Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,952)

Search Parameters:
Keywords = mobility predictions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 369 KiB  
Article
A Novel Deep Learning Model for Predicting Colorectal Anastomotic Leakage: A Pioneer Multicenter Transatlantic Study
by Miguel Mascarenhas, Francisco Mendes, Filipa Fonseca, Eduardo Carvalho, Andre Santos, Daniela Cavadas, Guilherme Barbosa, Antonio Pinto da Costa, Miguel Martins, Abdullah Bunaiyan, Maísa Vasconcelos, Marley Ribeiro Feitosa, Shay Willoughby, Shakil Ahmed, Muhammad Ahsan Javed, Nilza Ramião, Guilherme Macedo and Manuel Limbert
J. Clin. Med. 2025, 14(15), 5462; https://doi.org/10.3390/jcm14155462 (registering DOI) - 3 Aug 2025
Abstract
Background/Objectives: Colorectal anastomotic leak (CAL) is one of the most severe postoperative complications in colorectal surgery, impacting patient morbidity and mortality. Current risk assessment methods rely on clinical and intraoperative factors, but no real-time predictive tool exists. This study aimed to develop [...] Read more.
Background/Objectives: Colorectal anastomotic leak (CAL) is one of the most severe postoperative complications in colorectal surgery, impacting patient morbidity and mortality. Current risk assessment methods rely on clinical and intraoperative factors, but no real-time predictive tool exists. This study aimed to develop an artificial intelligence model based on intraoperative laparoscopic recording of the anastomosis for CAL prediction. Methods: A convolutional neural network (CNN) was trained with annotated frames from colorectal surgery videos across three international high-volume centers (Instituto Português de Oncologia de Lisboa, Hospital das Clínicas de Ribeirão Preto, and Royal Liverpool University Hospital). The dataset included a total of 5356 frames from 26 patients, 2007 with CAL and 3349 showing normal anastomosis. Four CNN architectures (EfficientNetB0, EfficientNetB7, ResNet50, and MobileNetV2) were tested. The models’ performance was evaluated using their sensitivity, specificity, accuracy, and area under the receiver operating characteristic (AUROC) curve. Heatmaps were generated to identify key image regions influencing predictions. Results: The best-performing model achieved an accuracy of 99.6%, AUROC of 99.6%, sensitivity of 99.2%, specificity of 100.0%, PPV of 100.0%, and NPV of 98.9%. The model reliably identified CAL-positive frames and provided visual explanations through heatmaps. Conclusions: To our knowledge, this is the first AI model developed to predict CAL using intraoperative video analysis. Its accuracy suggests the potential to redefine surgical decision-making by providing real-time risk assessment. Further refinement with a larger dataset and diverse surgical techniques could enable intraoperative interventions to prevent CAL before it occurs, marking a paradigm shift in colorectal surgery. Full article
(This article belongs to the Special Issue Updates in Digestive Diseases and Endoscopy)
28 pages, 4634 KiB  
Article
Predicting the Next Location of Urban Individuals via a Representation-Enhanced Multi-View Learning Network
by Maoqi Lun, Peixiao Wang, Sheng Wu, Hengcai Zhang, Shifen Cheng and Feng Lu
ISPRS Int. J. Geo-Inf. 2025, 14(8), 302; https://doi.org/10.3390/ijgi14080302 (registering DOI) - 2 Aug 2025
Abstract
Accurately predicting the next location of urban individuals is a central issue in human mobility research. Human mobility exhibits diverse patterns, requiring the integration of spatiotemporal contexts for location prediction. In this context, multi-view learning has become a prominent method in location prediction. [...] Read more.
Accurately predicting the next location of urban individuals is a central issue in human mobility research. Human mobility exhibits diverse patterns, requiring the integration of spatiotemporal contexts for location prediction. In this context, multi-view learning has become a prominent method in location prediction. Despite notable advances, current methods still face challenges in effectively capturing non-spatial proximity of regional preferences, complex temporal periodicity, and the ambiguity of location semantics. To address these challenges, we propose a representation-enhanced multi-view learning network (ReMVL-Net) for location prediction. Specifically, we propose a community-enhanced spatial representation that transcends geographic proximity to capture latent mobility patterns. In addition, we introduce a multi-granular enhanced temporal representation to model the multi-level periodicity of human mobility and design a rule-based semantic recognition method to enrich location semantics. We evaluate the proposed model using mobile phone data from Fuzhou. Experimental results show a 2.94% improvement in prediction accuracy over the best-performing baseline. Further analysis reveals that community space plays a key role in narrowing the candidate location set. Moreover, we observe that prediction difficulty is strongly influenced by individual travel behaviors, with more regular activity patterns being easier to predict. Full article
24 pages, 3172 KiB  
Article
A DDPG-LSTM Framework for Optimizing UAV-Enabled Integrated Sensing and Communication
by Xuan-Toan Dang, Joon-Soo Eom, Binh-Minh Vu and Oh-Soon Shin
Drones 2025, 9(8), 548; https://doi.org/10.3390/drones9080548 (registering DOI) - 1 Aug 2025
Abstract
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users [...] Read more.
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users (UEs) and perform radar-based sensing tasks. A key challenge stems from the target position uncertainty due to movement, which impairs matched filtering and beamforming, thereby degrading both uplink reception and sensing performance. Moreover, UAV energy consumption associated with mobility must be considered to ensure energy-efficient operation. We aim to jointly maximize radar sensing accuracy and minimize UAV movement energy over multiple time steps, while maintaining reliable uplink communications. To address this multi-objective optimization, we propose a deep reinforcement learning (DRL) framework based on a long short-term memory (LSTM)-enhanced deep deterministic policy gradient (DDPG) network. By leveraging historical target trajectory data, the model improves prediction of target positions, enhancing sensing accuracy. The proposed DRL-based approach enables joint optimization of UAV trajectory and uplink power control over time. Extensive simulations validate that our method significantly improves communication quality and sensing performance, while ensuring energy-efficient UAV operation. Comparative results further confirm the model’s adaptability and robustness in dynamic environments, outperforming existing UAV trajectory planning and resource allocation benchmarks. Full article
Show Figures

