3GPP Evolution from 5G to 6G: A 10-Year Retrospective
Abstract
:1. Introduction
- Cross-release evolution mapping: Whereas most existing surveys focus on a single release or individual technologies, this study is the first to systematically trace the technical evolution across Releases 15 through 20. By aligning each release’s enhancements under common thematic pillars, this study exposes recurring design principles and feature interdependencies that have not been jointly analyzed before;
- Forward-looking 6G development guidelines: Building on lessons learned from 5G standardization, this study derives a concrete set of recommendations for 6G standardization justified by historical precedents and industry trajectories.
2. 3GPP Release 15: Birth of 5G
3. 3GPP Release 16: First 5G Upgrade
3.1. Enhancements to Existing Features
3.2. New Features
4. 3GPP Release 17: Expansion of 5G Horizons
4.1. Enhancements to Existing Features
- UE power savings: In idle/inactive mode, new paging mechanisms reduced false alarms by subdividing UE groups and leveraging paging early indications. In connected mode, power-saving measures included reduced PDCCH monitoring with dynamic adaptations, search space set group switching, and PDCCH skipping;
- Dynamic spectrum sharing (DSS): DSS offers an efficient migration path from LTE to NR by enabling both technologies to share the same carrier [61]. In Release 17, cross-carrier scheduling was enhanced for more flexible DSS;
- Multi-subscriber identity module (SIM) support: Release 17 introduced enhancements for multi-SIM devices to address paging collision and network switching issues [62];
- Small data transmission: Release 17 enabled UEs to transmit small data packets while remaining in the RRC_INACTIVE state, reducing the need for frequent transitions to RRC_CONNECTED.
4.2. New Features
5. 3GPP Release 18: Dawn of 5G-Advanced
5.1. Enhancements to Existing Features
- Multi-carrier enhancements: This work focused on improving efficiency and performance in multi-cell and multi-band scenarios. One enhancement was multi-cell PDSCH/PUSCH scheduling with a single downlink control information (DCI);
- DSS: Key improvements included enabling UE reception of NR PDCCH candidates overlapping with LTE cell-specific reference signal resource elements, addressing the PDCCH capacity bottleneck caused by increasing NR traffic;
- Multi-SIM support: Release 18 improved NR support for devices managing dual active connections, by addressing temporary hardware conflicts arising when device resources are shared between two active SIMs;
- Small data transmission: Release 18 enhanced small data transmission by enabling downlink-triggered small data delivery for UEs in the RRC_INACTIVE state, which avoids transitions to RRC_CONNECTED for small, infrequent packets.
5.2. New Features
6. 3GPP Release 19: 5G-Advanced Growth
6.1. Enhancements to Existing Features
- Sidelink: This work focuses on multi-hop UE-to-network sidelink relay for mission-critical communications, especially in public safety and out-of-coverage scenarios;
- Network energy savings: Key enhancements include on-demand SSB in SCell for connected-mode UEs configured with CA, on-demand system information block type 1 (SIB1) for UEs in idle and inactive modes, and the adaptation of the transmission of common signals and channels;
- Multi-carrier enhancements: One enhancement is to use a single DCI to schedule multiple cells with different subcarrier spacing values or carrier types. Another enhancement is to use a single DCI to schedule multiple cells with multiple PDSCH/PUSCH transmissions on each cell.
6.2. New Features
6.3. Toward 6G
7. 3GPP Release 20: Evolution to 6G
- Advanced modulation schemes: High-order QAM constellations increasingly suffer from hardware non-linearities that erode their spectral-efficiency gains. Alternative signal-shaping modulation techniques offer promising paths forward [107]. 6G studies should explore low peak-to-average-power-ratio schemes that deliver strong performance while remaining cost-effective. Moreover, because residual phase noise persists despite receiver compensation, developing modulation methods with robust phase-noise suppression is essential;
- Advanced coding schemes: 6G studies should explore further development of Polar, LDPC, and other coding schemes (e.g., space-frequency coding) that span a wide range of block lengths and code rates [108,109]. Crucial goals include minimizing decoding complexity, maximizing parallelism, and reducing latency. Codes must combine high rate, strong error correction, and low error floor to reduce HARQ retransmissions. Additionally, novel coding schemes integrated with iterative retransmission/feedback mechanisms are needed for short-packet IoT, balancing block length, latency, and reliability;
- Advanced waveforms: OFDM has emerged as the dominant multicarrier waveform for mobile communications systems. While OFDM’s practical advantages and ecosystem maturity argue for its continued baseline role, its limitations under non-ideal conditions motivate ongoing research into both modified multicarrier systems and new waveforms. Emerging techniques such as orthogonal time-frequency space (OTFS) exploit Doppler diversity by operating in the delay–Doppler domain, providing robustness in high-mobility environments [110];
- Multiple access: OFDMA has served 4G LTE and 5G, and will continue to be the baseline multiple access scheme in 6G. Nonetheless, it may fall short in scaling to scenarios with massive low-duty-cycle devices. 6G studies may explore non-orthogonal multiple access (NOMA), which overlays users in the same time–frequency resources, relying on advanced detection and decoding to resolve collisions [111]. It is also of interest to study rate-splitting multiple access (RSMA) that uses message splitting and linearly precoded multi-antenna transmission [112];
- Advanced antenna technologies: 6G studies should explore extreme MIMO that extends massive MIMO by deploying orders-of-magnitude larger arrays [113]. As array dimensions grow, physical effects, such as wavefront curvature, beam squint, and near-field shadowing, break plane-wave assumptions, requiring fresh beam-management and channel-estimation algorithms. Another promising direction is distributed MIMO (or cell-free MIMO) that coordinates many transmission/reception points for coherent joint processing, thereby reducing interference and eliminating cell boundaries [114];
- AI-native air interface: 6G studies will continue to explore the roles of AI/ML in wireless communications. AI/ML in 6G is expected to be embedded from inception across all layers, forming a core design paradigm rather than an optimization add-on. In the near term, targeted AI/ML models will not only incrementally optimize features but will also unlock new air-interface capabilities [115]. In the long term, semantic communications, where meanings, not bits, are transmitted, is an interesting direction for further exploration [116];
- Full duplex: 6G studies should explore in-band full-duplex transmission, which could theoretically double capacity compared to conventional FDD and TDD [117]. Self-interference cancellation techniques have enabled small-scale full-duplex radios, but large-scale full-duplex radios still face challenges. Realizing full duplex in large-scale networks requires breakthroughs in self-interference cancellation device integration, advanced interference measurement and management, and evaluation of full duplex gains across varying interference scenarios to ensure practical feasibility;
- Reconfigurable intelligent surface (RIS): RISs are planar arrays of passive elements whose reflection phase can be dynamically controlled to steer or focus incident electromagnetic waves [118,119]. Unlike network-controlled repeaters, RISs do not amplify signals but rather reshape the propagation environment by applying programmable phase shifts across their surface, offering a low-cost, energy-efficient means to enhance coverage.
