Surface Engineering of EB-PBF Ti6Al4V via Anodization: Multifunctional Improvements Through TiO2 Nanotube Arrays
Abstract
1. Introduction
2. Materials and Methods
2.1. Substrate Preparation
2.2. Anodization
2.3. Characterization Methods
2.3.1. Surface Characterization
2.3.2. Atomic Force Microscopy (AFM) Test
2.3.3. Nanoindentation Test
2.3.4. Nanoscratch Test
2.3.5. Corrosion Test
2.3.6. In Vitro Bioactivity
3. Results and Discussion
3.1. Microstructure of EB-PBF Ti64 Alloy
3.2. Surface Morphology After Modifications
3.3. AFM Analysis of the Surfaces
3.4. Nanoindentation Tests of the Surface
3.5. Scratch Testing
3.6. Electrochemical Characterization
3.7. In Vitro Apatite Formation
4. Conclusions
- Structural characterization via SEM, XRD, and EDS confirmed the formation of nanotubes with distinct morphologies depending on the applied voltage and demonstrated the presence of crystalline TiO2 phases.
- At 40 V, anodization resulted in uniform, well-organized nanotube arrays with moderate roughness and superior mechanical properties, including higher hardness and stiffness. In contrast, anodization at 60 V produced thicker, less ordered nanotubes with larger diameters, increased roughness, and slightly reduced mechanical performance, likely due to morphological irregularities and structural disorder.
- AFM and nanoindentation analyses confirmed that increasing anodization voltage increased surface roughness while decreasing hardness and modulus. Higher roughness at 60 V also led to increased friction coefficients, showing a clear correlation between topography and tribo-mechanical behavior.
- Electrochemical characterization showed both anodized samples outperformed the base material in corrosion resistance, with the 60 V sample showing the best performance due to its denser oxide layer and greater impedance, as confirmed by EIS and potentiodynamic polarization.
- In vitro bioactivity studies in SBF demonstrated that both anodized and heat-treated surfaces supported apatite formation after 14 days of immersion. SEM and EDS analyses confirmed the deposition of a calcium phosphate layer, validating the biological potential of the TiO2 nanotube coatings.
- All in all, this study demonstrated anodization as an effective post-processing technique for enhancing the surface properties of Ti64 components.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Onuike, B.; Bandyopadhyay, A. Additive manufacturing of Inconel 718—Ti6Al4V bimetallic structures. Addit. Manuf. 2018, 22, 844–851. [Google Scholar] [CrossRef]
- Bandekhoda, M.R.; Mosallanejad, M.H.; Atapour, M.; Iuliano, L.; Saboori, A. Investigation on the Potential of Laser and Electron Beam Additively Manufactured Ti–6Al–4V Components for Orthopedic Applications. Met. Mater. Int. 2024, 30, 114–126. [Google Scholar] [CrossRef]
- Mehboob, H.; Tarlochan, F.; Mehboob, A.; Chang, S.-H.; Ramesh, S.; Harun, W.S.W.; Kadirgama, K. A novel design, analysis and 3D printing of Ti-6Al-4V alloy bio-inspired porous femoral stem. J. Mater. Sci. Mater. Med. 2020, 31, 78. [Google Scholar] [CrossRef]
- Akshay Kumar, J.; Jaya Prakash, K.; Shivraj Narayan, Y.; Satyanarayana, B. FE-strength evaluation of Ti-6Al-4V alloy dental implant and 3D printing using PLA material. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Goli, M.; Shahrebabaki, K.E.; Mehrnoush, S.; Labbaf, S. Characterization of TiO2 nanotube formation on additively manufactured Ti6Al4V surfaces for medical implants. J. Mater. Res. 2025, 40, 622–636. [Google Scholar] [CrossRef]