Figure 1

17 pages, 1021 KiB  
Article
Association Between Stiffness of the Deep Fibres of the Tibialis Anterior Muscle and Seiza Posture Performance After Ankle Fracture Surgery
by Hayato Miyasaka, Bungo Ebihara, Takashi Fukaya, Koichi Iwai, Shigeki Kubota and Hirotaka Mutsuzaki
J. Funct. Morphol. Kinesiol. 2025, 10(3), 300; https://doi.org/10.3390/jfmk10030300 (registering DOI) - 1 Aug 2025
Abstract
Background: Seiza, a traditional sitting posture requiring deep ankle plantarflexion and knee flexion, often becomes difficult after ankle fracture surgery because of restricted mobility. Increased stiffness of the tibialis anterior (TA) muscle, particularly in its deep and superficial fibres, may limit [...] Read more.
Background: Seiza, a traditional sitting posture requiring deep ankle plantarflexion and knee flexion, often becomes difficult after ankle fracture surgery because of restricted mobility. Increased stiffness of the tibialis anterior (TA) muscle, particularly in its deep and superficial fibres, may limit plantarflexion and affect functional recovery. This study aimed to investigate the relationship between TA muscle stiffness, assessed using shear wave elastography (SWE), and the ability to assume the seiza posture after ankle fracture surgery. We also sought to determine whether the stiffness in the deep or superficial TA fibres was more strongly correlated with seiza ability. Methods: In this cross-sectional study, 38 patients who underwent open reduction and internal fixation for ankle fractures were evaluated 3 months postoperatively. Seiza ability was assessed using the ankle plantarflexion angle and heel–buttock distance. The shear moduli of the superficial and deep TA fibres were measured using SWE. Ankle range of motion, muscle strength, and self-reported seiza pain were also measured. Multiple linear regression was used to identify the predictors of seiza performance. Results: The shear moduli of both deep (β = −0.454, p < 0.001) and superficial (β = −0.339, p = 0.017) TA fibres independently predicted ankle plantarflexion angle during seiza (adjusted R2, 0.624). Pain during seiza was significantly associated with reduced plantarflexion, whereas muscle strength was not a significant predictor. Conclusions: TA muscle stiffness, especially in the deep fibres, was significantly associated with limited postoperative seiza performance. Targeted interventions that reduce deep TA stiffness may enhance functional outcomes. Full article
(This article belongs to the Section Functional Anatomy and Musculoskeletal System)
34 pages, 434 KiB  
Article
Mobile Banking Adoption: A Multi-Factorial Study on Social Influence, Compatibility, Digital Self-Efficacy, and Perceived Cost Among Generation Z Consumers in the United States
by Santosh Reddy Addula
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 192; https://doi.org/10.3390/jtaer20030192 (registering DOI) - 1 Aug 2025
Viewed by 39
Abstract
The introduction of mobile banking is essential in today’s financial sector, where technological innovation plays a critical role. To remain competitive in the current market, businesses must analyze client attitudes and perspectives, as these influence long-term demand and overall profitability. While previous studies [...] Read more.
The introduction of mobile banking is essential in today’s financial sector, where technological innovation plays a critical role. To remain competitive in the current market, businesses must analyze client attitudes and perspectives, as these influence long-term demand and overall profitability. While previous studies have explored general adoption behaviors, limited research has examined how individual factors such as social influence, lifestyle compatibility, financial technology self-efficacy, and perceived usage cost affect mobile banking adoption among specific generational cohorts. This study addresses that gap by offering insights into these variables, contributing to the growing literature on mobile banking adoption, and