Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,554)

Search Parameters:
Keywords = minimum inhibitory concentrations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1531 KiB  
Article
Evaluation of the Biological Properties and Antibacterial Activities of the Natural Food Supplement “Epavin” for Liver Detoxification and Protection
by Alexia Barbarossa, Maria Pia Argentieri, Maria Valeria Diella, Anita Caforio, Antonio Carrieri, Filomena Corbo, Antonio Rosato and Alessia Carocci
Foods 2025, 14(15), 2600; https://doi.org/10.3390/foods14152600 - 24 Jul 2025
Abstract
Background/Objectives: The liver, the body’s primary detoxifying organ, is often affected by various inflammatory diseases, including hepatitis, cirrhosis, and non-alcoholic fatty liver disease (NAFLD), many of which can be exacerbated by secondary infections such as spontaneous bacterial peritonitis, bacteremia, and sepsis—particularly in patients [...] Read more.
Background/Objectives: The liver, the body’s primary detoxifying organ, is often affected by various inflammatory diseases, including hepatitis, cirrhosis, and non-alcoholic fatty liver disease (NAFLD), many of which can be exacerbated by secondary infections such as spontaneous bacterial peritonitis, bacteremia, and sepsis—particularly in patients with advanced liver dysfunction. The global rise in these conditions underscores the need for effective interventions. Natural products have attracted attention for their potential to support liver health, particularly through synergistic combinations of plant extracts. Epavin, a dietary supplement from Erbenobili S.r.l., formulated with plant extracts like Taraxacum officinale (L.), Silybum marianum (L.) Gaertn., and Cynara scolymus (L.), known for their liver-supporting properties, has been proposed as adjuvant for liver functions. The aim of this work was to evaluate of Epavin’s antioxidant, anti-inflammatory, and protective effects against heavy metal-induced toxicity. In addition, the antibacterial effect of Epavin against a panel of bacterial strains responsible for infections associated with liver injuries has been evaluated. Methods: The protection against oxidative stress induced by H2O2 was evaluated in HepG2 and BALB/3T3 cells using the dichlorofluorescein diacetate (DCFH-DA) assay. Its anti-inflammatory activity was investigated by measuring the reduction in nitric oxide (NO) production in LPS-stimulated RAW 264.7 macrophages using the Griess assay. Additionally, the cytoprotecting of Epavin against heavy metal-induced toxicity and oxidative stress were evaluated in HepG2 cells using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] (MTT) and DCFH-DA assays. The antibacterial activity of Epavin was assessed by determining the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) against Gram-positive (Enterococcus faecalis ATCC 29212, and BS, Staphylococcus aureus 25923, 29213, 43300, and BS) and Gram-negative (Escherichia coli 25922, and BS, Klebsiella pneumoniae 13883, 70063, and BS) bacterial strains using the microdilution method in broth, following the Clinical and Laboratory Standards Institute’s (CLSI) guidelines. Results: Epavin effectively reduced oxidative stress in HepG2 and BALB/3T3 cells and decreased NO production in LPS-stimulated RAW 264.7 macrophages. Moreover, Epavin demonstrated a protective effect against heavy metal-induced toxicity and oxidative damage in HepG2 cells. Finally, it exhibited significant antibacterial activity against both Gram-positive and Gram-negative bacterial strains, with MIC values ranging from 1.5 to 6.0 mg/mL. Conclusions: The interesting results obtained suggest that Epavin may serve as a valuable natural adjuvant for liver health by enhancing detoxification processes, reducing inflammation, and exerting antibacterial effects that could be beneficial in the context of liver-associated infections. Full article
Show Figures