- Behjat, A.; Sanaei, S.; Mosallanejad, M.H.; Atapour, M.; Saboori, A. Electrochemical Behavior of Electron Beam Powder Bed Fused Ti536 Alloy under Simulated Inflammatory Conditions. Acta Metall. Sin. Engl. Lett. 2025, 38, 969–980. [Google Scholar] [CrossRef]
- Zhao, L.; Chu, P.; Zhang, Y.; Wu, Z. Antibacterial Coatings on Titanium Implants. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 91, 470–480. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, T.K.C.; Maia, F.R.; Pina, S.; Reis, R.L.; Oliveira, J.M.; Carobolante, J.P.A.; Escada, A.L.D.A.; Longhitano, G.A.; Alves, A.P.R. Anodic Oxidation of 3D Printed Ti6Al4V Scaffold Surfaces: In Vitro Studies. Appl. Sci. 2024, 14, 1656. [Google Scholar] [CrossRef]
- Crenn, M.J.; Lefort, L.; Pires, R.; Dubot, P.; Giorgi, M.L.; Peyre, P. Anodized SLM Ti6Al4V surface: Influence of surface characteristics on NTs growth and resulted surfaces properties. J. Mater. Chem. B. 2024, 12, 11502–11514. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, L.Y.; Wang, L. Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests. Adv. Eng. Mater. 2020, 22, 2070017. [Google Scholar] [CrossRef]
- Jáquez-Muñoz, J.M.; Gaona-Tiburcio, C.; Mendez-Ramirez, C.T.; Carrera-Ramirez, M.G.; Baltazar-Zamora, M.A.; Santiago-Hurtado, G.; Lara-Banda, M.; Estupiñan-Lopez, F.; Nieves-Mendoza, D.; Almeraya-Calderon, F. Corrosion of Anodized Titanium Alloys. Coatings 2024, 14, 809. [Google Scholar] [CrossRef]
- Han, X.; Ma, J.; Tian, A.; Wang, Y.; Li, Y.; Dong, B.; Tong, X.; Ma, X. Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review. Colloids Surf. B Biointerfaces 2023, 227, 113339. [Google Scholar] [CrossRef]
- O’Keeffe, C.; Kotlarz, M.; Gonçalves, I.F.; Lally, C.; Kelly, D.J. Chemical etching of Ti-6Al-4V biomaterials fabricated by selective laser melting enhances mesenchymal stromal cell mineralization. J. Biomed. Mater. Res. Part A. 2024, 112, 1548–1564. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Shen, K.; Wang, X. Microstructural evolution of low-pressure plasma-sprayed Ti–6Al–4V coatings after heat treatment. Surf. Coat. Technol. 2020, 393, 125792. [Google Scholar] [CrossRef]
- Dockrat, U.; Ntsoane, T.P.; Malherbe, J.B.; Bam, L.C.; Thabethe, T.T. Investigating biomimetic coatings on Ti-6Al-4V substrates. J. Alloy Compd. Commun. 2025, 7, 100082. [Google Scholar] [CrossRef]
- Cely-González, A.; Pineda, Y.; Gómez-Puentes, O. Anodization of Ti6Al4V alloy manufactured by 3D printing and evaluation of corrosion and wear properties. DYNA 2022, 89, 76–83. [Google Scholar] [CrossRef]
- Diamanti, M.; Sebastiani, M.; Mangione, V.; Del Curto, B.; Pedeferri, M.; Bemporad, E.; Cigada, A.; Carassiti, F. Multi-step anodizing on Ti6Al4V components to improve tribomechanical performances. Surf. Coat. Technol. 2013, 227, 19–27. [Google Scholar] [CrossRef]
- Lestari, F.; Rian, Y.; Pramono, A.; Rokhmanto, F.; Kartika, I.; Thaha, Y. Surface Modification of Ti-6Al-4V Alloy By Anodization Technique at Low Potential to Produce Oxide Layer. J. Electron. Electromed. Eng. Med. Inform. 2020, 2, 93–100. [Google Scholar] [CrossRef]