presenting actionable recommendations for financial institutions targeting younger market segments. Using a structured questionnaire survey, data were collected from both users and non-users of mobile banking among the Gen Z population in the United States. The regression model significantly predicts mobile banking adoption, with an intercept of 0.548 (p < 0.001). Among the independent variables, perceived cost of usage has the strongest positive effect on adoption (B=0.857, β=0.722, p < 0.001), suggesting that adoption increases when mobile banking is perceived as more affordable. Social influence also has a significant positive impact (B=0.642, β=0.643, p < 0.001), indicating that peer influence is a central driver of adoption decisions. However, self-efficacy shows a significant negative relationship (B=0.343, β=0.339, p < 0.001), and lifestyle compatibility was found to be statistically insignificant (p=0.615). These findings suggest that reducing perceived costs, through lower fees, data bundling, or clearer communication about affordability, can directly enhance adoption among Gen Z consumers. Furthermore, leveraging peer influence via referral rewards, Partnerships with influencers, and in-app social features can increase user adoption. Since digital self-efficacy presents a barrier for some, banks should prioritize simplifying user interfaces and offering guided assistance, such as tutorials or chat-based support. Future research may employ longitudinal designs or analyze real-life transaction data for a more objective understanding of behavior. Additional variables like trust, perceived risk, and regulatory policies, not included in this study, should be integrated into future models to offer a more comprehensive analysis. Full article
27 pages, 4070 KiB  
Article
Quantum Transport in GFETs Combining Landauer–Büttiker Formalism with Self-Consistent Schrödinger–Poisson Solutions
by Modesto Herrera-González, Jaime Martínez-Castillo, Pedro J. García-Ramírez, Enrique Delgado-Alvarado, Pedro Mabil-Espinosa, Jairo C. Nolasco-Montaño and Agustín L. Herrera-May
Technologies 2025, 13(8), 333; https://doi.org/10.3390/technologies13080333 (registering DOI) - 1 Aug 2025
Viewed by 46
Abstract
The unique properties of graphene have allowed for the development of graphene-based field-effect transistors (GFETs) for applications in biosensors and chemical devices. However, the modeling and optimization of GFET performance exhibit great challenges. Herein, we propose a quantum transport simulation model for graphene-based [...] Read more.
The unique properties of graphene have allowed for the development of graphene-based field-effect transistors (GFETs) for applications in biosensors and chemical devices. However, the modeling and optimization of GFET performance exhibit great challenges. Herein, we propose a quantum transport simulation model for graphene-based field-effect transistors (GFETs) implemented in the open-source Octave programming language. The proposed simulation model (named SimQ) combines the Landauer–Büttiker formalism with self-consistent Schrödinger–Poisson solutions, enabling reliable simulations of transport phenomena. Our approach agrees well with established models, achieving Landauer–Büttiker transmission and tunneling transmission of 0.28 and 0.92, respectively, which are validated against experimental data. The model can predict key GFET characteristics, including carrier mobilities (500–4000 cm2/V·s), quantum capacitance effects, and high-frequency operation (80–100 GHz). SimQ offers detailed insights into charge distribution and wave function evolution, achieving an enhanced computational efficiency through optimized algorithms. Our work contributes to the modeling of graphene-based field-effect transistors, providing a flexible and accessible simulation platform for designing and optimizing GFETs with potential applications in the next generation of electronic devices. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Figure 1

