Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (483)

Search Parameters:
Keywords = mobile radio networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2500 KiB  
Article
Deep Learning-Based Optical Camera Communication with a 2D MIMO-OOK Scheme for IoT Networks
by Huy Nguyen and Yeng Min Jang
Electronics 2025, 14(15), 3011; https://doi.org/10.3390/electronics14153011 - 29 Jul 2025
Viewed by 344
Abstract
Radio frequency (RF)-based wireless systems are broadly used in communication systems such as mobile networks, satellite links, and monitoring applications. These systems offer outstanding advantages over wired systems, particularly in terms of ease of installation. However, researchers are looking for safer alternatives as [...] Read more.
Radio frequency (RF)-based wireless systems are broadly used in communication systems such as mobile networks, satellite links, and monitoring applications. These systems offer outstanding advantages over wired systems, particularly in terms of ease of installation. However, researchers are looking for safer alternatives as a result of worries about possible health problems connected to high-frequency radiofrequency transmission. Using the visible light spectrum is one promising approach; three cutting-edge technologies are emerging in this regard: Optical Camera Communication (OCC), Light Fidelity (Li-Fi), and Visible Light Communication (VLC). In this paper, we propose a Multiple-Input Multiple-Output (MIMO) modulation technology for Internet of Things (IoT) applications, utilizing an LED array and time-domain on-off keying (OOK). The proposed system is compatible with both rolling shutter and global shutter cameras, including commercially available models such as CCTV, webcams, and smart cameras, commonly deployed in buildings and industrial environments. Despite the compact size of the LED array, we demonstrate that, by optimizing parameters such as exposure time, camera focal length, and channel coding, our system can achieve up to 20 communication links over a 20 m distance with low bit error rate. Full article
(This article belongs to the Special Issue Advances in Optical Communications and Optical Networks)
Show Figures

Figure 1

21 pages, 11260 KiB  
Article
GaN HEMT Oscillators with Buffers
by Sheng-Lyang Jang, Ching-Yen Huang, Tzu Chin Yang and Chien-Tang Lu
Micromachines 2025, 16(8), 869; https://doi.org/10.3390/mi16080869 - 28 Jul 2025
Viewed by 257
Abstract
With their superior switching speed, GaN high-electron-mobility transistors (HEMTs) enable high power density, reduce energy losses, and increase power efficiency in a wide range of applications, such as power electronics, due to their high breakdown voltage. GaN-HEMT devices are subject to long-term reliability [...] Read more.
With their superior switching speed, GaN high-electron-mobility transistors (HEMTs) enable high power density, reduce energy losses, and increase power efficiency in a wide range of applications, such as power electronics, due to their high breakdown voltage. GaN-HEMT devices are subject to long-term reliability due to the self-heating effect and lattice mismatch between the SiC substrate and the GaN. Depletion-mode GaN HEMTs are utilized for radio frequency applications, and this work investigates three wide-bandgap (WBG) GaN HEMT fixed-frequency oscillators with output buffers. The first GaN-on-SiC HEMT oscillator consists of an HEMT amplifier with an LC feedback network. With the supply voltage of 0.8 V, the single-ended GaN oscillator can generate a signal at 8.85 GHz, and it also supplies output power of 2.4 dBm with a buffer supply of 3.0 V. At 1 MHz frequency offset from the carrier, the phase noise is −124.8 dBc/Hz, and the figure of merit (FOM) of the oscillator is −199.8 dBc/Hz. After the previous study, the hot-carrier stressed RF performance of the GaN oscillator is studied, and the oscillator was subject to a drain supply of 8 V for a stressing step time equal to 30 min and measured at the supply voltage of 0.8 V after the step operation for performance benchmark. Stress study indicates the power oscillator with buffer is a good structure for a reliable structure by operating the oscillator core at low supply and the buffer at high supply. The second balanced oscillator can generate a differential signal. The feedback filter consists of a left-handed transmission-line LC network by cascading three unit cells. At a 1 MHz frequency offset from the carrier of 3.818 GHz, the phase noise is −131.73 dBc/Hz, and the FOM of the 2nd oscillator is −188.4 dBc/Hz. High supply voltage operation shows phase noise degradation. The third GaN cross-coupled VCO uses 8-shaped inductors. The VCO uses a pair of drain inductors to improve the Q-factor of the LC tank, and it uses 8-shaped inductors for magnetic coupling noise suppression. At the VCO-core supply of 1.3 V and high buffer supply, the FOM at 6.397 GHz is −190.09 dBc/Hz. This work enhances the design techniques for reliable GaN HEMT oscillators and knowledge to design high-performance circuits. Full article
(This article belongs to the Special Issue Research Trends of RF Power Devices)
Show Figures