Figure 1

27 pages, 4093 KiB  
Article
Antimicrobial Resistance in Commensal Bacteria from Large-Scale Chicken Flocks in the Dél-Alföld Region of Hungary
by Ádám Kerek, Ábel Szabó, Franciska Barnácz, Bence Csirmaz, László Kovács and Ákos Jerzsele
Vet. Sci. 2025, 12(8), 691; https://doi.org/10.3390/vetsci12080691 - 24 Jul 2025
Abstract
Background: Antimicrobial resistance (AMR) is increasingly acknowledged as a critical global challenge, posing serious risks to human and animal health and potentially disrupting poultry production systems. Commensal bacteria such as Staphylococcus spp., Enterococcus spp., and Escherichia coli may serve as important reservoirs [...] Read more.
Background: Antimicrobial resistance (AMR) is increasingly acknowledged as a critical global challenge, posing serious risks to human and animal health and potentially disrupting poultry production systems. Commensal bacteria such as Staphylococcus spp., Enterococcus spp., and Escherichia coli may serve as important reservoirs and vectors of resistance genes. Objectives: This study aimed to assess the AMR profiles of bacterial strains isolated from industrial chicken farms in the Dél-Alföld region of Hungary, providing region-specific insights into resistance dynamics. Methods: A total of 145 isolates, including Staphylococcus spp., Enterococcus spp., and E. coli isolates, were subjected to minimum inhibitory concentration (MIC) testing against 15 antimicrobial agents, following Clinical and Laboratory Standards Institute (CLSI) guidelines. Advanced multivariate statistics, machine learning algorithms, and network-based approaches were employed to analyze resistance patterns and co-resistance associations. Results Multidrug resistance (MDR) was identified in 43.9% of Staphylococcus spp. isolates, 28.8% of Enterococcus spp. isolates, and 75.6% of E. coli isolates. High levels of resistance to florfenicol, enrofloxacin, and potentiated sulfonamides were observed, whereas susceptibility to critical antimicrobials such as imipenem and vancomycin remained largely preserved. Discussion: Our findings underscore the necessity of implementing region-specific AMR monitoring programs and strengthening multidisciplinary collaboration within the “One Health” framework with proper animal hygiene and biosecurity measures to limit the spread of antimicrobial resistance and protect both animal and human health. Full article
Show Figures

Graphical abstract

18 pages, 849 KiB  
Article
Antimicrobial Activity of Greek Native Essential Oils Against Escherichia coli O157:H7 and Antibiotic Resistance Strains Harboring pNorm Plasmid, mecA, mcr-1 and blaOXA Genes
by Rafail Fokas, Zoi Anastopoulou and Apostolos Vantarakis
Antibiotics 2025, 14(8), 741; https://doi.org/10.3390/antibiotics14080741 - 24 Jul 2025
Abstract
Background/Objectives: The rapid emergence of antibiotic-resistant Escherichia coli in food and clinical environments necessitates new, clean-label antimicrobials. This study assessed eight Greek native essential oils—oregano, thyme, dittany, rosemary, peppermint, lavender, cistus and helichrysum—for activity against six genetically and phenotypically diverse E. coli strains [...] Read more.
Background/Objectives: The rapid emergence of antibiotic-resistant Escherichia coli in food and clinical environments necessitates new, clean-label antimicrobials. This study assessed eight Greek native essential oils—oregano, thyme, dittany, rosemary, peppermint, lavender, cistus and helichrysum—for activity against six genetically and phenotypically diverse E. coli strains (reference, pNorm, mecA, mcr-1, blaOXA and O157:H7). We aimed to identify oils with broad-spectrum efficacy and clarify the chemical constituents responsible. Methods: Disk-diffusion assays measured inhibition zones at dilutions from 50% to 1.56% (v/v). MIC and MBC values were determined by broth microdilution. GC–MS profiling identified dominant components, and Spearman rank-order correlations (ρ) linked composition to activity. Shapiro–Wilk tests (W = 0.706–0.913, p ≤ 0.002) indicated non-normal data, so strain comparisons used Kruskal–Wallis one-way ANOVA with Dunn’s post hoc and Bonferroni correction. Results: Oregano, thyme and dittany oils—rich in carvacrol and thymol—exhibited the strongest activity, with MIC/MBC ≤ 0.0625% (v/v) against all strains and inhibition zones > 25 mm at 50%. No strain-specific differences were detected (H = 0.30–3.85; p = 0.998–0.571; padj = 1.000). Spearman correlations confirmed that carvacrol and thymol content strongly predicted efficacy (ρ = 0.527–0.881, p < 0.001). Oils dominated by non-phenolic terpenes (rosemary, peppermint, lavender, cistus, helichrysum) showed minimal or no activity. Conclusions: Phenolic-rich EOs maintain potent, strain-independent antimicrobial effects—including against multidrug-resistant and O157:H7 strains—via a multi-target mode that overcomes classical resistance. Their low-dose efficacy and GRAS status support their use as clean-label food preservatives or adjuncts to antibiotics or bacteriophages to combat antimicrobial resistance. Full article
Show Figures