- Dolimont, A.; Michotte, S.; Rivière-Lorphèvre, E.; Ducobu, F.; Vivès, S.; Godet, S.; Henkes, T.; Filippi, E. Influence on surface characteristics of electron beam melting process (EBM) by varying the process parameters. AIP Conf. Proc. 2017, 1896, 40010. [Google Scholar] [CrossRef]
- Ran, J.; Jiang, F.; Sun, X.; Chen, Z.; Tian, C.; Zhao, H. Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Electron Beam Melting. Crystals 2020, 10, 972. [Google Scholar] [CrossRef]
- Hernández-Nava, E.; Smith, C.; Derguti, F.; Tammas-Williams, S.; Leonard, F.; Withers, P.; Todd, I.; Goodall, R. The effect of defects on the mechanical response of Ti-6Al-4V cubic lattice structures fabricated by electron beam melting. Acta Mater. 2016, 108, 279–292. [Google Scholar] [CrossRef]
- Tamayo, J.A.; Riascos, M.; Vargas, C.A.; Baena, L.M. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry. Heliyon 2021, 7, e06892. [Google Scholar] [CrossRef]
- Ataee, A.; Li, Y.; Song, G.; Wen, C. Metal scaffolds processed by electron beam melting for biomedical applications. In Metallic Foam Bone; Elsevier: Amsterdam, The Netherlands, 2017; pp. 83–110. [Google Scholar]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components—Process, structure and properties. Progress in Materials Science 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Behjat, A.; Sanaei, S.; Mosallanejad, M.H.; Atapour, M.; Sheikholeslam, M.; Saboori, A.; Iuliano, L. A novel titanium alloy for load-bearing biomedical implants: Evaluating the antibacterial and biocompatibility of Ti536 produced via electron beam powder bed fusion additive manufacturing process. Biomater Adv. 2024, 163, 213928. [Google Scholar] [CrossRef]
- Carolo, L.C.B.; Cooper, O.R.E. A review on the influence of process variables on the surface roughness of Ti-6Al-4V by electron beam powder bed fusion. Addit. Manuf. 2022, 59, 103103. [Google Scholar]
- Takase, A.; Ishimoto, T.; Morita, N.; Ikeo, N.; Nakano, T. Comparison of Phase Characteristics and Residual Stresses in Ti-6Al-4V Alloy Manufactured by Laser Powder Bed Fusion (L-PBF) and Electron Beam Powder Bed Fusion (EB-PBF) Techniques. Crystals 2021, 11, 796. [Google Scholar] [CrossRef]
- Li, H.; Liang, X.; Li, Y.; Lin, F. Performance of High-Layer-Thickness Ti6Al4V Fabricated by Electron Beam Powder Bed Fusion under Different Accelerating Voltage Values. Materials 2022, 15, 1878. [Google Scholar] [CrossRef]
- Schur, R.; Ghods, S.; Wisdom, C.; Pahuja, R.; Montelione, A.; Arola, D.; Ramulu, M. Mechanical anisotropy and its evolution with powder reuse in Electron Beam Melting AM of Ti6Al4V. Mater. Des. 2021, 200, 109450. [Google Scholar] [CrossRef]
- Silvestri, A.T.; Foglia, S.; Borrelli, R.; Franchitti, S.; Pirozzi, C.; Astarita, A. Electron beam melting of Ti6Al4V: Role of the process parameters under the same energy density. J. Manuf. Process 2020, 60, 162–179. [Google Scholar] [CrossRef]
- Antonysamy, A.A.; Meyer, J.; Prangnell, P.B. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting. Mater. Charact. 2013, 84, 153–168. [Google Scholar] [CrossRef]
- Saboori, A.; Tognoli, E.; Galati, M.; Denti, L. Electron beam powder bed fusion of Ti–6Al–2Sn–4Zr–2Mo alloy: Microstructure evolution and high-temperature mechanical properties. Prog. Addit. Manuf. 2025, 10, 6627–6641. [Google Scholar] [CrossRef]