8. What Should 6G Standardization Do Differently?
9. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3GPP | 3rd Generation Partnership Project |
5G | Fifth Generation |
6G | Sixth Generation |
AI | Artificial Intelligence |
CA | Carrier Aggregation |
CHO | Conditional Handover |
CLI | Cross-Link Interference |
CP | Cyclic Prefix |
CSI | Channel State Information |
CSI-RS | Channel State Information Reference Signal |
CU | Central Unit |
DC | Dual Connectivity |
DFT-s-OFDM | Discrete Fourier Transform-spread Orthogonal Frequency Division Multiplexing |
DMRS | Demodulation Reference Signal |
DRX | Discontinuous Reception |
DU | Distributed Unit |
DSS | Dynamic Spectrum Sharing |
EIRP | Equivalent Isotropically Radiated Power |
FDD | Frequency Division Duplex |
FDM | Frequency Division Multiplexing |
FR1 | Frequency Range 1 |
FR2 | Frequency Range 2 |
FR3 | Frequency Range 3 |
gNB | Next-Generation Node B |
GNSS | Global Navigation Satellite System |
GSO | Geostationary Satellite Orbit |
HARQ | Hybrid Automatic Repeat Request |
IAB | Integrated Access and Backhaul |
IMT | International Mobile Telecommunications |
ITU | International Telecommunication Union |
ITS | Intelligent Transportation System |
IoT | Internet of Things |
LAA | Licensed Assisted Access |
LBT | Listen Before Talk |
LDPC | Low-Density Parity-Check |
LMF | Location Management Function |
LTE | Long-Term Evolution |
LTE-M | LTE Machine-Type Communication |
LPP | LTE Positioning Protocol |
LP-WUS | Low-Power Wake-Up Signal |
LP-WUR | Low-Power Wake-Up Receiver |
MBS | Multicast and Broadcast Service |
MIMO | Multiple Input Multiple Output |
mmWave | Millimeter Wave |
mMTC | massive Machine-Type Communications |
NG | Next Generation |
NG-C | Next-Generation Control plane |
NG-RAN | Next-Generation Radio Access Network |
NG-U | Next-Generation User plane |
ng-eNB | Next-Generation evolved Node B |
NGSO | Non-Geostationary Satellite Orbit |
NTN | Non-Terrestrial Network |
NOMA | Non-Orthogonal Multiple Access |
NSA | Non-Standalone |
NR | New Radio |
NRPPa | NR Positioning Protocol A |
OAM | Operation, Administration, and Management |
OFDM | Orthogonal Frequency Division Multiplexing |
OTFS | Orthogonal Time-Frequency Space |
PDCP | Packet Data Convergence Protocol |
PDCCH | Physical Downlink Control Channel |
PDSCH | Physical Downlink Shared Channel |
PBCH | Physical Broadcast Channel |
PRACH | Physical Random Access Channel |
PRB | Physical Resource Block |
PUCCH | Physical Uplink Control Channel |
PUSCH | Physical Uplink Shared Channel |
QAM | Quadrature Amplitude Modulation |
QPSK | Quadrature Phase Shift Keying |
QoS | Quality of Service |
RAN | Radio Access Network |
RIM | Remote Interference Management |
RIS | Reconfigurable Intelligent Surface |
RLC | Radio Link Control |
RRC | Radio Resource Control |
RSMA | Rate-Splitting Multiple Access |
sub-THz | sub-Terahertz |
SA | Standalone |
SBFD | Subband Non-Overlapping Full Duplex |
SCG | Secondary Cell Group |
SCell | Secondary Cell |
SIB1 | System Information Block type 1 |
SIM | Subscriber Identity Module |
SDAP | Service Data Adaptation Protocol |
SRS | Sounding Reference Signal |
SSB | Synchronization Signal Block |
TSN | Time-Sensitive Networking |
TDD | Time Division Duplex |
TRP | Transmission/Reception Point |
UAV | Unmanned Aerial Vehicle |
UE | User Equipment |
Uu | Air interface between UE and base station |
URLLC | Ultra-Reliable Low-Latency Communications |
V2X | Vehicle-to-Everything |
WAB | Wireless Access Backhaul |
WRC | World Radiocommunication Conferences |
XR | Extended Reality |
References
- 3GPP. Introducing 3GPP. Available online: https://www.3gpp.org/about-us/introducing-3gpp (accessed on 25 December 2024).