15 pages, 1758 KiB  
Article
Optimized Si-H Content and Multivariate Engineering of PMHS Antifoamers for Superior Foam Suppression in High-Viscosity Systems
by Soyeon Kim, Changchun Liu, Junyao Huang, Xiang Feng, Hong Sun, Xiaoli Zhan, Mingkui Shi, Hongzhen Bai and Guping Tang
Coatings 2025, 15(8), 894; https://doi.org/10.3390/coatings15080894 (registering DOI) - 1 Aug 2025
Viewed by 124
Abstract
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D [...] Read more.
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D30T1), and terminal group chemistry (H- vs. M-type). These structural modifications resulted in a broad range of Si-H functionalities, which were quantitatively analyzed and correlated with defoaming performance. The PMHS matrices were integrated with high-viscosity PDMS, a nonionic surfactant, and covalently grafted fumed silica—which was chemically matched to each PMHS backbone—to construct formulation-specific defoaming systems with enhanced interfacial compatibility and colloidal stability. Comprehensive physicochemical characterization via FT-IR, 1H NMR, GPC, TGA, and surface tension analysis revealed a nonmonotonic relationship between Si-H content and defoaming efficiency. Formulations containing 0.1–0.3 wt% Si-H achieved peak performance, with suppression efficiencies up to 96.6% and surface tensions as low as 18.9 mN/m. Deviations from this optimal range impaired performance due to interfacial over-reactivity or reduced mobility. Furthermore, thermal stability and molecular weight distribution were found to be governed by repeat unit architecture and terminal group selection. Compared with conventional EO/PO-modified commercial defoamers, the PMHS-based systems exhibited markedly improved suppression durability and formulation stability in high-viscosity environments. These results establish a predictive structure–property framework for tailoring antifoaming agents and highlight PMHS-based formulations as advanced foam suppressors with improved functionality. This study provides actionable design criteria for high-performance silicone materials with strong potential for application in thermally and mechanically demanding environments such as coating, bioprocessing, and polymer manufacturing. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Graphical abstract