Figure 1

23 pages, 5644 KiB  
Article
Exploring the Performance of Transparent 5G NTN Architectures Based on Operational Mega-Constellations
by Oscar Baselga, Anna Calveras and Joan Adrià Ruiz-de-Azua
Network 2025, 5(3), 25; https://doi.org/10.3390/network5030025 - 18 Jul 2025
Viewed by 315
Abstract
The evolution of 3GPP non-terrestrial networks (NTNs) is enabling new avenues for broadband connectivity via satellite, especially within the scope of 5G. The parallel rise in satellite mega-constellations has further fueled efforts toward ubiquitous global Internet access. This convergence has fostered collaboration between [...] Read more.
The evolution of 3GPP non-terrestrial networks (NTNs) is enabling new avenues for broadband connectivity via satellite, especially within the scope of 5G. The parallel rise in satellite mega-constellations has further fueled efforts toward ubiquitous global Internet access. This convergence has fostered collaboration between mobile network operators and satellite providers, allowing the former to leverage mature space infrastructure and the latter to integrate with terrestrial mobile standards. However, integrating these technologies presents significant architectural challenges. This study investigates 5G NTN architectures using satellite mega-constellations, focusing on transparent architectures where Starlink is employed to relay the backhaul, midhaul, and new radio (NR) links. The performance of these architectures is assessed through a testbed utilizing OpenAirInterface (OAI) and Open5GS, which collects key user-experience metrics such as round-trip time (RTT) and jitter when pinging the User Plane Function (UPF) in the 5G core (5GC). Results show that backhaul and midhaul relays maintain delays of 50–60 ms, while NR relays incur delays exceeding one second due to traffic overload introduced by the RFSimulator tool, which is indispensable to transmit the NR signal over Starlink. These findings suggest that while transparent architectures provide valuable insights and utility, regenerative architectures are essential for addressing current time issues and fully realizing the capabilities of space-based broadband services. Full article
Show Figures

Figure 1

41 pages, 2392 KiB  
Review
How Beyond-5G and 6G Makes IIoT and the Smart Grid Green—A Survey
by Pal Varga, Áron István Jászberényi, Dániel Pásztor, Balazs Nagy, Muhammad Nasar and David Raisz
Sensors 2025, 25(13), 4222; https://doi.org/10.3390/s25134222 - 6 Jul 2025
Viewed by 732
Abstract
The convergence of next-generation wireless communication technologies and modern energy infrastructure presents a promising path toward sustainable and intelligent systems. This survey explores how beyond-5G and 6G communication technologies can support the greening of Industrial Internet of Things (IIoT) systems and smart grids. [...] Read more.
The convergence of next-generation wireless communication technologies and modern energy infrastructure presents a promising path toward sustainable and intelligent systems. This survey explores how beyond-5G and 6G communication technologies can support the greening of Industrial Internet of Things (IIoT) systems and smart grids. It highlights the critical challenges in achieving energy efficiency, interoperability, and real-time responsiveness across different domains. The paper reviews key enablers such as LPWAN, wake-up radios, mobile edge computing, and energy harvesting techniques for green IoT, as well as optimization strategies for 5G/6G networks and data center operations. Furthermore, it examines the role of 5G in enabling reliable, ultra-low-latency data communication for advanced smart grid applications, such as distributed generation, precise load control, and intelligent feeder automation. Through a structured analysis of recent advances and open research problems, the paper aims to identify essential directions for future research and development in building energy-efficient, resilient, and scalable smart infrastructures powered by intelligent wireless networks. Full article
(This article belongs to the Special Issue Feature Papers in the Internet of Things Section 2025)
Show Figures