- Cantaboni, F.; Battini, D.; Hauber, K.Z.; Ginestra, P.S.; Tocci, M.; Avanzini, A.; Ceretti, E.; Pola, A. Mechanical and microstructural characterization of Ti6Al4V lattice structures with and without solid shell manufactured via electron beam powder bed fusion. Int. J. Adv. Manuf. Technol. 2024, 131, 1289–1301. [Google Scholar] [CrossRef]
- Manco, E.; Scherillo, F.; Franchitti, S.; Borrelli, R. Improving Surface Quality and Fatigue Life of Electron Beam Melted Ti6Al4V by Chemical Machining. J. Mater. Eng. Perform. 2024, 33, 2552–2561. [Google Scholar] [CrossRef]
- Behjat, A.; Saboori, A.; Galati, M.; Iuliano, L. The electrochemical behaviour of Ti-48Al-2Cr-2Nb produced by electron beam powder bed fusion process. Intermetallics 2024, 175, 108472. [Google Scholar] [CrossRef]
- Mosallanejad, M.H.; Ghanavati, R.; Behjat, A.; Taghian, M.; Saboori, A.; Iuliano, L. Untapped Opportunities in Additive Manufacturing with Metals: From New and Graded Materials to Post-Processing. Metals 2024, 14, 425. [Google Scholar] [CrossRef]
- Chern, A.H.; Nandwana, P.; McDaniels, R.; Dehoff, R.R.; Liaw, P.K.; Tryon, R.; Duty, C.E. Build orientation, surface roughness, and scan path influence on the microstructure, mechanical properties, and flexural fatigue behavior of Ti–6Al–4V fabricated by electron beam melting. Mater. Sci. Eng. A 2020, 772, 138740. [Google Scholar] [CrossRef]
- Sepe, R.; Franchitti, S.; Borrelli, R.; Di Caprio, F.; Armentani, E.; Caputo, F. Correlation between real geometry and tensile mechanical behaviour for Ti6Al4V electron beam melted thin specimens. Theor. Appl. Fract. Mech. 2020, 107, 102519. [Google Scholar] [CrossRef]
- Valencia-Cadena, A.; García-Blanco, M.; Reschenhofer, B.; Barreneche, C.; Skerbis, P.; Leitl, P.; Santamaría, P.; Roa, J. In-depth study of the dry-anodizing process on Ti6Al4V alloys: Effect of the acid content and electrical parameters. Surf. Coat. Technol. 2025, 499, 131767. [Google Scholar] [CrossRef]
- Vásquez, F.A.; Ocampo, R.A.; Bedoya, N.; Gil, A.A.Z.; Botero, C.; Gómez, M.; Castaño, J.G.; Tamayo, J.A. Electrochemical characterization of TiO2 nanotubes formed on Ti6Al4V manufactured by PBF-EB or forging. Prog. Addit. Manuf. 2025, 10, 3629–3639. [Google Scholar] [CrossRef]
- Moradi, A.; Tajalli, S.; Mosallanejad, M.; Saboori, A. Intelligent laser-based metal additive manufacturing: A review on machine learning for process optimization and property prediction. Int. J. Adv. Manuf. Technol. 2024, 136, 527–560. [Google Scholar] [CrossRef]
- Chastand, V.; Quaegebeur, P.; Maia, W.; Charkaluk, E. Comparative study of fatigue properties of Ti-6Al-4V specimens built by electron beam melting (EBM) and selective laser melting (SLM). Mater. Charact. 2018, 143, 76–81. [Google Scholar] [CrossRef]
- Liu, S.; Shin, Y.C. Additive manufacturing of Ti6Al4V alloy: A review. Mater. Des. 2019, 164, 107552. [Google Scholar] [CrossRef]
- Łępicka, M.; Grądzka-Dahlke, M.; Sobolewski, A. The effect of anodizing conditions on the corrosion resistance of Ti6Al4V titanium alloy. Mater. Test. 2015, 57, 393–397. [Google Scholar] [CrossRef]
- Gomez-Vega, J.; Saiz, E.; Tomsia, A.; Marshall, G. Bioactive glass coatings with hydroxyapatite and Bioglass® particles on Ti-based implants. 1. Processing. Biomaterials 2000, 21, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Chen, M.; Lu, X.; Yang, H.; Wang, L.; Bai, T.; Zhou, W.; Liu, T.; Yu, S. Application of advanced surface modification techniques in titanium-based implants: Latest strategies for enhanced antibacterial properties and osseointegration. J. Mater. Chem. B 2024, 12, 10516–10549. [Google Scholar] [CrossRef]