- Parkvall, S.; Dahlman, E.; Furuskar, A.; Frenne, M. NR: The New 5G Radio Access Technology. IEEE Commun. Stand. Mag. 2017, 1, 24–30. [Google Scholar] [CrossRef]
- Lin, X.; Li, J.; Baldemair, R.; Cheng, J.F.T.; Parkvall, S.; Larsson, D.C.; Koorapaty, H.; Frenne, M.; Falahati, S.; Grovlen, A.; et al. 5G New Radio: Unveiling the Essentials of the Next Generation Wireless Access Technology. IEEE Commun. Stand. Mag. 2019, 3, 30–37. [Google Scholar] [CrossRef]
- ITU-R. Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond. Recommendation ITU M.2083.0, 2015. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf (accessed on 25 December 2024).
- Liu, G.; Huang, Y.; Chen, Z.; Liu, L.; Wang, Q.; Li, N. 5G Deployment: Standalone vs. Non-Standalone from the Operator Perspective. IEEE Commun. Mag. 2020, 58, 83–89. [Google Scholar] [CrossRef]
- ITU-R. Detailed Specifications of the Terrestrial Radio Interfaces of International Mobile Telecommunications-2020 (IMT-2020). Recommendation ITU M.2150-2, 2023. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2150-2-202312-I!!PDF-E.pdf (accessed on 25 December 2024).
- Parkvall, S.; Blankenship, Y.; Blasco, R.; Dahlman, E.; Fodor, G.; Grant, S.; Stare, E.; Stattin, M. 5G NR Release 16: Start of the 5G Evolution. IEEE Commun. Stand. Mag. 2020, 4, 56–63. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, Y.; Oh, J.; Ji, H.; Yeo, J.; Choi, S.; Ryu, H.; Noh, H.; Kim, T.; Sun, F.; et al. New Radio (NR) and its Evolution toward 5G-Advanced. IEEE Wirel. Commun. 2019, 26, 2–7. [Google Scholar] [CrossRef]
- Ghosh, A.; Maeder, A.; Baker, M.; Chandramouli, D. 5G Evolution: A View on 5G Cellular Technology Beyond 3GPP Release 15. IEEE Access 2019, 7, 127639–127651. [Google Scholar] [CrossRef]
- Lin, X. An Overview of 5G Advanced Evolution in 3GPP Release 18. IEEE Commun. Stand. Mag. 2022, 6, 77–83. [Google Scholar] [CrossRef]
- Chen, W.; Montojo, J.; Lee, J.; Shafi, M.; Kim, Y. The Standardization of 5G-Advanced in 3GPP. IEEE Commun. Mag. 2022, 60, 98–104. [Google Scholar] [CrossRef]
- Lin, X. The Bridge Toward 6G: 5G-Advanced Evolution in 3GPP Release 19. IEEE Commun. Stand. Mag. 2025, 9, 28–35. [Google Scholar] [CrossRef]
- ITU-R. Framework and Overall Objectives of the Future Development of IMT for 2030 and Beyond. Recommendation ITU M.2160, 2023. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2160-0-202311-I!!PDF-E.pdf (accessed on 25 December 2024).
- Chen, W.; Lin, X.; Lee, J.; Toskala, A.; Sun, S.; Chiasserini, C.F.; Liu, L. 5G-Advanced Toward 6G: Past, Present, and Future. IEEE J. Sel. Areas Commun. 2023, 41, 1592–1619. [Google Scholar] [CrossRef]
- Dahlman, E.; Parkvall, S.; Skold, J. 5G NR: The Next Generation Wireless Access Technology; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Holma, H.; Toskala, A.; Nakamura, T. 5G Technology: 3GPP New Radio; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Lin, X.; Lee, N. 5G and Beyond: Fundamentals and Standards; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Chen, W.; Gaal, P.; Montojo, J.; Zisimopoulos, H. Fundamentals of 5G Communications: Connectivity for Enhanced Mobile Broadband and Beyond; McGraw-Hill Education: New York, NY, USA, 2021. [Google Scholar]
- 3GPP TS 38.401. NG-RAN; Architecture Description. Available online: https://www.3gpp.org/dynareport/38401.htm (accessed on 25 December 2024).
- 3GPP TS 38.300. NR; NR and NG-RAN Overall Description; Stage-2. Available online: https://www.3gpp.org/dynareport/38300.htm (accessed on 25 December 2024).
- 3GPP TS 38.201. NR; Physical Layer; General Description. Available online: https://www.3gpp.org/dynareport/38201.htm (accessed on 25 December 2024).
- 3GPP TS 38.211. NR; Physical Channels and Modulation. Available online: https://www.3gpp.org/dynareport/38211.htm (accessed on 25 December 2024).
- 3GPP TS 38.214. NR; Physical Layer Procedures for Data. Available online: https://www.3gpp.org/dynareport/38214.htm (accessed on 25 December 2024).
- 3GPP TS 38.212. NR; Multiplexing and Channel Coding. Available online: https://www.3gpp.org/dynareport/38212.htm (accessed on 25 December 2024).
- 3GPP TS 38.213. NR; Physical Layer Procedures for Control. Available online: https://www.3gpp.org/dynareport/38213.htm (accessed on 25 December 2024).
- 3GPP TS 38.215. NR; Physical Layer Measurements. Available online: https://www.3gpp.org/dynareport/38215.htm (accessed on 25 December 2024).
- 3GPP TS 38.321. NR; Medium Access Control (MAC) Protocol Specification. Available online: https://www.3gpp.org/dynareport/38321.htm (accessed on 25 December 2024).