Figure 1

13 pages, 1883 KiB  
Article
A GAN-Based Method for Cognitive Covert Communication UAV Jamming-Assistance Under Fully Labeled Sample Conditions
by Wenxuan Fu, Bo Li, Haipeng Wang, Haochen Gong and Xiang Lin
Technologies 2025, 13(7), 283; https://doi.org/10.3390/technologies13070283 - 3 Jul 2025
Viewed by 315
Abstract
This paper addresses the optimization problem for mobile jamming assistance schemes in cognitive covert communication (CR-CC), where cognitive users adopt the underlying mode for spectrum access, while an unmanned aerial vehicle (UAV) transmits the same-frequency noise signals to interfere with eavesdroppers. Leveraging the [...] Read more.
This paper addresses the optimization problem for mobile jamming assistance schemes in cognitive covert communication (CR-CC), where cognitive users adopt the underlying mode for spectrum access, while an unmanned aerial vehicle (UAV) transmits the same-frequency noise signals to interfere with eavesdroppers. Leveraging the inherent dynamic game-theoretic characteristics of covert communication (CC) systems, we propose a novel covert communication optimization algorithm based on generative adversarial networks (GAN-CCs) to achieve system-wide optimization under the constraint of maximum detection error probability. In GAN-CC, the generator simulates legitimate users to generate UAV interference assistance schemes, while the discriminator simulates the optimal signal detection of eavesdroppers. Through the alternating iterative optimization of these two components, the dynamic game process in CC is simulated, ultimately achieving the Nash equilibrium. The numerical results show that, compared with the commonly used multi-objective optimization algorithm or nonlinear programming algorithm at present, this algorithm exhibits faster and more stable convergence, enabling the derivation of optimal mobile interference assistance schemes for cognitive CC systems. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

32 pages, 1277 KiB  
Article
Distributed Prediction-Enhanced Beamforming Using LR/SVR Fusion and MUSIC Refinement in 5G O-RAN Systems
by Mustafa Mayyahi, Jordi Mongay Batalla, Jerzy Żurek and Piotr Krawiec
Appl. Sci. 2025, 15(13), 7428; https://doi.org/10.3390/app15137428 - 2 Jul 2025
Viewed by 394
Abstract
Low-latency and robust beamforming are vital for sustaining signal quality and spectral efficiency in emerging high-mobility 5G and future 6G wireless networks. Conventional beam management approaches, which rely on periodic Channel State Information feedback and static codebooks, as outlined in 3GPP standards, are [...] Read more.
Low-latency and robust beamforming are vital for sustaining signal quality and spectral efficiency in emerging high-mobility 5G and future 6G wireless networks. Conventional beam management approaches, which rely on periodic Channel State Information feedback and static codebooks, as outlined in 3GPP standards, are insufficient in rapidly varying propagation environments. In this work, we propose a Dominance-Enforced Adaptive Clustered Sliding Window Regression (DE-ACSW-R) framework for predictive beamforming in O-RAN Split 7-2x architectures. DE-ACSW-R leverages a sliding window of recent angle of arrival (AoA) estimates, applying in-window change-point detection to segment user trajectories and performing both Linear Regression (LR) and curvature-adaptive Support Vector Regression (SVR) for short-term and non-linear prediction. A confidence-weighted fusion mechanism adaptively blends LR and SVR outputs, incorporating robust outlier detection and a dominance-enforced selection regime to address strong disagreements. The Open Radio Unit (O-RU) autonomously triggers localised MUSIC scans when prediction confidence degrades, minimising unnecessary full-spectrum searches and saving delay. Simulation results demonstrate that the proposed DE-ACSW-R approach significantly enhances AoA tracking accuracy, beamforming gain, and adaptability under realistic high-mobility conditions, surpassing conventional LR/SVR baselines. This AI-native modular pipeline aligns with O-RAN architectural principles, enabling scalable and real-time beam management for next-generation wireless deployments. Full article
Show Figures