Figure 1

32 pages, 722 KiB  
Article
Nutritional and Bioactive Characterization of Unconventional Food Plants for Sustainable Functional Applications
by Izamara de Oliveira, José Miguel R. T. Salgado, João Krauspenhar Lopes, Marcio Carocho, Tayse F. F. da Silveira, Vitor Augusto dos Santos Garcia, Ricardo C. Calhelha, Celestino Santos-Buelga, Lillian Barros and Sandrina A. Heleno
Sustainability 2025, 17(15), 6718; https://doi.org/10.3390/su17156718 - 23 Jul 2025
Abstract
Unconventional food plants (UFPs) are increasingly valued for their nutritional composition and bioactive potential. This study proposes a comprehensive characterization of the chemical and bioactive properties of Pereskia aculeata Miller (Cactaceae) (PA); Xanthosoma sagittifolium (L.) Schott (Araceae) (XS); Stachys byzantina K. Koch (Lamiaceae) [...] Read more.
Unconventional food plants (UFPs) are increasingly valued for their nutritional composition and bioactive potential. This study proposes a comprehensive characterization of the chemical and bioactive properties of Pereskia aculeata Miller (Cactaceae) (PA); Xanthosoma sagittifolium (L.) Schott (Araceae) (XS); Stachys byzantina K. Koch (Lamiaceae) (SB); and inflorescences from three cultivars of Musa acuminata (Musaceae) var. Dwarf Cavendish, var. BRS Platina, and var. BRS Conquista (MAD, MAP, and MAC), including the assessment of physical, nutritional, phytochemical, and biological parameters. Notably, detailed phenolic profiles were established for these species, many of which are poorly documented in the literature. XS was characterized by a unique abundance of C-glycosylated flavones, especially apigenin and luteolin derivatives, rarely described for this species. SB exhibited high levels of phenylethanoid glycosides, particularly verbascoside and its isomers (up to 21.32 mg/g extract), while PA was rich in O-glycosylated flavonols such as quercetin, kaempferol, and isorhamnetin derivatives. Nutritionally, XS had the highest protein content (16.3 g/100 g dw), while SB showed remarkable dietary fiber content (59.8 g/100 g). Banana inflorescences presented high fiber (up to 66.5 g/100 g) and lipid levels (up to 7.35 g/100 g). Regarding bioactivity, PA showed the highest DPPH radical scavenging activity (95.21%) and SB the highest reducing power in the FRAP assay (4085.90 µM TE/g). Cellular antioxidant activity exceeded 2000% in most samples, except for SB. Cytotoxic and anti-inflammatory activities were generally low, with only SB showing moderate effects against Caco-2 and AGS cell lines. SB and PA demonstrated the strongest antimicrobial activity, particularly against Yersinia enterocolitica, methicillin-resistant Staphylococcus aureus (MRSA), and Enterococcus faecalis, with minimum inhibitory concentrations ranging from 0.156 to 0.625 mg/mL. Linear discriminant analysis revealed distinctive chemical patterns among the species, with organic acids (e.g., oxalic up to 7.53 g/100 g) and fatty acids (e.g., linolenic acid up to 52.38%) as key discriminant variables. Overall, the study underscores the nutritional and functional relevance of these underutilized plants and contributes rare quantitative data to the scientific literature regarding their phenolic signatures. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