- Avila, J.D.; Stenberg, K.; Bose, S.; Bandyopadhyay, A. Hydroxyapatite reinforced Ti6Al4V composites for load-bearing implants. Acta Biomater. 2021, 123, 379–392. [Google Scholar] [CrossRef]
- Osafo, S.A.; Asumadu, T.; Klenam, D.; Etinosa, P.; Obayemi, J.D.; Agyei-Tuffour, B.; Yaya, A.; Dodoo-Arhin, D.; Eluu, S.C.; Soboyejo, W. Tribological properties of hydroxyapatite-coated nanorods on Ti-6Al-4V surfaces. Sci. Rep. 2025, 15, 19113. [Google Scholar] [CrossRef]
- Khrapov, D.; Kozadayeva, M.; Manabaev, K.; Panin, A.; Sjöström, W.; Koptyug, A.; Mishurova, T.; Evsevleev, S.; Meinel, D.; Bruno, G.; et al. Different Approaches for Manufacturing Ti-6Al-4V Alloy with Triply Periodic Minimal Surface Sheet-Based Structures by Electron Beam Melting. Materials 2021, 14, 4912. [Google Scholar] [CrossRef]
- Ikreedeegh, R.R.; Hossen, M.A.; Tahir, M.; Aziz, A.A. A comprehensive review on anodic TiO2 nanotube arrays (TNTAs) and their composite photocatalysts for environmental and energy applications: Fundamentals, recent advances and applications. Coord. Chem. Rev. 2024, 499, 215495. [Google Scholar] [CrossRef]
- Kokubo, T.; Takadama, H. Simulated Body Fluid (SBF) as a Standard Tool to Test the Bioactivity of Implants. In Handbook of Biomineralization: Medical and Clinical Aspects; Wiley: Hoboken, NJ, USA, 2008; pp. 97–109. [Google Scholar]
- Donachie, M. Titanium: A Technical Guide, 2nd ed.; ASM International: Almere, The Netherlands, 2000. [Google Scholar]
- Torres-Avila, I.P.; Padilla-Martínez, I.I.; Pérez-Hernández, N.; Bañuelos-Hernández, A.E.; Velázquez, J.C.; Castrejón-Flores, J.L.; Hernández-Sánchez, E. Surface Modification of the Ti-6Al-4V Alloy by Anodic Oxidation and Its Effect on Osteoarticular Cell Proliferation. Coatings 2020, 10, 491. [Google Scholar] [CrossRef]
- Mehrotra, S.; Kalyan, D.; Makineni, S.K.; Santra, S. Oxide growth characteristics, kinetics and mechanism of rutile formation on pure titanium. Vacuum 2024, 219, 112682. [Google Scholar] [CrossRef]
- Jia, J.; Yamamoto, H.; Okajima, T.; Shigesato, Y. On the Crystal Structural Control of Sputtered TiO2 Thin Films. Nanoscale Res. Lett. 2016, 11, 324. [Google Scholar] [CrossRef]
- Padayachee, D.; Mahomed, A.; Singh, S.; Friedrich, H. The effect of the TiO2 anatase:rutile ratio and interface for the oxidative activation of n-octane. ACS Catal. 2020, 10, 2211–2220. [Google Scholar] [CrossRef]
- Ghani, T.; Mehmood, M.; Kanwal, H.; Naz, M.Y.; Bashir, S. Photovoltaic Performance of TiO2 Nanotubes Anodized under Different Voltages. Materials Proceedings 2024, 17, 24. [Google Scholar] [CrossRef]
- Cao, W.; Chen, K.; Xue, D. Highly Ordered TiO2 Nanotube Arrays with Engineered Electrochemical Energy Storage Performances. Materials 2021, 14, 510. [Google Scholar] [CrossRef]
- Sarraf, M.; Razak, B.A.; Ghasemi, M.; Nezhad, E.Z.; Hashemi, R.; Bae, S. Systematic microstructure modification effect on nanomechanical, tribology, corrosion, and biomineralization behavior by optimized anodic alumina nanotubes coated Ti–6Al–4V alloy. Ceram. Int. 2023, 49, 23437–23455. [Google Scholar] [CrossRef]