Figure 1

40 pages, 5045 KiB  
Review
RF Energy-Harvesting Techniques: Applications, Recent Developments, Challenges, and Future Opportunities
by Stella N. Arinze, Emenike Raymond Obi, Solomon H. Ebenuwa and Augustine O. Nwajana
Telecom 2025, 6(3), 45; https://doi.org/10.3390/telecom6030045 - 1 Jul 2025
Viewed by 1281
Abstract
The increasing demand for sustainable and renewable energy solutions has made radio frequency energy harvesting (RFEH) a promising technique for powering low-power electronic devices. RFEH captures ambient RF signals from wireless communication systems, such as mobile networks, Wi-Fi, and broadcasting stations, and converts [...] Read more.
The increasing demand for sustainable and renewable energy solutions has made radio frequency energy harvesting (RFEH) a promising technique for powering low-power electronic devices. RFEH captures ambient RF signals from wireless communication systems, such as mobile networks, Wi-Fi, and broadcasting stations, and converts them into usable electrical energy. This approach offers a viable alternative for battery-dependent and hard-to-recharge applications, including streetlights, outdoor night/security lighting, wireless sensor networks, and biomedical body sensor networks. This article provides a comprehensive review of the RFEH techniques, including state-of-the-art rectenna designs, energy conversion efficiency improvements, and multi-band harvesting systems. We present a detailed analysis of recent advancements in RFEH circuits, impedance matching techniques, and integration with emerging technologies such as the Internet of Things (IoT), 5G, and wireless power transfer (WPT). Additionally, this review identifies existing challenges, including low conversion efficiency, unpredictable energy availability, and design limitations for small-scale and embedded systems. A critical assessment of current research gaps is provided, highlighting areas where further development is required to enhance performance and scalability. Finally, constructive recommendations for future opportunities in RFEH are discussed, focusing on advanced materials, AI-driven adaptive harvesting systems, hybrid energy-harvesting techniques, and novel antenna–rectifier architectures. The insights from this study will serve as a valuable resource for researchers and engineers working towards the realization of self-sustaining, battery-free electronic systems. Full article
(This article belongs to the Special Issue Advances in Wireless Communication: Applications and Developments)
Show Figures

Figure 1

23 pages, 7503 KiB  
Article
EMF Exposure of Workers Due to 5G Private Networks in Smart Industries
by Peter Gajšek, Christos Apostolidis, David Plets, Theodoros Samaras and Blaž Valič
Electronics 2025, 14(13), 2662; https://doi.org/10.3390/electronics14132662 - 30 Jun 2025
Viewed by 386
Abstract
5G private mobile networks are becoming a platform for ‘wire-free’ networking for professional applications in smart industry sectors, such as automated warehousing, logistics, autonomous vehicle deployments in campus environments, mining, material processing, and more. It is expected that most of these Machine-to-Machine (M2M) [...] Read more.
5G private mobile networks are becoming a platform for ‘wire-free’ networking for professional applications in smart industry sectors, such as automated warehousing, logistics, autonomous vehicle deployments in campus environments, mining, material processing, and more. It is expected that most of these Machine-to-Machine (M2M) and Industrial Internet of Things (IIoT) communication paths will be realized wirelessly, as the advantages of providing flexibility are obvious compared to hard-wired network installations. Unfortunately, the deployment of private 5G networks in smart industries has faced delays due to a combination of high costs, technical challenges, and uncertain returns on investment, which is reflected in troublesome access to fully operational private networks. To obtain insight into occupational exposure to radiofrequency electromagnetic fields (RF EMF) emitted by 5G private mobile networks, an analysis of RF EMF due to different types of 5G equipment was carried out on a real case scenario in the production and logistic (warehouse) industrial sector. A private standalone (SA) 5G network operating at 3.7 GHz in a real industrial environment was numerically modeled and compared with in situ RF EMF measurements. The results show that RF EMF exposure of the workers was far below the existing exposure limits due to the relatively low power (1 W) of indoor 5G base stations in private networks, and thus similar exposure scenarios could also be expected in other deployed 5G networks. In the analyzed RF EMF exposure scenarios, the radio transmitter—so-called ‘radio head’—installation heights were relatively low, and thus the obtained results represent the worst-case scenarios of the workers’ exposure that are to be expected due to private 5G networks in smart industries. Full article
(This article belongs to the Special Issue Innovations in Electromagnetic Field Measurements and Applications)
Show Figures