17 pages, 3346 KiB  
Article
Phytoconstituent Detection, Antioxidant, and Antimicrobial Potentials of Moringa oleifera Lam. Hexane Extract Against Selected WHO ESKAPE Pathogens
by Kokoette Bassey and Malebelo Mabowe
Horticulturae 2025, 11(8), 869; https://doi.org/10.3390/horticulturae11080869 - 23 Jul 2025
Abstract
The holistic use of Moringa oleifera Lam. seeds is not as popular amongst rural South Africans. This study screened for the phytochemicals, antimicrobial, and antioxidant potentials as well identifying the compounds in the oils of South African Moringa seed oils using cost-effective thin [...] Read more.
The holistic use of Moringa oleifera Lam. seeds is not as popular amongst rural South Africans. This study screened for the phytochemicals, antimicrobial, and antioxidant potentials as well identifying the compounds in the oils of South African Moringa seed oils using cost-effective thin layer chromatography bioautography and dot blot assays, because fewer studies have been conducted using seed samples from this country. The results obtained indicated that the best oil extract yield (24.04%) was obtained for hexane from 60.10 g of powdered seeds. The yield of the other extracts ranged from 6.2 to 9.5%. Positive test results were obtained for terpenoids, steroids, alkaloids, flavonoids, phenols, and tannins, with potentially good antioxidant properties for scavenging free radicals from 2,2-diphenyl-1-picrylhydrazyl (DPPH) and good antimicrobial activity against Acinetobacter baumannii (BAA 747), Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 27853), and Pseudomonas aeruginosa (ATCC 27853), with the best zone of inhibition of 314.2 mm2 obtained for oil extracted with hexane, followed by dichloromethane, methanol, and acetone oil extracts, respectively. The best minimum inhibitory concentration (MIC) of 0.032 mg/mL against P. aeruginosa was recorded for the hexane oil, compared with ciprofloxacin, which had an MIC of 0.0039 mg/mL against the same pathogen. The identification of the in-oil compounds proposed to mitigate inhibitory activity against the test microbes was carried out through GC-MS analysis matching our results with the GC-MS library. These compounds included ursane-3,16-diol, azetidin-2-one, 1-benzyl-4à-methyl, dibutyl phthalate, 4-methyl-2,4-bis(p-hydroxyphenyl)pent-1-ene, 1H-pyrrole-2,5-dione, 3-ethyl-4-methyl, octopamine rhodoxanthin, 29,30-dinorgammacerane-3,22-diol, 21,21-dimethy, cholan-24-oic acid, 3,7-dioxo, and benzyl alcohol. These are in addition to the stability-indicating marker compounds like oleic acid (54.9%), 9-Octadecenoic acid (z)-, methyl ester (23.3%), n-hexadecanoic acid (9.68%), among others observed over a five year period. Full article
Show Figures

Figure 1

23 pages, 2594 KiB  
Article
Formation and Characterization of Xylitol-Modified Glycidyl Methacrylate-co-Ethyl Methacrylate Matrices for Controlled Release of Antimicrobial Compounds
by Adam Chyzy, Przemysław Gnatowski, Edyta Piłat, Maciej Sienkiewicz, Katarzyna Wozniak, Marta Wojnicka, Krzysztof Brzezinski and Marta E. Plonska-Brzezinska
Molecules 2025, 30(15), 3083; https://doi.org/10.3390/molecules30153083 - 23 Jul 2025
Abstract
Wounds are undeniably important gateways for pathogens to enter the body. In addition to their detrimental local effects, they can also cause adverse systemic effects. For this reason, developing methods for eradicating pathogens from wounds is a challenging medical issue. Polymers, particularly hydrogels, [...] Read more.
Wounds are undeniably important gateways for pathogens to enter the body. In addition to their detrimental local effects, they can also cause adverse systemic effects. For this reason, developing methods for eradicating pathogens from wounds is a challenging medical issue. Polymers, particularly hydrogels, are one of the more essential materials for designing novel drug-delivery systems, thanks to the ease of tuning their structures. This work exploits this property by utilizing copolymerization, microwave modification, and drug-loading processes to obtain antibacterial gels. Synthesized xylitol-modified glycidyl methacrylate-co-ethyl methacrylate ([P(EMA)-co-(GMA)]-Xyl]) matrices were loaded with bacitracin, gentian violet, furazidine, and brilliant green, used as active pharmaceutical ingredients (APIs). The hydrophilic properties, API release mechanism, and antibacterial properties of the obtained hydrogels against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus epidermidis containing [P(EMA)-co-(GMA)]-Xyl] were studied. The hydrogels with the APIs efficiently inhibit bacteria growth with low doses of drugs, and our findings are statistically significant, confirmed with ANOVA analysis at p = 0.05. The results confirmed that the proposed system is hydrophilic and has extended the drug-release capabilities of APIs with a controlled burst effect based on [P(EMA)-co-(GMA)]-Xyl] content in the hydrogel. Hydrogels are characterized by the prolonged release of APIs in a very short time (a few minutes). Although the amount of released APIs is about 10%, it still exceeds the minimum inhibitory concentrations of drugs. Several kinetic models (first-order, second-order, Baker–Lonsdale, and Korsmeyer–Peppas) were applied to fit the API release data from the [P(EMA)-co-(GMA)]-Xyl-based hydrogel. The best fit of the Korsmeyer–Peppas kinetic model to the experimental data was determined, and it was confirmed that a diffusion-controlled release mechanism of the APIs from the studied hydrogels is dominant, which is desirable for applications requiring a consistent, controlled release of therapeutic agents. A statistical analysis of API release using Linear Mixed Model was performed, examining the relationship between % mass of API, sample (hydrogels and control), time, sample–time interaction, and variability between individuals. The model fits the data well, as evidenced by the determination coefficients close to 1. The analyzed interactions in the data are reliable and statistically significant (p < 0.001). The outcome of this study suggests that the presented acrylate-based gel is a promising candidate for developing wound dressings. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Their Applications)
Show Figures