22 pages, 10557 KiB  
Article
The RF–Absolute Gradient Method for Localizing Wheat Moisture Content’s Abnormal Regions with 2D Microwave Scanning Detection
by Dong Dai, Zhenyu Wang, Hao Huang, Xu Mao, Yehong Liu, Hao Li and Du Chen
Agriculture 2025, 15(15), 1649; https://doi.org/10.3390/agriculture15151649 - 31 Jul 2025
Viewed by 151
Abstract
High moisture content (MC) harms wheat storage quality and readily leads to mold growth. Accurate localization of abnormal/high-moisture regions enables early warning, ensuring proper storage and reducing economic losses. The present study introduces the 2D microwave scanning method and investigates a novel localization [...] Read more.
High moisture content (MC) harms wheat storage quality and readily leads to mold growth. Accurate localization of abnormal/high-moisture regions enables early warning, ensuring proper storage and reducing economic losses. The present study introduces the 2D microwave scanning method and investigates a novel localization method for addressing such a challenge. Both static and scanning experiments were performed on a developed mobile and non-destructive microwave detection system to quantify the MC of wheat and then locate abnormal moisture regions. For quantifying the wheat’s MC, a dual-parameter wheat MC prediction model with the random forest (RF) algorithm was constructed, achieving a high accuracy (R2 = 0.9846, MSE = 0.2768, MAE = 0.3986). MC scanning experiments were conducted by synchronized moving waveguides; the maximum absolute error of MC prediction was 0.565%, with a maximum relative error of 3.166%. Furthermore, both one- and two-dimensional localizing methods were proposed for localizing abnormal moisture regions. The one-dimensional method evaluated two approaches—attenuation value and absolute attenuation gradient—using computer simulation technology (CST) modeling and scanning experiments. The experimental results confirmed the superior performance of the absolute gradient method, with a center detection error of less than 12 mm in the anomalous wheat moisture region and a minimum width detection error of 1.4 mm. The study performed two-dimensional antenna scanning and effectively imaged the high-MC regions using phase delay analysis. The imaging results coincide with the actual locations of moisture anomaly regions. This study demonstrated a promising solution for accurately localizing the wheat’s abnormal/high-moisture regions with the use of an emerging microwave transmission method. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

15 pages, 10795 KiB  
Article
DigiHortiRobot: An AI-Driven Digital Twin Architecture for Hydroponic Greenhouse Horticulture with Dual-Arm Robotic Automation
by Roemi Fernández, Eduardo Navas, Daniel Rodríguez-Nieto, Alain Antonio Rodríguez-González and Luis Emmi
Future Internet 2025, 17(8), 347; https://doi.org/10.3390/fi17080347 (registering DOI) - 31 Jul 2025
Viewed by 132
Abstract
The integration of digital twin technology with robotic automation holds significant promise for advancing sustainable horticulture in controlled environment agriculture. This article presents DigiHortiRobot, a novel AI-driven digital twin architecture tailored for hydroponic greenhouse systems. The proposed framework integrates real-time sensing, predictive modeling, [...] Read more.
The integration of digital twin technology with robotic automation holds significant promise for advancing sustainable horticulture in controlled environment agriculture. This article presents DigiHortiRobot, a novel AI-driven digital twin architecture tailored for hydroponic greenhouse systems. The proposed framework integrates real-time sensing, predictive modeling, task planning, and dual-arm robotic execution within a modular, IoT-enabled infrastructure. DigiHortiRobot is structured into three progressive implementation phases: (i) monitoring and data acquisition through a multimodal perception system; (ii) decision support and virtual simulation for scenario analysis and intervention planning; and (iii) autonomous execution with feedback-based model refinement. The Physical Layer encompasses crops, infrastructure, and a mobile dual-arm robot; the virtual layer incorporates semantic modeling and simulation environments; and the synchronization layer enables continuous bi-directional communication via a nine-tier IoT architecture inspired by FIWARE standards. A robot task assignment algorithm is introduced to support operational autonomy while maintaining human oversight. The system is designed to optimize horticultural workflows such as seeding and harvesting while allowing farmers to interact remotely through cloud-based interfaces. Compared to previous digital agriculture approaches, DigiHortiRobot enables closed-loop coordination among perception, simulation, and action, supporting real-time task adaptation in dynamic environments. Experimental validation in a hydroponic greenhouse confirmed robust performance in both seeding and harvesting operations, achieving over 90% accuracy in localizing target elements and successfully executing planned tasks. The platform thus provides a strong foundation for future research in predictive control, semantic environment modeling, and scalable deployment of autonomous systems for high-value crop production. Full article
(This article belongs to the Special Issue Advances in Smart Environments and Digital Twin Technologies)
Show Figures

