Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (297)

Search Parameters:
Keywords = model predictive control (MPC) application

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2854 KiB  
Article
Autonomous Trajectory Control for Quadrotor eVTOL in Hover and Low-Speed Flight via the Integration of Model Predictive and Following Control
by Yeping Wang, Honglei Ji, Qingyu Kang, Haotian Qi and Jinghan Wen
Drones 2025, 9(8), 537; https://doi.org/10.3390/drones9080537 - 30 Jul 2025
Viewed by 114
Abstract
This paper proposes a novel hierarchical control architecture that combines Model Predictive Control (MPC) with Explicit Model-Following Control (EMFC) to enable accurate and efficient trajectory tracking for quadrotor electric Vertical Takeoff and Landing (eVTOL) aircraft operating in urban environments. The approach addresses the [...] Read more.
This paper proposes a novel hierarchical control architecture that combines Model Predictive Control (MPC) with Explicit Model-Following Control (EMFC) to enable accurate and efficient trajectory tracking for quadrotor electric Vertical Takeoff and Landing (eVTOL) aircraft operating in urban environments. The approach addresses the challenges of strong nonlinear dynamics, multi-axis coupling, and stringent safety constraints by separating the planning task from the fast-response control task. The MPC layer generates constrained velocity and yaw rate commands based on a simplified inertial prediction model, effectively reducing computational complexity while accounting for physical and operational limits. The EMFC layer then compensates for dynamic couplings and ensures the rapid execution of commands. A high-fidelity simulation model, incorporating rotor flapping dynamics, differential collective pitch control, and enhanced aerodynamic interference effects, is developed to validate the controller. Four representative ADS-33E-PRF tasks—Hover, Hovering Turn, Pirouette, and Vertical Maneuver—are simulated. Results demonstrate that the proposed controller achieves accurate trajectory tracking, stable flight performance, and full compliance with ADS-33E-PRF criteria, highlighting its potential for autonomous urban air mobility applications. Full article
Show Figures

Figure 1

16 pages, 3664 KiB  
Article
Wave Prediction Error Compensation and PTO Optimization Control Method for Improving the WEC Power Quality
by Tianlong Lan, Jiarui Wang, Luliang He, Peng Qian, Dahai Zhang and Bo Feng
Energies 2025, 18(15), 4043; https://doi.org/10.3390/en18154043 - 29 Jul 2025
Viewed by 140
Abstract
Reliable wave prediction plays a significant role in wave energy converter (WEC) research, but there are still prediction errors that would increase the uncertainty for the power grid and reduce the power quality. The efficiency and stability of the power take-off (PTO) system [...] Read more.
Reliable wave prediction plays a significant role in wave energy converter (WEC) research, but there are still prediction errors that would increase the uncertainty for the power grid and reduce the power quality. The efficiency and stability of the power take-off (PTO) system are also important research topics in WEC applications. In order to solve the above-mentioned problems, this paper presents a model predictive control (MPC) method composed of a prediction error compensation controller and a PTO optimization controller. This work aims to address the limitations of existing wave prediction methods and improve the efficiency and stability of hydraulic PTO systems in WECs. By controlling the charging and discharging of the accumulator, the power quality is enhanced by reducing grid frequency fluctuations and voltage flicker through prediction error compensation. In addition, an efficient and stable hydraulic PTO system can be obtained by keeping the operation pressure of the hydraulic motor at the optimal range. Thus, smoother power output minimizes grid-balancing penalties and storage wear, and stable hydraulic pressure extends PTO component lifespan. Finally, comparative numerical simulation studies are provided to show the efficacy of the proposed method. The results validate that the dual-controller MPC framework reduces power deviations by 74.3% and increases average power generation by 31% compared to the traditional method. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