Figure 1

13 pages, 482 KiB  
Article
In Vitro Antimicrobial Activity of the Novel Antimicrobial Peptide OMN51 Against Multi-Drug-Resistant Pseudomonas aeruginosa Isolated from People with Cystic Fibrosis
by Moshe Heching, Moshe Cohen-Kutner, Haim Ben-Zvi, Liora Slomianksy, Elital Chass Maurice, Noa Nur Maymon, Shira Mandel, Michal Oholy, Rony Moses, Michal Lavon, Katherine Kaufman, Orel Mayost Lev-Ari, Tamar Shachar, Joel Weinberg, Mordechai R. Kramer and Niv Bachnoff
J. Clin. Med. 2025, 14(15), 5208; https://doi.org/10.3390/jcm14155208 - 23 Jul 2025
Abstract
Background: People with cystic fibrosis (pwCF) frequently suffer from chronic lung infections, with Pseudomonas aeruginosa being the predominant pathogen contributing to disease progression and morbidity. The increasing prevalence of multi-drug-resistant (MDR) P. aeruginosa has diminished treatment options. Antimicrobial peptides (AMPs) have emerged as [...] Read more.
Background: People with cystic fibrosis (pwCF) frequently suffer from chronic lung infections, with Pseudomonas aeruginosa being the predominant pathogen contributing to disease progression and morbidity. The increasing prevalence of multi-drug-resistant (MDR) P. aeruginosa has diminished treatment options. Antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics due to their unique membrane-targeting mechanisms. OMN51, a novel bioengineered AMP derived from capitellacin, was evaluated for antimicrobial activity against P. aeruginosa in sputum samples from pwCF. This study aimed to compare the bactericidal effects of OMN51 with those of a range of conventional antibiotics known to have activity against P. aeruginosa clinical isolates derived from pwCF. Methods:P. aeruginosa clinical isolates were obtained from fifty-six unique sputum cultures of pwCF at a tertiary-university-affiliated hospital. Minimum inhibitory concentrations (MICs) of OMN51 and comparator antibiotics were determined using broth microdilution. Antimicrobial susceptibility was evaluated using the Kirby–Bauer disc diffusion method. Results: OMN51 demonstrated in vitro bactericidal activity across all P. aeruginosa isolates, including MDR strains. MIC values for OMN51 ranged from 4 to 16 µg/mL, with no observed resistance or cross-resistance. Comparative analysis revealed the superior efficacy of OMN51 compared with conventional antibiotics. Conclusions: OMN51 exhibits robust in vitro activity against MDR P. aeruginosa, supporting its candidacy as a therapeutic agent for MDR P. aeruginosa- associated infections. Further studies are warranted to assess pharmacokinetics and in vivo safety and efficacy. OMN51 represents a first-in-class, membrane-targeting therapeutic showing promise against MDR P. aeruginosa. Full article
(This article belongs to the Special Issue Cystic Fibrosis: Novel Strategies of Diagnosis and Treatments)
Show Figures