Figure 1

14 pages, 1980 KiB  
Review
Ultrasound in Adhesive Capsulitis: A Narrative Exploration from Static Imaging to Contrast-Enhanced, Dynamic and Sonoelastographic Insights
by Wei-Ting Wu, Ke-Vin Chang, Kamal Mezian, Vincenzo Ricci, Consuelo B. Gonzalez-Suarez and Levent Özçakar
Diagnostics 2025, 15(15), 1924; https://doi.org/10.3390/diagnostics15151924 - 31 Jul 2025
Viewed by 160
Abstract
Adhesive capsulitis is a painful and progressive condition marked by significant limitations in shoulder mobility, particularly affecting external rotation. Although magnetic resonance imaging is regarded as the reference standard for assessing intra-articular structures, its high cost and limited availability present challenges in routine [...] Read more.
Adhesive capsulitis is a painful and progressive condition marked by significant limitations in shoulder mobility, particularly affecting external rotation. Although magnetic resonance imaging is regarded as the reference standard for assessing intra-articular structures, its high cost and limited availability present challenges in routine clinical use. In contrast, musculoskeletal ultrasound has emerged as an accessible, real-time, and cost-effective imaging modality for both the diagnosis and treatment guidance of adhesive capsulitis. This narrative review compiles and illustrates current evidence regarding the role of ultrasound, encompassing static B-mode imaging, dynamic motion analysis, contrast-enhanced techniques, and sonoelastography. Key sonographic features—such as thickening of the coracohumeral ligament, fibrosis in the axillary recess, and abnormal tendon kinematics—have been consistently associated with adhesive capsulitis and demonstrate favorable diagnostic performance. Advanced methods like contrast-enhanced ultrasound and elastography provide additional functional insights (enabling evaluation of capsular stiffness and vascular changes) which may aid in disease staging and prediction of treatment response. Despite these advantages, the clinical utility of ultrasound remains subject to operator expertise and technical variability. Limited visualization of intra-articular structures and the absence of standardized scanning protocols continue to pose challenges. Nevertheless, ongoing advances in its technology and utility standardization hold promise for the broader application of ultrasound in clinical practice. With continued research and validation, ultrasound is positioned to play an increasingly central role in the comprehensive assessment and management of adhesive capsulitis. Full article
Show Figures

Figure 1

24 pages, 2854 KiB  
Article
Autonomous Trajectory Control for Quadrotor eVTOL in Hover and Low-Speed Flight via the Integration of Model Predictive and Following Control
by Yeping Wang, Honglei Ji, Qingyu Kang, Haotian Qi and Jinghan Wen
Drones 2025, 9(8), 537; https://doi.org/10.3390/drones9080537 - 30 Jul 2025
Viewed by 132
Abstract
This paper proposes a novel hierarchical control architecture that combines Model Predictive Control (MPC) with Explicit Model-Following Control (EMFC) to enable accurate and efficient trajectory tracking for quadrotor electric Vertical Takeoff and Landing (eVTOL) aircraft operating in urban environments. The approach addresses the [...] Read more.
This paper proposes a novel hierarchical control architecture that combines Model Predictive Control (MPC) with Explicit Model-Following Control (EMFC) to enable accurate and efficient trajectory tracking for quadrotor electric Vertical Takeoff and Landing (eVTOL) aircraft operating in urban environments. The approach addresses the challenges of strong nonlinear dynamics, multi-axis coupling, and stringent safety constraints by separating the planning task from the fast-response control task. The MPC layer generates constrained velocity and yaw rate commands based on a simplified inertial prediction model, effectively reducing computational complexity while accounting for physical and operational limits. The EMFC layer then compensates for dynamic couplings and ensures the rapid execution of commands. A high-fidelity simulation model, incorporating rotor flapping dynamics, differential collective pitch control, and enhanced aerodynamic interference effects, is developed to validate the controller. Four representative ADS-33E-PRF tasks—Hover, Hovering Turn, Pirouette, and Vertical Maneuver—are simulated. Results demonstrate that the proposed controller achieves accurate trajectory tracking, stable flight performance, and full compliance with ADS-33E-PRF criteria, highlighting its potential for autonomous urban air mobility applications. Full article
Show Figures