32 pages, 5721 KiB  
Review
Control Strategies for Two-Wheeled Self-Balancing Robotic Systems: A Comprehensive Review
by Huaqiang Zhang and Norzalilah Mohamad Nor
Robotics 2025, 14(8), 101; https://doi.org/10.3390/robotics14080101 - 26 Jul 2025
Viewed by 233
Abstract
Two-wheeled self-balancing robots (TWSBRs) are underactuated, inherently nonlinear systems that exhibit unstable dynamics. Due to their structural simplicity and rich control challenges, TWSBRs have become a standard platform for validating and benchmarking various control algorithms. This paper presents a comprehensive and structured review [...] Read more.
Two-wheeled self-balancing robots (TWSBRs) are underactuated, inherently nonlinear systems that exhibit unstable dynamics. Due to their structural simplicity and rich control challenges, TWSBRs have become a standard platform for validating and benchmarking various control algorithms. This paper presents a comprehensive and structured review of control strategies applied to TWSBRs, encompassing classical linear approaches such as PID and LQR, modern nonlinear methods including sliding mode control (SMC), model predictive control (MPC), and intelligent techniques such as fuzzy logic, neural networks, and reinforcement learning. Additionally, supporting techniques such as state estimation, observer design, and filtering are discussed in the context of their importance to control implementation. The evolution of control theory is analyzed, and a detailed taxonomy is proposed to classify existing works. Notably, a comparative analysis section is included, offering practical guidelines for selecting suitable control strategies based on system complexity, computational resources, and robustness requirements. This review aims to support both academic research and real-world applications by summarizing key methodologies, identifying open challenges, and highlighting promising directions for future development. Full article
(This article belongs to the Section Industrial Robots and Automation)
Show Figures

Figure 1

18 pages, 1729 KiB  
Article
Research on Monitoring and Control Systems for Belt Conveyor Electric Drives
by Yuriy Kozhubaev, Diana Novak, Viktor Karpukhin, Roman Ershov and Haodong Cheng
Automation 2025, 6(3), 34; https://doi.org/10.3390/automation6030034 - 23 Jul 2025
Viewed by 229
Abstract
In the context of the mining industry, the belt conveyor is a critical piece of equipment. The motor constitutes the primary component of the belt conveyor apparatus, and its stable and accurate operation can significantly influence the performance of the belt conveyor apparatus. [...] Read more.
In the context of the mining industry, the belt conveyor is a critical piece of equipment. The motor constitutes the primary component of the belt conveyor apparatus, and its stable and accurate operation can significantly influence the performance of the belt conveyor apparatus. This paper introduces an integrated control approach combining vector control methodology with active disturbance rejection control (ADRC) for velocity regulation and model predictive control (MPC) for current tracking. The ADRC framework actively compensates for load disturbances and parameter variations during speed control, while MPC achieves precise current regulation with minimal tracking error. Validation involved comprehensive MATLAB/Simulink R2024a simulations modeling PMSM behavior under mining-specific operating conditions. The results demonstrate substantial improvements in dynamic response characteristics and disturbance rejection capabilities compared to conventional control strategies. The proposed methodology effectively addresses critical challenges in mining conveyor applications, enhancing operational reliability and system longevity. Full article
Show Figures

Figure 1

33 pages, 3525 KiB  
Article
Investigation into the Performance Enhancement and Configuration Paradigm of Partially Integrated RL-MPC System
by Wanqi Guo and Shigeyuki Tateno
Mathematics 2025, 13(15), 2341; https://doi.org/10.3390/math13152341 - 22 Jul 2025
Viewed by 237
Abstract
The improvement of the partially integrated reinforcement learning-model predictive control (RL-MPC) system is developed in the paper by introducing the Deep Deterministic Policy Gradient (DDPG) and Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithms. This framework differs from the traditional ones, which completely [...] Read more.
The improvement of the partially integrated reinforcement learning-model predictive control (RL-MPC) system is developed in the paper by introducing the Deep Deterministic Policy Gradient (DDPG) and Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithms. This framework differs from the traditional ones, which completely substitute the MPC prediction model; instead, an RL agent refines predictions through feedback correction and thus maintains interpretability while improving robustness. Most importantly, the study details two configuration paradigms: decoupled (offline policy application) and coupled (online policy update) and tests them for their effectiveness in trajectory tracking tasks within simulation and real-life experiments. A decoupled framework based on TD3 showed significant improvements in control performance compared to the rest of the implemented paradigms, especially concerning Integral of Time-weighted Absolute Error (ITAE) and mean absolute error (MAE). This work also illustrated the advantages of partial integration in balancing adaptability and stability, thus making it suitable for real-time applications in robotics. Full article
Show Figures