Figure 1

11 pages, 1067 KiB  
Article
Assessment of the Anti-Biofilm Effect of Cefiderocol Against 28 Clinical Strains of Multidrug-Resistant Gram-Negative Bacilli
by Marta Díaz-Navarro, Emilia Cercenado, Andrés Visedo, Mercedes Marín, Marina Machado, Álvaro Irigoyen-von-Sierakowski, Belén Loeches, Juana Cacho-Calvo, Julio García-Rodríguez, Enea G. Di Domenico, Patricia Muñoz and María Guembe
Antibiotics 2025, 14(8), 738; https://doi.org/10.3390/antibiotics14080738 - 23 Jul 2025
Abstract
Objectives: Cefideroccol (FDC) is a siderophore cephalosporin with potent antibacterial activity against a wide range of Gram-negative multidrug-resistant (MDR) microorganisms. We investigated the anti-biofilm capacity of FDC against clinical strains. Methods: This multicenter study was conducted on 28 selected strains of [...] Read more.
Objectives: Cefideroccol (FDC) is a siderophore cephalosporin with potent antibacterial activity against a wide range of Gram-negative multidrug-resistant (MDR) microorganisms. We investigated the anti-biofilm capacity of FDC against clinical strains. Methods: This multicenter study was conducted on 28 selected strains of MDR Gram-negative bacilli isolated from clinical samples of Pseudomonas aeruginosa (n = 5), Acinetobacter baumannii (n = 11), and Klebsiella pneumoniae (n = 12). We first determined the minimum inhibitory concentration (MIC) of each strain using the microdilution method. We also defined the minimum biofilm inhibitory concentration (MBIC) as a ≥50% reduction in tetrazolium salt (XTT) (as recommended in the 2017 Spanish Microbiology Protocols [SEIMC] for the microbiological diagnosis of infections related to the formation of biofilms). We also analyzed the reduction in the following biofilm variables after an 8 mg/mL FDC treatment: the CFU count, the cell viability, the biomass, the metabolic activity, and extracellular α or β polysaccharides. Results: The MIC50 and MBIC50 of FDC were 0.5 mg/L and 64 mg/L, respectively. We observed a mean (SD) fold increase in the susceptibility to FDC between planktonic and sessile cells for P. aeruginosa, A. baumannii, and K. pneumoniae of 9.60 (0.55), 6.27 (2.28), and 6.25 (2.80), respectively. When 8 mg/mL of FDC was tested, we observed that the best median (IQR) percentage reductions were obtained for cell viability and the extracellular matrix (73.1 [12.4–86.5] and 79.5 [37.3–95.5], respectively), particularly for P. aeruginosa. The lowest percentage reduction rates were those obtained for biomass. Conclusions: We demonstrated that the susceptibility to FDC was significantly reduced when strains were in a biofilm state. The best percentage reduction rates for all biofilm-defining variables were observed for P. aeruginosa. Our results need to be validated using a larger collection of clinical samples. Full article
Show Figures