- Dikova, T.; Nikolova, M.; Yankov, E. Adhesion Analysis of Titanium Oxide Nanocoatings on Titanium Surface. Mater. Sci. Non-Equilib. Phase Transform. 2016, 2, 46–51. [Google Scholar]
- Pereira, B.L.; Beilner, G.; Lepienski, C.M.; de Souza, G.B.; Kuromoto, N.K.; Szameitat, E.S.; Peng, A.N.S.; Lee, J.Y.; Claro, A.P.R.A.; Nugent, M.J. Scratch-resistant and well-adhered nanotube arrays produced via anodizing process on β-titanium alloy. Mater. Today Commun. 2021, 26, 101947. [Google Scholar] [CrossRef]
- Cui, X.; Kim, H.-M.; Kawashita, M.; Wang, L.; Xiong, T.; Kokubo, T.; Nakamura, T. Apatite formation on anodized Ti6Al4V alloy in simulated body fluid. Met. Mater. Int. 2010, 16, 407–412. [Google Scholar] [CrossRef]
- Sarraf, M.; Sukiman, N.L.; Bushroa, A.R.; Nasiri-Tabrizi, B.; Dabbagh, A.; Abu Kasim, N.H.; Basirun, W.J. In vitro bioactivity and corrosion resistance enhancement of Ti-6Al-4V by highly ordered TiO2 nanotube arrays. J. Aust. Ceram. Soc. 2019, 55, 187–200. [Google Scholar] [CrossRef]
- Nogueira, R.P.; Uchoa, J.D.; Hilario, F.; Santana-Melo, G.d.F.; de Vasconcellos, L.M.R.; Marciano, F.R.; Roche, V.; Junior, A.M.J.; Lobo, A.O. Characterization of Optimized TiO2 Nanotubes Morphology for Medical Implants: Biological Activity and Corrosion Resistance. Int. J. Nanomed. 2021, 16, 667–682. [Google Scholar] [CrossRef] [PubMed]
Potential (V) | Nanotube Diameter (nm) | Nanotube Depth (nm) |
---|---|---|
40 | 72.95 | 145.26 |
60 | 80.47 | 442.03 |
Potential (V) | H (GPa) | Er (GPa) | Friction Coefficient | RMS (nm) |
---|---|---|---|---|
40 | 0.21 ± 0.04 | 32 ± 0.8 | 0.75 ± 0.12 | 95 ± 3 |
60 | 0.16 ± 0.06 | 30 ± 1.2 | 0.85 ± 0.18 | 127 ± 5 |
Samples | Icorr (μA/cm2) | Ipass (μA/cm2) | Ecorr (V) |
---|---|---|---|
Base sample | 0.81 ± 0.04 | - | −0.42 ± 0.07 |
40 V sample | 0.12 ± 0.02 | 12.12 ± 0.12 | −0.27 ± 0.04 |
60 V sample | 0.04 ± 0.02 | 11.23 ± 0.23 | −0.15 ± 0.08 |
Sample | Rs (Ω.cm2) | CPEdl (µF/cm2.sn1) | CPEox/coat (µF/cm2.sn1) | Rdl (Ω.cm2) | Rox/coa (kΩ.cm2) |
---|---|---|---|---|---|
Base sample | 10.8 | - | 56.12 ± 0.05 | - | 78.70 ± 0.08 |
40 V sample | 8.29 | 0.31 ± 0.03 | 76.48 ± 0.13 | 31.52 ± 0.05 | 303.71 ± 1.45 |
60 V sample | 11.98 | 1.24 ± 0.02 | 58.34 ± 0.11 | 42.49 ± 0.04 | 802.41 ± 2.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moradi, A.; Tajalli, S.; Behjat, A.; Saboori, A.; Iuliano, L. Surface Engineering of EB-PBF Ti6Al4V via Anodization: Multifunctional Improvements Through TiO2 Nanotube Arrays. Coatings 2025, 15, 993. https://doi.org/10.3390/coatings15090993
Moradi A, Tajalli S, Behjat A, Saboori A, Iuliano L. Surface Engineering of EB-PBF Ti6Al4V via Anodization: Multifunctional Improvements Through TiO2 Nanotube Arrays. Coatings. 2025; 15(9):993. https://doi.org/10.3390/coatings15090993
Chicago/Turabian StyleMoradi, Alireza, Sanae Tajalli, Amir Behjat, Abdollah Saboori, and Luca Iuliano. 2025. "Surface Engineering of EB-PBF Ti6Al4V via Anodization: Multifunctional Improvements Through TiO2 Nanotube Arrays" Coatings 15, no. 9: 993. https://doi.org/10.3390/coatings15090993
APA StyleMoradi, A., Tajalli, S., Behjat, A., Saboori, A., & Iuliano, L. (2025). Surface Engineering of EB-PBF Ti6Al4V via Anodization: Multifunctional Improvements Through TiO2 Nanotube Arrays. Coatings, 15(9), 993. https://doi.org/10.3390/coatings15090993