Figure 1

21 pages, 3005 KiB  
Article
Convex Optimization-Based Constrained Trajectory Planning for Autonomous Vehicles
by Xiaoxiao Song, Songming Chen and Qiang Liu
Electronics 2025, 14(15), 2929; https://doi.org/10.3390/electronics14152929 - 22 Jul 2025
Viewed by 292
Abstract
This paper proposes a constrained trajectory optimization framework for autonomous vehicles (AVs) based on convex programming techniques. An enhanced kinematic vehicle model is introduced to capture dynamic motion characteristics that are often overlooked in conventional models. For obstacle avoidance, environmental constraints are transformed [...] Read more.
This paper proposes a constrained trajectory optimization framework for autonomous vehicles (AVs) based on convex programming techniques. An enhanced kinematic vehicle model is introduced to capture dynamic motion characteristics that are often overlooked in conventional models. For obstacle avoidance, environmental constraints are transformed into convex formulations using free-space corridor methods. The trajectory planning process is further optimized through a linearized model predictive control (MPC) scheme, which considers both vehicle dynamics and environmental safety. The resulting formulation enables efficient convex optimization suitable for real-time implementation. Experimental results in various scenarios demonstrate improvements in both trajectory smoothness and safety. Furthermore, the proposed optimization method reduces the average execution time by nearly 70% compared to the nonlinear alternative, validating its computational efficiency and practical applicability. Full article
Show Figures

Figure 1

28 pages, 5208 KiB  
Article
ORC System Temperature and Evaporation Pressure Control Based on DDPG-MGPC
by Jing Li, Zexu Gao, Xi Zhou and Junyuan Zhang
Processes 2025, 13(7), 2314; https://doi.org/10.3390/pr13072314 - 21 Jul 2025
Viewed by 274
Abstract
The organic Rankine cycle (ORC) is a key technology for the recovery of low-grade waste heat, but its efficient and stable operation is challenged by complex kinetic coupling. This paper proposes a model partitioning strategy based on gap measurement to construct a high-fidelity [...] Read more.
The organic Rankine cycle (ORC) is a key technology for the recovery of low-grade waste heat, but its efficient and stable operation is challenged by complex kinetic coupling. This paper proposes a model partitioning strategy based on gap measurement to construct a high-fidelity ORC system model and combines the setting of observer decoupling and multi-model switching strategies to reduce the coupling impact and enhance adaptability. For control optimization, the reinforcement learning method of deep deterministic Policy Gradient (DDPG) is adopted to break through the limitations of the traditional discrete action space and achieve precise optimization in the continuous space. The proposed DDPG-MGPC (Hybrid Model Predictive Control) framework significantly enhances robustness and adaptability through the synergy of reinforcement learning and model prediction. Simulation shows that, compared with the existing hybrid reinforcement learning and MPC methods, DDPG-MGPC has better tracking performance and anti-interference ability under dynamic working conditions, providing a more efficient solution for the practical application of ORC. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

42 pages, 3736 KiB  
Article
Practical Application of Complementary Regulation Strategy of Run-of-River Small Hydropower and Distributed Photovoltaic Based on Multi-Scale Copula-MPC Algorithm
by Xianpin Zhu, Weibo Li, Shuai Cao and Wei Xu
Energies 2025, 18(14), 3833; https://doi.org/10.3390/en18143833 - 18 Jul 2025
Viewed by 201
Abstract
A novel multi-scale copula-based model predictive control (MPC) method is proposed to address the core regulation challenges of runoff hydropower and distributed photovoltaic systems within high-penetration renewable energy grids. Complex spatio-temporal complementarity under ecological constraints and the limitations of conventional methods were critically [...] Read more.
A novel multi-scale copula-based model predictive control (MPC) method is proposed to address the core regulation challenges of runoff hydropower and distributed photovoltaic systems within high-penetration renewable energy grids. Complex spatio-temporal complementarity under ecological constraints and the limitations of conventional methods were critically analyzed. The core innovation lies in integrating copula theory with MPC, enabling adaptive spatio-temporal optimization and weight adjustment to significantly enhance the efficiency of complementary regulation and overcome traditional performance bottlenecks. Key nonlinear dependencies of water–solar resources were investigated, and mainstream techniques (copula analysis, MPC, rolling optimization, adaptive weighting) were evaluated for their applicability. Future directions for improving modeling precision and intelligent adaptive control are outlined. Full article
Show Figures

