low toxicity, and low cost. However, its efficiency is limited by fast charge-carrier recombination and poor visible light absorption. Coupling TiO2 with a p-type semiconductor, such as nickel oxide (NiO), forming a p-n heterojunction, decreases the recombination of charge carriers and increases photocatalytic activity. In this work, the surface of TiO2 modified with NiO nanoparticles (NPs) induced by radiolysis for photocatalytic hydrogen production was studied. The photocatalytic activity of NiO/TiO2 was evaluated using methanol as a hole scavenger under UV–visible light. All modified samples presented superior photocatalytic activity compared to bare TiO2. The dynamics of the charge carriers, a key electronic phenomenon in photocatalysis, was investigated by time-resolved microwave conductivity (TRMC). The results highlight the crucial role of Ni-based NPs modification in enhancing the separation of the charge carrier and activity under UV–visible irradiation. Furthermore, the results revealed that under visible irradiation, NiO-NPs inject electrons into the conduction band of titanium dioxide. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

Back to TopTop