Figure 1

19 pages, 3297 KiB  
Article
Secrecy Rate Maximization via Joint Robust Beamforming and Trajectory Optimization for Mobile User in ISAC-UAV System
by Lvxin Xu, Zhi Zhang and Liuguo Yin
Drones 2025, 9(8), 536; https://doi.org/10.3390/drones9080536 - 30 Jul 2025
Viewed by 106
Abstract
Unmanned aerial vehicles (UAVs) have emerged as a promising platform for integrated sensing and communication (ISAC) due to their mobility and deployment flexibility. By adaptively adjusting their flight trajectories, UAVs can maintain favorable line-of-sight (LoS) communication links and sensing angles, thus enhancing overall [...] Read more.
Unmanned aerial vehicles (UAVs) have emerged as a promising platform for integrated sensing and communication (ISAC) due to their mobility and deployment flexibility. By adaptively adjusting their flight trajectories, UAVs can maintain favorable line-of-sight (LoS) communication links and sensing angles, thus enhancing overall system performance in dynamic and complex environments. However, ensuring physical layer security (PLS) in such UAV-assisted ISAC systems remains a significant challenge, particularly in the presence of mobile users and potential eavesdroppers. This manuscript proposes a joint optimization framework that simultaneously designs robust transmit beamforming and UAV trajectories to secure downlink communication for multiple ground users. At each time slot, the UAV predicts user positions and maximizes the secrecy sum-rate, subject to constraints on total transmit power, multi-target sensing quality, and UAV mobility. To tackle this non-convex problem, we develop an efficient optimization algorithm based on successive convex approximation (SCA) and constrained optimization by linear approximations (COBYLA). Numerical simulations validate that the proposed framework effectively enhances the secrecy performance while maintaining high-quality sensing, achieving near-optimal performance under realistic system constraints. Full article
Show Figures

Figure 1

28 pages, 4007 KiB  
Article
Voting-Based Classification Approach for Date Palm Health Detection Using UAV Camera Images: Vision and Learning
by Abdallah Guettaf Temam, Mohamed Nadour, Lakhmissi Cherroun, Ahmed Hafaifa, Giovanni Angiulli and Fabio La Foresta
Drones 2025, 9(8), 534; https://doi.org/10.3390/drones9080534 - 29 Jul 2025
Viewed by 206
Abstract
In this study, we introduce the application of deep learning (DL) models, specifically convolutional neural networks (CNNs), for detecting the health status of date palm leaves using images captured by an unmanned aerial vehicle (UAV). The images are modeled using the Newton–Euler method [...] Read more.
In this study, we introduce the application of deep learning (DL) models, specifically convolutional neural networks (CNNs), for detecting the health status of date palm leaves using images captured by an unmanned aerial vehicle (UAV). The images are modeled using the Newton–Euler method to ensure stability and accurate image acquisition. These deep learning models are implemented by a voting-based classification (VBC) system that combines multiple CNN architectures, including MobileNet, a handcrafted CNN, VGG16, and VGG19, to enhance classification accuracy and robustness. The classifiers independently generate predictions, and a voting mechanism determines the final classification. This hybridization of image-based visual servoing (IBVS) and classifiers makes immediate adaptations to changing conditions, providing straightforward and smooth flying as well as vision classification. The dataset used in this study was collected using a dual-camera UAV, which captures high-resolution images to detect pests in date palm leaves. After applying the proposed classification strategy, the implemented voting method achieved an impressive accuracy of 99.16% on the test set for detecting health conditions in date palm leaves, surpassing individual classifiers. The obtained results are discussed and compared to show the effectiveness of this classification technique. Full article
Show Figures