Figure 1

22 pages, 2113 KiB  
Article
Tracking Control of Quadrotor Micro Aerial Vehicles Using Efficient Nonlinear Model Predictive Control with C/GMRES Optimization on Resource-Constrained Microcontrollers
by Dong-Min Lee, Jae-Hong Jung, Yeon-Su Sim and Gi-Woo Kim
Electronics 2025, 14(14), 2775; https://doi.org/10.3390/electronics14142775 - 10 Jul 2025
Viewed by 223
Abstract
This study investigates the tracking control of quadrotor micro aerial vehicles using nonlinear model predictive control (NMPC), with primary emphasis on the implementation of a real-time embedded control system. Apart from the limited memory size, one of the critical challenges is the limited [...] Read more.
This study investigates the tracking control of quadrotor micro aerial vehicles using nonlinear model predictive control (NMPC), with primary emphasis on the implementation of a real-time embedded control system. Apart from the limited memory size, one of the critical challenges is the limited processor speed on resource-constrained microcontroller units (MCUs). This technical issue becomes critical particularly when the maximum allowed computation time for real-time control exceeds 0.01 s, which is the typical sampling time required to ensure reliable control performance. To reduce the computational burden for NMPC, we first derive a nonlinear quadrotor model based on the quaternion number system rather than formulating nonlinear equations using conventional Euler angles. In addition, an implicit continuation generalized minimum residual optimization algorithm is designed for the fast computation of the optimal receding horizon control input. The proposed NMPC is extensively validated through rigorous simulations and experimental trials using Crazyflie 2.1®, an open-source flying development platform. Owing to the more precise prediction of the highly nonlinear quadrotor model, the proposed NMPC demonstrates that the tracking performance outperforms that of conventional linear MPCs. This study provides a basis and comprehensive guidelines for implementing the NMPC of nonlinear quadrotors on resource-constrained MCUs, with potential extensions to applications such as autonomous flight and obstacle avoidance. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

39 pages, 3301 KiB  
Review
A Systematic Review and Meta-Analysis of Model Predictive Control in Microgrids: Moving Beyond Traditional Methods
by Elnaz Yaghoubi, Elaheh Yaghoubi, Mohammad Reza Maghami, Javad Rahebi, Mehdi Zareian Jahromi, Raheleh Ghadami (Melisa Rahebi) and Ziyodulla Yusupov
Processes 2025, 13(7), 2197; https://doi.org/10.3390/pr13072197 - 9 Jul 2025
Viewed by 562
Abstract
Microgrids are gaining considerable attention as a promising solution for integrating distributed energy resources and enhancing grid resilience. Model predictive control (MPC) has emerged as a powerful control strategy for microgrids due to its ability to handle complex dynamics and optimization problems. This [...] Read more.
Microgrids are gaining considerable attention as a promising solution for integrating distributed energy resources and enhancing grid resilience. Model predictive control (MPC) has emerged as a powerful control strategy for microgrids due to its ability to handle complex dynamics and optimization problems. This study aims to conduct a comprehensive assessment of MPC applications and evaluate their overall effectiveness across various microgrid functionalities. Previous studies have not collectively examined MPC and have not explored its advantages and disadvantages in the microgrid. This study systematically categorizes and addresses this gap in the existing literature. An extensive list of suitable research papers was compiled from the Web of Science and analyzed, considering the method of the studies, main focus and objectives, publication year, and findings. Moreover, this research incorporates co-occurrence keyword analysis, covering MPC applications, systematic reviews, microgrids, and review articles. The visualization and analysis of the data obtained from the Web of Science database were conducted using VOS viewer. This discussion includes approaches that help electrical engineers evaluate the benefits and disadvantages of MPC within the microgrid setup. This knowledge enables electrical practitioners to select the appropriate methods for providing a resilient and reliable ecosystem. Full article
Show Figures

Figure 1

22 pages, 6123 KiB  
Article
Real-Time Proprioceptive Sensing Enhanced Switching Model Predictive Control for Quadruped Robot Under Uncertain Environment
by Sanket Lokhande, Yajie Bao, Peng Cheng, Dan Shen, Genshe Chen and Hao Xu
Electronics 2025, 14(13), 2681; https://doi.org/10.3390/electronics14132681 - 2 Jul 2025
Viewed by 480
Abstract
Quadruped robots have shown significant potential in disaster relief applications, where they have to navigate complex terrains for search and rescue or reconnaissance operations. However, their deployment is hindered by limited adaptability in highly uncertain environments, especially when relying solely on vision-based sensors [...] Read more.
Quadruped robots have shown significant potential in disaster relief applications, where they have to navigate complex terrains for search and rescue or reconnaissance operations. However, their deployment is hindered by limited adaptability in highly uncertain environments, especially when relying solely on vision-based sensors like cameras or LiDAR, which are susceptible to occlusions, poor lighting, and environmental interference. To address these limitations, this paper proposes a novel sensor-enhanced hierarchical switching model predictive control (MPC) framework that integrates proprioceptive sensing with a bi-level hybrid dynamic model. Unlike existing methods that either rely on handcrafted controllers or deep learning-based control pipelines, our approach introduces three core innovations: (1) a situation-aware, bi-level hybrid dynamic modeling strategy that hierarchically combines single-body rigid dynamics with distributed multi-body dynamics for modeling agility and scalability; (2) a three-layer hybrid control framework, including a terrain-aware switching MPC layer, a distributed torque controller, and a fast PD control loop for enhanced robustness during contact transitions; and (3) a multi-IMU-based proprioceptive feedback mechanism for terrain classification and adaptive gait control under sensor-occluded or GPS-denied environments. Together, these components form a unified and computationally efficient control scheme that addresses practical challenges such as limited onboard processing, unstructured terrain, and environmental uncertainty. A series of experimental results demonstrate that the proposed method outperforms existing vision- and learning-based controllers in terms of stability, adaptability, and control efficiency during high-speed locomotion over irregular terrain. Full article
(This article belongs to the Special Issue Smart Robotics and Autonomous Systems)
Show Figures