- 3GPP TS 38.322. NR; Radio Link Control (RLC) Protocol Specification. Available online: https://www.3gpp.org/dynareport/38322.htm (accessed on 25 December 2024).
- 3GPP TS 38.323. NR; Packet Data Convergence Protocol (PDCP) Specification. Available online: https://www.3gpp.org/dynareport/38323.htm (accessed on 25 December 2024).
- 3GPP TS 37.324. Evolved Universal Terrestrial Radio Access (E-UTRA) and NR; Service Data Adaptation Protocol (SDAP) Specification. Available online: https://www.3gpp.org/dynareport/37324.htm (accessed on 25 December 2024).
- 3GPP TS 38.331. NR; Radio Resource Control (RRC); Protocol Specification. Available online: https://www.3gpp.org/dynareport/38331.htm (accessed on 25 December 2024).
- 3GPP TS 38.304. NR; User Equipment (UE) Procedures in Idle Mode and in RRC Inactive State. Available online: https://www.3gpp.org/dynareport/38304.htm (accessed on 25 December 2024).
- 3GPP TS 38.410. NG-RAN; NG General Aspects and Principles. Available online: https://www.3gpp.org/dynareport/38410.htm (accessed on 25 December 2024).
- Ji, H.; Kim, Y.; Lee, J.; Onggosanusi, E.; Nam, Y.; Zhang, J.; Lee, B.; Shim, B. Overview of Full-Dimension MIMO in LTE-Advanced Pro. IEEE Commun. Mag. 2017, 55, 176–184. [Google Scholar] [CrossRef]
- Jin, H.; Liu, K.; Zhang, M.; Zhang, L.; Lee, G.; Farag, E.N.; Zhu, D.; Onggosanusi, E.; Shafi, M.; Tataria, H. Massive MIMO Evolution Toward 3GPP Release 18. IEEE J. Sel. Areas Commun. 2023, 41, 1635–1654. [Google Scholar] [CrossRef]
- Giordani, M.; Polese, M.; Roy, A.; Castor, D.; Zorzi, M. A Tutorial on Beam Management for 3GPP NR at mmWave Frequencies. IEEE Commun. Surv. Tutor. 2019, 21, 173–196. [Google Scholar] [CrossRef]
- Martikainen, H.; Viering, I.; Lobinger, A.; Jokela, T. On the Basics of Conditional Handover for 5G Mobility. In Proceedings of the IEEE Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 9–12 September 2018; pp. 1–7. [Google Scholar]
- Li, Y.-N.R.; Chen, M.; Xu, J.; Tian, L.; Huang, K. Power Saving Techniques for 5G and Beyond. IEEE Access 2020, 8, 108675–108690. [Google Scholar] [CrossRef]
- Kim, T.; Kim, Y.; Lin, Q.; Sun, F.; Fu, J.; Kim, Y.; Papasakellariou, A.; Ji, H.; Lee, J. Evolution of Power Saving Technologies for 5G New Radio. IEEE Access 2020, 8, 198912–198924. [Google Scholar] [CrossRef]
- Agiwal, M.; Kwon, H.; Park, S.; Jin, H. A Survey on 4G-5G Dual Connectivity: Road to 5G Implementation. IEEE Access 2021, 9, 16193–16210. [Google Scholar] [CrossRef]
- Pedersen, K.; Esswie, A.; Lei, D.; Harrebek, J.; Yuk, Y.; Selvaganapathy, S.; Helmers, H. Advancements in 5G New Radio TDD Cross Link Interference Mitigation. IEEE Wirel. Commun. 2021, 28, 106–112. [Google Scholar] [CrossRef]
- Peralta, E.; Levanen, T.; Mäenpää, M.; Yuk, Y.; Pedersen, K.; Nielsen, S.; Valkama, M. Remote Interference Management in 5G New Radio: Methods and Performance. EURASIP J. Wirel. Commun. Netw. 2021, 2021, 45. [Google Scholar] [CrossRef]
- Baek, S.; Kim, D.; Tesanovic, M.; Agiwal, A. 3GPP New Radio Release 16: Evolution of 5G for Industrial Internet of Things. IEEE Commun. Mag. 2021, 59, 41–47. [Google Scholar] [CrossRef]
- Le, T.-K.; Salim, U.; Kaltenberger, F. An Overview of Physical Layer Design for Ultra-Reliable Low-Latency Communications in 3GPP Releases 15, 16, and 17. IEEE Access 2021, 9, 433–444. [Google Scholar] [CrossRef]
- Lu, X.; Petrov, V.; Moltchanov, D.; Andreev, S.; Mahmoodi, T.; Dohler, M. 5G-U: Conceptualizing Integrated Utilization of Licensed and Unlicensed Spectrum for Future IoT. IEEE Commun. Mag. 2019, 57, 92–98. [Google Scholar] [CrossRef]
- Hirzallah, M.; Krunz, M.; Kecicioglu, B.; Hamzeh, B. 5G New Radio Unlicensed: Challenges and Evaluation. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 689–701. [Google Scholar] [CrossRef]