Figure 1

18 pages, 3269 KiB  
Article
Long-Term Traffic Prediction Using Deep Learning Long Short-Term Memory
by Ange-Lionel Toba, Sameer Kulkarni, Wael Khallouli and Timothy Pennington
Smart Cities 2025, 8(4), 126; https://doi.org/10.3390/smartcities8040126 - 29 Jul 2025
Viewed by 427
Abstract
Traffic conditions are a key factor in our society, contributing to quality of life and the economy, as well as access to professional, educational, and health resources. This emphasizes the need for a reliable road network to facilitate traffic fluidity across the nation [...] Read more.
Traffic conditions are a key factor in our society, contributing to quality of life and the economy, as well as access to professional, educational, and health resources. This emphasizes the need for a reliable road network to facilitate traffic fluidity across the nation and improve mobility. Reaching these characteristics demands good traffic volume prediction methods, not only in the short term but also in the long term, which helps design transportation strategies and road planning. However, most of the research has focused on short-term prediction, applied mostly to short-trip distances, while effective long-term forecasting, which has become a challenging issue in recent years, is lacking. The team proposes a traffic prediction method that leverages K-means clustering, long short-term memory (LSTM) neural network, and Fourier transform (FT) for long-term traffic prediction. The proposed method was evaluated on a real-world dataset from the U.S. Travel Monitoring Analysis System (TMAS) database, which enhances practical relevance and potential impact on transportation planning and management. The forecasting performance is evaluated with real-world traffic flow data in the state of California, in the western USA. Results show good forecasting accuracy on traffic trends and counts over a one-year period, capturing periodicity and variation. Full article
(This article belongs to the Collection Smart Governance and Policy)
Show Figures

Figure 1

28 pages, 2959 KiB  
Article
Trajectory Prediction and Decision Optimization for UAV-Assisted VEC Networks: An Integrated LSTM-TD3 Framework
by Jiahao Xie and Hao Hao
Information 2025, 16(8), 646; https://doi.org/10.3390/info16080646 - 29 Jul 2025
Viewed by 114
Abstract
With the rapid development of intelligent transportation systems (ITSs) and Internet of Things (IoT), vehicle-mounted edge computing (VEC) networks are facing the challenge of handling increasingly growing computation-intensive and latency-sensitive tasks. In the UAV-assisted VEC network, by introducing mobile edge servers, the coverage [...] Read more.
With the rapid development of intelligent transportation systems (ITSs) and Internet of Things (IoT), vehicle-mounted edge computing (VEC) networks are facing the challenge of handling increasingly growing computation-intensive and latency-sensitive tasks. In the UAV-assisted VEC network, by introducing mobile edge servers, the coverage of ground infrastructure is effectively supplemented. However, there is still the problem of decision-making lag in a highly dynamic environment. This paper proposes a deep reinforcement learning framework based on the long short-term memory (LSTM) network for trajectory prediction to optimize resource allocation in UAV-assisted VEC networks. Uniquely integrating vehicle trajectory prediction with the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, this framework enables proactive computation offloading and UAV trajectory planning. Specifically, we design an LSTM network with an attention mechanism to predict the future trajectory of vehicles and integrate the prediction results into the optimization decision-making process. We propose state smoothing and data augmentation techniques to improve training stability and design a multi-objective optimization model that incorporates the Age of Information (AoI), energy consumption, and resource leasing costs. The simulation results show that compared with existing methods, the method proposed in this paper significantly reduces the total system cost, improves the information freshness, and exhibits better environmental adaptability and convergence performance under various network conditions. Full article
Show Figures

Figure 1

Back to TopTop