Figure 1

39 pages, 7348 KiB  
Review
Artificial Intelligence Control Methodologies for Shape Memory Alloy Actuators: A Systematic Review and Performance Analysis
by Stefano Rodinò, Giuseppe Rota, Matteo Chiodo, Antonio Corigliano and Carmine Maletta
Micromachines 2025, 16(7), 780; https://doi.org/10.3390/mi16070780 (registering DOI) - 30 Jun 2025
Viewed by 442
Abstract
Shape Memory Alloy (SMA) actuators are pivotal in modern engineering due to their unique thermomechanical properties, but their inherent non-linearities, hysteresis, and temperature sensitivity pose significant control challenges. This systematic review evaluates artificial intelligence (AI)-based control methodologies to address these limitations, analyzing their [...] Read more.
Shape Memory Alloy (SMA) actuators are pivotal in modern engineering due to their unique thermomechanical properties, but their inherent non-linearities, hysteresis, and temperature sensitivity pose significant control challenges. This systematic review evaluates artificial intelligence (AI)-based control methodologies to address these limitations, analyzing their efficacy in enhancing precision, adaptability, and reliability for SMA and Magnetic SMA (MSMA) systems. A PRISMA-guided literature review (2003–2025) identified 24 studies, which were categorized by control architectures (hybrid AI-linear, pure AI, adaptive, and model predictive control) and evaluated through quantitative metrics, including Root Mean Square Error (RMSE%) and a weighted scoring system for experimental rigor. Results revealed hybrid AI-linear controllers as the dominant approach (36%), with online-trained neural networks achieving superior accuracy (+2.4%) over offline methods. Feedforward neural networks outperformed recurrent architectures (+3.1%), while Model Predictive Control (MPC) excelled for SMA actuators (+5.8% accuracy) but underperformed for MSMAs (−7.7%). Sensorless strategies proved advantageous for MSMAs (+5.0%), leveraging intrinsic material properties like electrical resistance for state estimation. The analysis underscores AI’s capacity to mitigate hysteresis and non-linear dynamics, though material-specific optimization is critical: SMA systems favor dynamic control and MPC, whereas MSMAs benefit from sensorless AI and pure neural networks. Challenges persist in computational demands for online training and reinforcement learning’s exploration–exploitation trade-offs. Future research should prioritize adaptive algorithms for fatigue compensation, lightweight AI models for embedded deployment, and standardized benchmarking to bridge material-specific performance gaps. This synthesis establishes AI as a transformative paradigm for SMA actuation, enabling precise control in aerospace, biomedical, and soft robotics applications. Full article
Show Figures

Figure 1

22 pages, 4476 KiB  
Article
Real-Time Model Predictive Control for Two-Level Voltage Source Inverters with Optimized Switching Frequency
by Ariel Villalón, Claudio Burgos-Mellado, Marco Rivera, Rodrigo Zuloaga, Héctor Levis, Patrick Wheeler and Leidy Y. García
Appl. Sci. 2025, 15(13), 7365; https://doi.org/10.3390/app15137365 - 30 Jun 2025
Viewed by 370
Abstract
The increasing integration of renewable energy, electric vehicles, and industrial applications demands efficient power converter control strategies that reduce switching losses while maintaining high waveform quality. This paper presents a Finite-Control-Set Model Predictive Control (FCS-MPC) strategy for three-phase, two-level voltage source inverters (VSIs), [...] Read more.
The increasing integration of renewable energy, electric vehicles, and industrial applications demands efficient power converter control strategies that reduce switching losses while maintaining high waveform quality. This paper presents a Finite-Control-Set Model Predictive Control (FCS-MPC) strategy for three-phase, two-level voltage source inverters (VSIs), incorporating a secondary objective for switching frequency minimization. Unlike conventional MPC approaches, the proposed method optimally balances control performance and efficiency trade-offs by adjusting the weighting factor (λmin). Real-time implementation using the OPAL-RT platform validates the effectiveness of the approach under both linear and non-linear load conditions. Results demonstrate a significant reduction in switching losses, accompanied by improved waveform tracking; however, trade-offs in distortion are observed under non-linear load scenarios. These findings provide insights into the practical implementation of real-time predictive control strategies for high-performance power converters. Full article
(This article belongs to the Special Issue New Trends in Grid-Forming Inverters for the Power Grid)
Show Figures