- Garcia-Roger, D.; González, E.E.; Martín-Sacristán, D.; Monserrat, J.F. V2X Support in 3GPP Specifications: From 4G to 5G and Beyond. IEEE Access 2020, 8, 190946–190963. [Google Scholar] [CrossRef]
- Garcia, M.H.C.; Molina-Galan, A.; Boban, M.; Gozalvez, J.; Coll-Perales, B.; Şahin, T.; Kousaridas, A. A Tutorial on 5G NR V2X Communications. IEEE Commun. Surv. Tutor. 2021, 23, 1972–2026. [Google Scholar] [CrossRef]
- Lien, S.Y.; Deng, D.J.; Lin, C.C.; Tsai, H.L.; Chen, T.; Guo, C.; Cheng, S.M. 3GPP NR Sidelink Transmissions Toward 5G V2X. IEEE Access 2020, 8, 35368–35382. [Google Scholar] [CrossRef]
- Harounabadi, M.; Soleymani, D.M.; Bhadauria, S.; Leyh, M.; Roth-Mandutz, E. V2X in 3GPP Standardization: NR Sidelink in Release-16 and Beyond. IEEE Commun. Stand. Mag. 2021, 5, 12–21. [Google Scholar] [CrossRef]
- Dwivedi, S.; Shreevastav, R.; Munier, F.; Nygren, J.; Siomina, I.; Lyazidi, Y.; Shrestha, D.; Lindmark, G.; Ernström, P.; Stare, E.; et al. Positioning in 5G Networks. IEEE Commun. Mag. 2021, 59, 38–44. [Google Scholar] [CrossRef]
- Fischer, S. 5G NR positioning. In 5G and Beyond: Fundamentals and Standards; Springer: Berlin/Heidelberg, Germany, 2021; pp. 429–483. [Google Scholar]
- Lin, X.; Bergman, J.; Gunnarsson, F.; Liberg, O.; Razavi, S.M.; Razaghi, H.S.; Rydn, H.; Sui, Y. Positioning for the Internet of Things: A 3GPP Perspective. IEEE Commun. Mag. 2017, 55, 179–185. [Google Scholar] [CrossRef]
- Madapatha, C.; Makki, B.; Fang, C.; Teyeb, O.; Dahlman, E.; Alouini, M.S.; Svensson, T. On Integrated Access and Backhaul Networks: Current Status and Potentials. IEEE Open J. Commun. Soc. 2020, 1, 1374–1389. [Google Scholar] [CrossRef]
- Polese, M.; Giordani, M.; Zugno, T.; Roy, A.; Goyal, S.; Castor, D.; Zorzi, M. Integrated Access and Backhaul in 5G mmWave Networks: Potential and Challenges. IEEE Commun. Mag. 2020, 58, 62–68. [Google Scholar] [CrossRef]
- Sadovaya, Y.; Moltchanov, D.; Mao, W.; Orhan, O.; Yeh, S.P.; Nikopour, H.; Talwar, S.; Andreev, S. Integrated Access and Backhaul in Millimeter-Wave Cellular: Benefits and Challenges. IEEE Commun. Mag. 2022, 60, 81–86. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Yuan, Y.; Han, S.; Chih-Lin, I.; Wang, Z. Non-orthogonal Multiple Access for 5G: Solutions, Challenges, Opportunities, and Future Research Trends. IEEE Commun. Mag. 2015, 53, 74–81. [Google Scholar] [CrossRef]
- Kim, J.; Lee, G.; Kim, S.; Taleb, T.; Choi, S.; Bahk, S. Two-Step Random Access for 5G System: Latest Trends and Challenges. IEEE Netw. 2021, 35, 273–279. [Google Scholar] [CrossRef]
- Liu, G.; Hou, X.; Huang, Y.; Shao, H.; Zheng, Y.; Wang, F.; Wang, Q. Coverage Enhancement and Fundamental Performance of 5G: Analysis and Field Trial. IEEE Commun. Mag. 2019, 57, 126–131. [Google Scholar] [CrossRef]
- Prados-Garzon, J.; Ameigeiras, P.; Ordonez-Lucena, J.; Muñoz, P.; Adamuz-Hinojosa, O.; Camps-Mur, D. 5G Non-Public Networks: Standardization, Architectures and Challenges. IEEE Access 2021, 9, 153893–153908. [Google Scholar] [CrossRef]
- Saha, R.K.; Cioffi, J.M. Dynamic Spectrum Sharing for 5G NR and 4G LTE Coexistence—A Comprehensive Review. IEEE Open J. Commun. Soc. 2024, 5, 795–835. [Google Scholar] [CrossRef]
- Vikhrova, O.; Pizzi, S.; Terzani, A.; Araujo, L.; Orsino, A.; Araniti, G. Multi-SIM Support in 5G Evolution: Challenges and Opportunities. IEEE Commun. Stand. Mag. 2022, 6, 64–70. [Google Scholar] [CrossRef]
- Rinaldi, F.; Maattanen, H.L.; Torsner, J.; Pizzi, S.; Andreev, S.; Iera, A.; Koucheryavy, Y.; Araniti, G. Non-Terrestrial Networks in 5G & Beyond: A Survey. IEEE Access 2020, 8, 165178–165200. [Google Scholar]