Figure 1

24 pages, 649 KiB  
Systematic Review
Algorithms for Load Balancing in Next-Generation Mobile Networks: A Systematic Literature Review
by Juan Ochoa-Aldeán, Carlos Silva-Cárdenas, Renato Torres, Jorge Ivan Gonzalez and Sergio Fortes
Future Internet 2025, 17(7), 290; https://doi.org/10.3390/fi17070290 - 28 Jun 2025
Viewed by 442
Abstract
Background: Machine learning methods are increasingly being used in mobile network optimization systems, especially next-generation mobile networks. The need for enhanced radio resource allocation schemes, improved user mobility and increased throughput, driven by a rising demand for data, has necessitated the development of [...] Read more.
Background: Machine learning methods are increasingly being used in mobile network optimization systems, especially next-generation mobile networks. The need for enhanced radio resource allocation schemes, improved user mobility and increased throughput, driven by a rising demand for data, has necessitated the development of diverse algorithms that optimize output values based on varied input parameters. In this context, we identify the main topics related to cellular networks and machine learning algorithms in order to pinpoint areas where the optimization of parameters is crucial. Furthermore, the wide range of available algorithms often leads to confusion and disorder during classification processes. It is crucial to note that next-generation networks are expected to require reduced latency times, especially for sensitive applications such as Industry 4.0. Research Question: An analysis of the existing literature on mobile network load balancing methods was conducted to identify systems that operate using semi-automatic, automatic and hybrid algorithms. Our research question is as follows: What are the automatic, semi-automatic and hybrid load balancing algorithms that can be applied to next-generation mobile networks? Contribution: This paper aims to present a comprehensive analysis and classification of the algorithms used in this area of study; in order to identify the most suitable for load balancing optimization in next-generation mobile networks, we have organized the classification into three categories, automatic, semi-automatic and hybrid, which will allow for a clear and concise idea of both theoretical and field studies that relate these three types of algorithms with next-generation networks. Figures and tables illustrate the number of algorithms classified by type. In addition, the most important articles related to this topic from five different scientific databases are summarized. Methodology: For this research, we employed the PRISMA method to conduct a systematic literature review of the aforementioned study areas. Findings: The results show that, despite the scarce literature on the subject, the use of load balancing algorithms significantly influences the deployment and performance of next-generation mobile networks. This study highlights the critical role that algorithm selection should play in 5G network optimization, in particular to address latency reduction, dynamic resource allocation and scalability in dense user environments, key challenges for applications such as industrial automation and real-time communications. Our classification framework provides a basis for operators to evaluate algorithmic trade-offs in scenarios such as network fragmentation or edge computing. To fill existing gaps, we propose further research on AI-driven hybrid models that integrate real-time data analytics with predictive algorithms, enabling proactive load management in ultra-reliable 5G/6G architectures. Given this background, it is crucial to conduct further research on the effects of technologies used for load balancing optimization. This line of research is worthy of consideration. Full article
(This article belongs to the Section Smart System Infrastructure and Applications)
Show Figures

Figure 1

35 pages, 2102 KiB  
Article
Enhancing Spectrum Utilization in Cognitive Radio Networks Using Reinforcement Learning with Snake Optimizer: A Meta-Heuristic Approach
by Haider Farhi, Abderraouf Messai and Tarek Berghout
Electronics 2025, 14(13), 2525; https://doi.org/10.3390/electronics14132525 - 21 Jun 2025
Viewed by 573
Abstract
The rapid development of sixth-generation mobile communication systems has brought about significant advancements in both Quality of Service (QoS) and Quality of Experience (QoE) for users, largely due to the extremely high data rates and a diverse range of service offerings. However, these [...] Read more.
The rapid development of sixth-generation mobile communication systems has brought about significant advancements in both Quality of Service (QoS) and Quality of Experience (QoE) for users, largely due to the extremely high data rates and a diverse range of service offerings. However, these advancements have also introduced challenges, especially concerning the growing demand for a wireless spectrum and the limited availability of resources. Various efforts have been made and research has attempted to tackle this issue such as the use of Cognitive Radio Networks (CRNs), which allows opportunistic spectrum access and intelligent resource management. This work demonstrate a new method in the optimization of allocation resource in CRNs based on the Snake Optimizer (SO) along with reinforcement learning (RL), which is an effective meta-heuristic algorithm that simulates snake cloning behavior. SO is tested over three different scenarios with varying numbers of secondary users (SUs), primary users (PUs), and frequency bands available. The obtained results reveal that the proposed approach is able to largely satisfy the aforementioned requirements and ensures high spectrum utilization efficiency and low collision rates, which eventually lead to the maximum possible spectral capacity. The study also demonstrates that SO is versatile and resilient and thus indicates its capability of serving as an effective method for augmenting resource management in next-generation wireless communication systems. Full article
Show Figures