Figure 1

15 pages, 4137 KiB  
Article
Improved Model Predictive Control Algorithm for the Path Tracking Control of Ship Autonomous Berthing
by Chunyu Song, Xiaomin Guo and Jianghua Sui
J. Mar. Sci. Eng. 2025, 13(7), 1273; https://doi.org/10.3390/jmse13071273 - 30 Jun 2025
Viewed by 339
Abstract
To address the issues of path tracking accuracy and control stability in autonomous ship berthing, an improved algorithm combining nonlinear model predictive control (NMPC) and convolutional neural networks (CNNs) is proposed in this paper. A CNN is employed to train on a large [...] Read more.
To address the issues of path tracking accuracy and control stability in autonomous ship berthing, an improved algorithm combining nonlinear model predictive control (NMPC) and convolutional neural networks (CNNs) is proposed in this paper. A CNN is employed to train on a large dataset of ship berthing trajectories, combined with the rolling optimization mechanism of NMPC. A high-precision path tracking control method is designed, which accounts for ship motion constraints and environmental disturbances. Simulation results show an 88.24% improvement in tracking precision over traditional MPC. This paper proposes an improved nonlinear model predictive control (NMPC) strategy for autonomous ship berthing. By integrating convolutional neural networks (CNNs) and moving horizon estimation (MHE), the method enhances robustness and path-tracking accuracy under environmental disturbances. The amount of system overshoot is reduced, and the anti-interference capability is notably improved. The effectiveness, generalization, and applicability of the proposed algorithm are verified. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

23 pages, 8091 KiB  
Article
Neural ODE-Based Dynamic Modeling and Predictive Control for Power Regulation in Distribution Networks
by Libin Wen, Jinji Xi, Hong Hu, Li Xiong, Guangling Lu and Tannan Xiao
Energies 2025, 18(13), 3419; https://doi.org/10.3390/en18133419 - 29 Jun 2025
Viewed by 324
Abstract
The increasing penetration of distributed energy resources (DERs) and power electronic loads challenges the modeling and control of modern distribution networks (DNs). The traditional models often fail to capture the complex aggregate dynamics required for advanced control strategies. This paper proposes a novel [...] Read more.
The increasing penetration of distributed energy resources (DERs) and power electronic loads challenges the modeling and control of modern distribution networks (DNs). The traditional models often fail to capture the complex aggregate dynamics required for advanced control strategies. This paper proposes a novel framework for DN power regulation based on Neural Ordinary Differential Equations (NODEs) and Model Predictive Control (MPC). NODEs are employed to develop a data-driven, continuous-time dynamic model capturing the aggregate relationship between the voltage at the point of common coupling (PCC) and the network’s power consumption, using only PCC measurements. Building upon this NODE model, an MPC strategy is designed to regulate the DN’s active power by manipulating the PCC voltage. To ensure computational tractability for real-time applications, a local linearization technique is applied to the NODE dynamics within the MPC, transforming the optimization problem into a standard Quadratic Programming (QP) problem that can be solved efficiently. The framework’s efficacy is comprehensively validated through simulations. The NODE model demonstrates high accuracy in predicting the dynamic behavior in a DN against a detailed simulator, with maximum relative errors below 0.35% for active power. The linearized NODE-MPC controller shows effective tracking performance, constraint handling, and computational efficiency, with typical QP solve times below 0.1 s within a 0.1 s control interval. The validation includes offline tests using the NODE model and online co-simulation studies using CloudPSS and Python via Redis. Application scenarios, including Conservation Voltage Reduction (CVR) and supply–demand balancing, further illustrate the practical potential of the proposed approach for enhancing the operation and efficiency of modern distribution networks. Full article
Show Figures

Figure 1

Back to TopTop