- Lin, X.; Rommer, S.; Euler, S.; Yavuz, E.A.; Karlsson, R.S. 5G from Space: An Overview of 3GPP Non-Terrestrial Networks. IEEE Commun. Stand. Mag. 2021, 5, 147–153. [Google Scholar] [CrossRef]
- Rico-Alvariño, A.; Bouazizi, I.; Griot, M.; Kadiri, P.; Liu, L.; Stockhammer, T. 3GPP Rel-17 Extensions for 5G Media Delivery. IEEE Trans. Broadcast. 2022, 68, 422–438. [Google Scholar] [CrossRef]
- Shrivastava, V.K.; Baek, S.; Baek, Y. 5G Evolution for Multicast and Broadcast Services in 3GPP Release 17. IEEE Commun. Stand. Mag. 2022, 6, 70–76. [Google Scholar] [CrossRef]
- Veedu, S.N.K.; Mozaffari, M.; Höglund, A.; Yavuz, E.A.; Tirronen, T.; Bergman, J.; Wang, Y.P.E. Toward Smaller and Lower-Cost 5G Devices with Longer Battery Life: An Overview of 3GPP Release 17 RedCap. IEEE Commun. Stand. Mag. 2022, 6, 84–90. [Google Scholar] [CrossRef]
- Islam, T.; Lee, D.; Lim, S.S. Enabling Network Power Savings in 5G-Advanced and Beyond. IEEE J. Sel. Areas Commun. 2023, 41, 1888–1899. [Google Scholar] [CrossRef]
- Kundu, L.; Lin, X.; Gadiyar, R. Towards Energy Efficient RAN: From Industry Standards to Trending Practice. IEEE Wirel. Commun. 2025, 32, 36–43. [Google Scholar] [CrossRef]
- Gapeyenko, M.; Petrov, V.; Paris, S.; Marcano, A.; Pedersen, K.I. Standardization of Extended Reality (XR) over 5G and 5G-Advanced 3GPP New Radio. IEEE Netw. 2023, 37, 22–28. [Google Scholar] [CrossRef]
- Hande, P.; Tinnakornsrisuphap, P.; Damnjanovic, J.; Xu, H.; Mondet, M.; Lee, H.Y.; Sakhnini, I. Extended Reality Over 5G—Standards Evolution. IEEE J. Sel. Areas Commun. 2023, 41, 1757–1771. [Google Scholar] [CrossRef]
- Lin, X.; Kundu, L.; Dick, C.; Velayutham, S. Embracing AI in 5G-Advanced Toward 6G: A Joint 3GPP and O-RAN Perspective. IEEE Commun. Stand. Mag. 2023, 7, 76–83. [Google Scholar] [CrossRef]
- Lin, X. Artificial Intelligence in 3GPP 5G-Advanced: A Survey. IEEE ComSoc Technol. News 2023. Available online: https://www.comsoc.org/publications/ctn/artificial-intelligence-3gpp-5g-advanced-survey (accessed on 25 December 2024).
- Hu, Z.; Susitaival, R.; Chen, Z.; Fu, I.K.; Dayal, P.; Baghel, S.K. Interference Avoidance for In-device Coexistence in 3GPP LTE-advanced: Challenges and Solutions. IEEE Commun. Mag. 2012, 50, 60–67. [Google Scholar] [CrossRef]
- Lin, X.; Yajnanarayana, V.; Muruganathan, S.D.; Gao, S.; Asplund, H.; Maattanen, H.L.; Bergstrom, M.; Euler, S.; Wang, Y.P.E. The Sky Is Not the Limit: LTE for Unmanned Aerial Vehicles. IEEE Commun. Mag. 2018, 56, 204–210. [Google Scholar] [CrossRef]
- Muruganathan, S.D.; Lin, X.; Määttänen, H.L.; Sedin, J.; Zou, Z.; Hapsari, W.A.; Yasukawa, S. An Overview of 3GPP Release-15 Study on Enhanced LTE Support for Connected Drones. IEEE Commun. Stand. Mag. 2021, 5, 140–146. [Google Scholar] [CrossRef]
- Lin, X.; Furuskär, A.; Liberg, O.; Euler, S. Sky high 5G: New Radio for Air-to-ground Communications. In 5G and Beyond: Fundamentals and Standards; Springer: Cham, Switzerland, 2021; pp. 503–515. [Google Scholar]
- He, R.; Ai, B.; Zhong, Z.; Yang, M.; Chen, R.; Ding, J.; Ma, Z.; Sun, G.; Liu, C. 5G for Railways: Next Generation Railway Dedicated Communications. IEEE Commun. Mag. 2022, 60, 130–136. [Google Scholar] [CrossRef]
- Carvalho, F.; Italo, G.; Paiva, R.V.D.O.; Maciel, T.F.; Monteiro, V.F.; Lima, F.; Rafael, M.; Moreira, D.C.; Sousa, D.A.; Makki, B.; et al. Network-Controlled Repeater—An Introduction. arXiv 2024, arXiv:2403.09601. [Google Scholar]
- Lin, X. An Overview of the 3GPP Study on Artificial Intelligence for 5G New Radio. IEEE ComSoc Technol. News 2024. Available online: https://www.comsoc.org/publications/ctn/overview-ai-3gpps-ran-release-18-enhancing-next-generation-connectivity (accessed on 25 December 2024).