Figure 1

59 pages, 4517 KiB  
Review
Artificial Intelligence Empowering Dynamic Spectrum Access in Advanced Wireless Communications: A Comprehensive Overview
by Abiodun Gbenga-Ilori, Agbotiname Lucky Imoize, Kinzah Noor and Paul Oluwadara Adebolu-Ololade
AI 2025, 6(6), 126; https://doi.org/10.3390/ai6060126 - 13 Jun 2025
Viewed by 1932
Abstract
This review paper examines the integration of artificial intelligence (AI) in wireless communication, focusing on cognitive radio (CR), spectrum sensing, and dynamic spectrum access (DSA). As the demand for spectrum continues to rise with the expansion of mobile users and connected devices, cognitive [...] Read more.
This review paper examines the integration of artificial intelligence (AI) in wireless communication, focusing on cognitive radio (CR), spectrum sensing, and dynamic spectrum access (DSA). As the demand for spectrum continues to rise with the expansion of mobile users and connected devices, cognitive radio networks (CRNs), leveraging AI-driven spectrum sensing and dynamic access, provide a promising solution to improve spectrum utilization. The paper reviews various deep learning (DL)-based spectrum-sensing methods, highlighting their advantages and challenges. It also explores the use of multi-agent reinforcement learning (MARL) for distributed DSA networks, where agents autonomously optimize power allocation (PA) to minimize interference and enhance quality of service. Additionally, the paper discusses the role of machine learning (ML) in predicting spectrum requirements, which is crucial for efficient frequency management in the fifth generation (5G) networks and beyond. Case studies show how ML can help self-optimize networks, reducing energy consumption while improving performance. The review also introduces the potential of generative AI (GenAI) for demand-planning and network optimization, enhancing spectrum efficiency and energy conservation in wireless networks (WNs). Finally, the paper highlights future research directions, including improving AI-driven network resilience, refining predictive models, and addressing ethical considerations. Overall, AI is poised to transform wireless communication, offering innovative solutions for spectrum management (SM), security, and network performance. Full article
(This article belongs to the Special Issue Artificial Intelligence for Network Management)
Show Figures

Figure 1

20 pages, 3177 KiB  
Article
Smart Underwater Sensor Network GPRS Architecture for Marine Environments
by Blanca Esther Carvajal-Gámez, Uriel Cedeño-Antunez and Abigail Elizabeth Pallares-Calvo
Sensors 2025, 25(11), 3439; https://doi.org/10.3390/s25113439 - 30 May 2025
Viewed by 542
Abstract
The rise of the Internet of Things (IoT) has made it possible to explore different types of communication, such as underwater IoT (UIoT). This new paradigm allows the interconnection of ships, boats, coasts, objects in the sea, cameras, and animals that require constant [...] Read more.
The rise of the Internet of Things (IoT) has made it possible to explore different types of communication, such as underwater IoT (UIoT). This new paradigm allows the interconnection of ships, boats, coasts, objects in the sea, cameras, and animals that require constant monitoring. The use of sensors for environmental monitoring, tracking marine fauna and flora, and monitoring the health of aquifers requires the integration of heterogeneous technologies as well as wireless communication technologies. Aquatic mobile sensor nodes face various limitations, such as bandwidth, propagation distance, and data transmission delay issues. Owing to their versatility, wireless sensor networks support remote monitoring and surveillance. In this work, an architecture for a general packet radio service (GPRS) wireless sensor network is presented. The network is used to monitor the geographic position over the coastal area of the Gulf of Mexico. The proposed architecture integrates cellular technology and some ad hoc network configurations in a single device such that coverage is improved without significantly affecting the energy consumption, as shown in the results. The network coverage and energy consumption are evaluated by analyzing the attenuation in a proposed channel model and the autonomy of the electronic system, respectively. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