- Ji, H.; Kim, Y.; Muhammad, K.; Tarver, C.; Tonnemacher, M.; Kim, T.; Oh, J.; Yu, B.; Xu, G.; Lee, J. Extending 5G TDD Coverage With XDD: Cross Division Duplex. IEEE Access 2021, 9, 51380–51392. [Google Scholar] [CrossRef]
- Wei, X.; Li, J.; Liang, C.; Han, X.; Ren, M.; Liu, R. Performance Analysis of Subband Full Duplex for 5G-Advanced and 6G Networks Through Simulations and Field Tests. IEEE Open J. Commun. Soc. 2023, 4, 2451–2467. [Google Scholar] [CrossRef]
- Rostami, S.; Kela, P.; Leppanen, K.; Valkama, M. Wake-up Radio-Based 5G Mobile Access: Methods, Benefits, and Challenges. IEEE Commun. Mag. 2020, 58, 14–20. [Google Scholar] [CrossRef]
- Höglund, A.; Mozaffari, M.; Yang, Y.; Moschetti, G.; Kittichokechai, K.; Nory, R. 3GPP Release 18 Wake-Up Receiver: Feature Overview and Evaluations. IEEE Commun. Stand. Mag. 2024, 8, 10–16. [Google Scholar] [CrossRef]
- Khan, T.; Veedu, S.N.K.; Rácz, A.; Afshang, M.; Hoglund, A.; Bergman, J. Toward 6G Zero-Energy Internet of Things: Standards, Trends, and Recent Results. IEEE Commun. Mag. 2024, 62, 82–88. [Google Scholar] [CrossRef]
- Butt, M.M.; Mangalvedhe, N.R.; Pratas, N.K.; Harrebek, J.; Kimionis, J.; Tayyab, M.; Barbu, O.E.; Ratasuk, R.; Vejlgaard, B. Ambient IoT: A Missing Link in 3GPP IoT Devices Landscape. IEEE Internet Things Mag. 2024, 7, 85–92. [Google Scholar] [CrossRef]
- Wang, Y.P.E.; Lin, X.; Adhikary, A.; Grovlen, A.; Sui, Y.; Blankenship, Y.; Bergman, J.; Razaghi, H.S. A Primer on 3GPP Narrowband Internet of Things. IEEE Commun. Mag. 2017, 55, 117–123. [Google Scholar] [CrossRef]
- Hoglund, A.; Bergman, J.; Lin, X.; Liberg, O.; Ratilainen, A.; Razaghi, H.S.; Tirronen, T.; Yavuz, E.A. Overview of 3GPP Release 14 Further Enhanced MTC. IEEE Commun. Stand. Mag. 2018, 2, 84–89. [Google Scholar] [CrossRef]
- Chandrasekhar, V.; Andrews, J.G.; Gatherer, A. Femtocell networks: A survey. IEEE Commun. Mag. 2008, 46, 59–67. [Google Scholar] [CrossRef]
- Liu, F.; Cui, Y.; Masouros, C.; Xu, J.; Han, T.X.; Eldar, Y.C.; Buzzi, S. Integrated Sensing and Communications: Toward Dual-Functional Wireless Networks for 6G and Beyond. IEEE J. Sel. Areas Commun. 2022, 40, 1728–1767. [Google Scholar] [CrossRef]
- Kang, S.; Mezzavilla, M.; Rangan, S.; Madanayake, A.; Venkatakrishnan, S.B.; Hellbourg, G.; Ghosh, M.; Rahmani, H.; Dhananjay, A. Cellular Wireless Networks in the Upper Mid-Band. IEEE Open J. Commun. Soc. 2024, 5, 2058–2075. [Google Scholar] [CrossRef]
- Cui, M.; Wu, Z.; Lu, Y.; Wei, X.; Dai, L. Near-Field MIMO Communications for 6G: Fundamentals, Challenges, Potentials, and Future Directions. IEEE Commun. Mag. 2023, 61, 40–46. [Google Scholar] [CrossRef]
- RP-232745, RAN Chair’s Summary of 5G-Advanced in Rel-20, December 2024. Available online: https://www.3gpp.org/ftp/tsg_ran/TSG_RAN/TSGR_102/Docs/RP-232745.zip (accessed on 25 December 2024).
- Liberg, O.; Löwenmark, S.E.; Euler, S.; Hofström, B.; Khan, T.; Lin, X.; Sedin, J. Narrowband Internet of Things for Non-Terrestrial Networks. IEEE Commun. Stand. Mag. 2020, 4, 49–55. [Google Scholar] [CrossRef]
- Lin, X.; Kundu, L.; Dick, C.; Obiodu, E.; Mostak, T.; Flaxman, M. 6G Digital Twin Networks: From Theory to Practice. IEEE Commun. Mag. 2023, 61, 72–78. [Google Scholar] [CrossRef]
- Andrews, J.G.; Humphreys, T.E.; Ji, T. 6G Takes Shape. IEEE BITS Inf. Theory Mag. 2025, 4, 2–24. [Google Scholar] [CrossRef]
- Letaief, K.B.; Chen, W.; Shi, Y.; Zhang, J.; Zhang, Y.-J.A. The Roadmap to 6G: AI Empowered Wireless Networks. IEEE Commun. Mag. 2019, 57, 84–90. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, Y.; Ma, Z.; Xiao, M.; Ding, Z.; Lei, X.; Karagiannidis, G.K.; Fan, P. 6G Wireless Networks: Vision, Requirements, Architecture, and Key Technologies. IEEE Veh. Technol. Mag. 2019, 14, 28–41. [Google Scholar] [CrossRef]
- Dang, S.; Amin, O.; Shihada, B.; Alouini, M.S. What should 6G be? Nat. Electron. 2020, 3, 20–29. [Google Scholar] [CrossRef]
- Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6G Networks: Use Cases and Technologies. IEEE Commun. Mag. 2020, 58, 55–61. [Google Scholar] [CrossRef]
- Saad, W.; Bennis, M.; Chen, M. A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems. IEEE Netw. 2020, 34, 134–142. [Google Scholar] [CrossRef]
- Tariq, F.; Khandaker, M.R.A.; Wong, K.-K.; Imran, M.A.; Bennis, M.; Debbah, M. A Speculative Study on 6G. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Tataria, H.; Shafi, M.; Molisch, A.F.; Dohler, M.; Sjöland, H.; Tufvesson, F. 6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities. Proc. IEEE 2021, 109, 1166–1199. [Google Scholar] [CrossRef]
- Vetter, P. An Updated Research Vision of the Next Generation Network After Several Years on the 6G Journey. IEEE BITS Inf. Theory Mag. 2023, 3, 5–13. [Google Scholar] [CrossRef]
- Wang, C.X.; You, X.; Gao, X.; Zhu, X.; Li, Z.; Zhang, C.; Wang, H.; Huang, Y.; Chen, Y.; Haas, H.; et al. On the Road to 6G: Visions, Requirements, Key Technologies, and Testbeds. IEEE Commun. Surv. Tutor. 2023, 25, 905–974. [Google Scholar] [CrossRef]
- Brinton, C.G.; Chiang, M.; Kim, K.T.; Love, D.J.; Beesley, M.; Repeta, M.; Roese, J.; Beming, P.; Ekudden, E.; Li, C.; et al. Key Focus Areas and Enabling Technologies for 6G. IEEE Commun. Mag. 2025, 63, 84–91. [Google Scholar] [CrossRef]
- Böcherer, G.; Steiner, F.; Schulte, P. Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation. IEEE Trans. Commun. 2015, 63, 4651–4665. [Google Scholar] [CrossRef]
- Zhang, H.; Tong, W. Channel Coding for 6G Extreme Connectivity—Requirements, Capabilities, and Fundamental Tradeoffs. IEEE BITS Inf. Theory Mag. 2023, 3, 54–66. [Google Scholar] [CrossRef]
- Geiselhart, M.; Krieg, F.; Clausius, J.; Tandler, D.; Brink, S.T. 6G: A Welcome Chance to Unify Channel Coding? IEEE BITS Inf. Theory Mag. 2023, 3, 67–80. [Google Scholar] [CrossRef]
- Mohammed, S.K.; Hadani, R.; Chockalingam, A.; Calderbank, R. OTFS—A Mathematical Foundation for Communication and Radar Sensing in the Delay-Doppler Domain. IEEE BITS Inf. Theory Mag. 2022, 2, 36–55. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; Mu, X.; Ding, Z.; Schober, R.; Al-Dhahir, N.; Hossain, E.; Shen, X. Evolution of NOMA Toward Next Generation Multiple Access (NGMA) for 6G. IEEE J. Sel. Areas Commun. 2022, 40, 1037–1071. [Google Scholar] [CrossRef]
- Mishra, A.; Mao, Y.; Dizdar, O.; Clerckx, B. Rate-Splitting Multiple Access for 6G—Part I: Principles, Applications and Future Works. IEEE Commun. Lett. 2022, 26, 2232–2236. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Du, H.; Niyato, D.; Cui, S.; Ai, B.; Debbah, M.; Letaief, K.B.; Poor, H.V. A Tutorial on Extremely Large-Scale MIMO for 6G: Fundamentals, Signal Processing, and Applications. IEEE Commun. Surv. Tutor. 2024, 26, 1560–1605. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L. Scalable Cell-Free Massive MIMO Systems. IEEE Trans. Commun. 2020, 68, 4247–4261. [Google Scholar] [CrossRef]
- Hoydis, J.; Aoudia, F.A.; Valcarce, A.; Viswanathan, H. Toward a 6G AI-Native Air Interface. IEEE Commun. Mag. 2021, 59, 76–81. [Google Scholar] [CrossRef]
- Xie, H.; Qin, Z.; Li, G.Y.; Juang, B.-H. Deep Learning Enabled Semantic Communication Systems. IEEE Trans. Signal Process. 2021, 69, 2663–2675. [Google Scholar] [CrossRef]
- Smida, B.; Sabharwal, A.; Fodor, G.; Alexandropoulos, G.C.; Suraweera, H.A.; Chae, C.-B. Full-Duplex Wireless for 6G: Progress Brings New Opportunities and Challenges. IEEE J. Sel. Areas Commun. 2023, 41, 2729–2750. [Google Scholar] [CrossRef]
- Basar, E.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.-S.; Zhang, R. Wireless Communications Through Reconfigurable Intelligent Surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network. IEEE Commun. Mag. 2020, 58, 106–112. [Google Scholar] [CrossRef]
3GPP Release | Enhancements to Existing Features | New Features |
---|---|---|
Release 15: Birth of 5G |
|
|
Release 16: First 5G Upgrade |
|
|
Release 17: Expansion of 5G Horizons |
|
|
Release 18: Dawn of 5G-Advanced |
|
|
Release 19: 5G-Advanced Growth |
|
|
Release 20 Evolution to 6G (Outlook) |
|
|
Lessons Learned from 5G Evolution | What Should 6G Standardization Do Differently? |
---|---|
Lesson #1: Overly complicated 5G design with excessive options led to fragmentation and limited deployment of features. | 6G standardization should focus on technical excellence to achieve simplicity and scalability. |
Lesson #2: Focusing on impractical 5G performance requirements led to complex features that were not deployed. | 6G standardization should focus on realistic and meaningful performance improvements. |
Lesson #3: Multiple architecture choices in 5G created unnecessary complexity and delayed adoption. | 6G standardization should focus on standalone architecture from the start. |
Lesson #4: Bit transport alone limits telcos to “dumb pipes” and restricts growth opportunities. | 6G standardization should focus on integrating computing, AI, and sensing to enable multi-tenancy. |
Lesson #5: The traditional 3GPP release-style enhancements have difficulty keeping up with the increasing pace of innovation. | 6G standardization should enable continuous enhancements and innovations. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X. 3GPP Evolution from 5G to 6G: A 10-Year Retrospective. Telecom 2025, 6, 32. https://doi.org/10.3390/telecom6020032
Lin X. 3GPP Evolution from 5G to 6G: A 10-Year Retrospective. Telecom. 2025; 6(2):32. https://doi.org/10.3390/telecom6020032
Chicago/Turabian StyleLin, Xingqin. 2025. "3GPP Evolution from 5G to 6G: A 10-Year Retrospective" Telecom 6, no. 2: 32. https://doi.org/10.3390/telecom6020032
APA StyleLin, X. (2025). 3GPP Evolution from 5G to 6G: A 10-Year Retrospective. Telecom, 6(2), 32. https://doi.org/10.3390/telecom6020032