30 pages, 1552 KiB  
Review
3GPP Evolution from 5G to 6G: A 10-Year Retrospective
by Xingqin Lin
Telecom 2025, 6(2), 32; https://doi.org/10.3390/telecom6020032 - 20 May 2025
Viewed by 2839
Abstract
The 3rd Generation Partnership Project (3GPP) evolution of mobile communication technologies from 5G to 6G has been a transformative journey spanning a decade, shaped by six releases from Release 15 to Release 20. This article provides a retrospective of this evolution, highlighting the [...] Read more.
The 3rd Generation Partnership Project (3GPP) evolution of mobile communication technologies from 5G to 6G has been a transformative journey spanning a decade, shaped by six releases from Release 15 to Release 20. This article provides a retrospective of this evolution, highlighting the technical advancements, challenges, and milestones that have defined the transition from the foundational 5G era to the emergence of 6G. Starting with Release 15, which marked the birth of 5G and its New Radio (NR) air interface, the journey progressed through Release 16, where 5G was qualified as an International Mobile Telecommunications-2020 (IMT-2020) technology, and Release 17, which expanded 5G into new domains such as non-terrestrial networks. Release 18 ushered in the 5G-Advanced era, incorporating novel technologies like artificial intelligence. Releases 19 and 20 continue this momentum, focusing on commercially driven enhancements while laying the groundwork for the 6G era. This article explores how 3GPP technology evolution has shaped the telecommunications landscape over the past decade, bridging two mobile generations. It concludes with insights into learned lessons, future challenges, and opportunities, offering guidelines on 6G evolution for 2030 and beyond. Full article
Show Figures

Figure 1

22 pages, 1566 KiB  
Article
Opportunistic Allocation of Resources for Smart Metering Considering Fixed and Random Wireless Channels
by Christian Jara, Juan Inga and Esteban Inga
Sensors 2025, 25(8), 2570; https://doi.org/10.3390/s25082570 - 18 Apr 2025
Viewed by 485
Abstract
This paper presents an optimization model for wireless channel allocation in cellular networks, specifically designed for the transmission of smart meter (SM) data through a mobile virtual network operator (MVNO). The model efficiently allocates transmission channels, minimizing smart grid (SG) costs. The MVNO [...] Read more.
This paper presents an optimization model for wireless channel allocation in cellular networks, specifically designed for the transmission of smart meter (SM) data through a mobile virtual network operator (MVNO). The model efficiently allocates transmission channels, minimizing smart grid (SG) costs. The MVNO manages fixed and random channels through a shared access scheme, optimizing meter connectivity. Channel allocation is based on a Markovian approach and optimized through the Hungarian algorithm that minimizes the weight in a bipartite network between meters and channels. In addition, cumulative tokens are introduced that weight transmissions according to channel availability and network congestion. Simulations show that dynamic allocation in virtual networks improves transmission performance, contributing to sustainability and cost reduction in cellular networks. This study highlights the importance of inefficient resource management by cognitive mobile virtual network and cognitive radio virtual network operators (C-MVNOs), laying a solid foundation for future applications in intelligent networks. This work is motivated by the increasing demand for efficient and scalable data transmission in smart metering systems. The novelty lies in integrating cumulative tokens and a Markovian-based bipartite graph matching algorithm, which jointly optimize channel allocation and transmission reliability under heterogeneous wireless conditions. Full article
(This article belongs to the Special Issue AI and Smart Sensors for Intelligent Transportation Systems)
Show Figures

Graphical abstract

14 pages, 1074 KiB  
Article
WDM-PON Free Space Optical (FSO) System Utilizing LDPC Decoding for Enhanced Cellular C-RAN Fronthaul Networks
by Dokhyl AlQahtani and Fady El-Nahal
Photonics 2025, 12(4), 391; https://doi.org/10.3390/photonics12040391 - 17 Apr 2025
Cited by 1 | Viewed by 802
Abstract
Modern cellular systems rely on high-capacity and low-latency optical networks to meet ever-increasing data demands. Centralized Radio Access Network (C-RAN) architectures offer a cost-effective approach for deploying mobile infrastructures. In this work, we propose a flexible and cost-efficient fronthaul topology that combines Wavelength [...] Read more.
Modern cellular systems rely on high-capacity and low-latency optical networks to meet ever-increasing data demands. Centralized Radio Access Network (C-RAN) architectures offer a cost-effective approach for deploying mobile infrastructures. In this work, we propose a flexible and cost-efficient fronthaul topology that combines Wavelength Division Multiplexing (WDM) passive optical networks (PONs) with free-space optical (FSO) links. To enhance overall system performance, we introduce Low-Density Parity Check (LDPC) decoding, which provides robust error-correction capabilities against atmospheric turbulence and noise. Our system transmits 20 Gbps, 16-QAM intensity-modulated orthogonal frequency-division multiplexing (OFDM) signals, achieving a substantial reduction in bit error rate (BER). Numerical results show that the proposed WDM-PON-FSO architecture, augmented with LDPC decoding, maintains reliable transmission over 2 km under strong turbulence conditions. Full article
Show Figures

Figure 1

Back to TopTop