Figure 1

13 pages, 672 KiB  
Review
Pharmacokinetics/Pharmacodynamics-Based Repositioning of Cefmetazole and Flomoxef in Extended-Spectrum β-Lactamase-Producing Enterobacterales Treatment: An Injectable Carbapenem-Sparing and Outpatient Strategy
by Takahiro Kato, Yusuke Yagi, Takumi Maruyama and Yukihiro Hamada
Antibiotics 2025, 14(8), 737; https://doi.org/10.3390/antibiotics14080737 - 23 Jul 2025
Abstract
Infections caused by extended-spectrum β-lactamase-producing Enterobacterales (ESBL-Es) pose a significant global threat with notable increases in prevalence worldwide. Carbapenems are often used as the first line of treatment. However, their overuse accelerates resistance development, highlighting the urgent need for clinically viable carbapenem-sparing strategies. [...] Read more.
Infections caused by extended-spectrum β-lactamase-producing Enterobacterales (ESBL-Es) pose a significant global threat with notable increases in prevalence worldwide. Carbapenems are often used as the first line of treatment. However, their overuse accelerates resistance development, highlighting the urgent need for clinically viable carbapenem-sparing strategies. Cefmetazole (CMZ) and flomoxef (FMOX) are parenteral antibiotics that are widely used in Japan and have emerged as potential carbapenem alternatives. Repositioning these agents effectively addresses the clinical need for carbapenem-sparing strategies and outpatient ESBL-E management. This review aims to reposition CMZ and FMOX for real-world clinical practice by synthesizing basic research, clinical studies, and pharmacokinetics/pharmacodynamics (PKs/PDs) analyses, which suggest that these agents may be effective in treating ESBL-E infections—particularly urinary tract infections, as evidenced by their minimum inhibitory concentration (MIC) values. The clinical outcomes of these interventions have been comparable to those of carbapenems, which support their role in antimicrobial stewardship. Their PK/PD characteristics emphasize the importance of dose optimization to ensure therapeutic efficacy, whereas recent insights into resistance mechanisms provide a foundation for appropriate use. As novel antibiotic development takes substantial time, revisiting existing options is increasingly important. Notably, the Infectious Diseases Society of America’s 2024 guidance on antimicrobial resistance has omitted CMZ and FMOX, owing to which clinicians have limited guidance on their use, particularly in regions like Japan where these antibiotics are widely employed. By addressing this knowledge gap, the present review offers a comprehensive evaluation of these drugs and highlights their potential as intravenous agents in ESBL-E management. Furthermore, it highlights the ongoing challenge of ensuring effective oral step-down therapy in an outpatient setting to reinforce the global relevance of CMZ and FMOX in a broader treatment framework, underscoring their potential for outpatient administration where clinically appropriate. Full article
(This article belongs to the Special Issue ESKAPE and MDRO Pathogens: Infections and Antimicrobial Treatment)
Show Figures

Figure 1

17 pages, 2176 KiB  
Article
Growth-Phase-Dependent Modulation of Quorum Sensing and Virulence Factors in Pseudomonas aeruginosa ATCC 27853 by Sub-MICs of Antibiotics
by Ahmed Noby Amer, Nancy Attia, Daniel Baecker, Rasha Emad Mansour and Ingy El-Soudany
Antibiotics 2025, 14(7), 731; https://doi.org/10.3390/antibiotics14070731 - 21 Jul 2025
Viewed by 179
Abstract
Background: Antibiotics at sub-inhibitory concentrations can rewire bacterial regulatory networks, impacting virulence. Objective: The way that exposure to selected antibiotics (ciprofloxacin, amikacin, azithromycin, ceftazidime, and meropenem) below their minimum inhibitory concentration (sub-MIC) modulates the physiology of Pseudomonas aeruginosa is examined in [...] Read more.
Background: Antibiotics at sub-inhibitory concentrations can rewire bacterial regulatory networks, impacting virulence. Objective: The way that exposure to selected antibiotics (ciprofloxacin, amikacin, azithromycin, ceftazidime, and meropenem) below their minimum inhibitory concentration (sub-MIC) modulates the physiology of Pseudomonas aeruginosa is examined in this study using growth-phase-resolved analysis. Methods: Standard P. aeruginosa strain cultures were exposed to ¼ and ½ MIC to determine the growth kinetics under antibiotic stress. The study measured protease and pyocyanin production and the expression level of important quorum sensing and virulence genes (lasI/R, rhlI/R, pqsR/A, and phzA) at different growth phases. Results: Meropenem produced the most noticeable growth suppression at ½ MIC. Sub-MIC antibiotics did not completely stop growth, but caused distinct, dose-dependent changes. Azithromycin eliminated protease activity in all phases and had a biphasic effect on pyocyanin. Ciprofloxacin consistently inhibited both pyocyanin and protease in all phases. The effects of amikacin varied by phase and dose, while β-lactams markedly increased pyocyanin production during the log phase. In contrast to the plateau phase, when expression was often downregulated or unchanged, most quorum-sensing- and virulence-associated genes showed significant upregulation during the death phase under sub-MIC exposure. Conclusions: These findings indicate that sub-MIC antibiotics act as biochemical signal modulators, preserving stress-adapted sub-populations that, in late growth phases, activate quorum sensing and stress tolerance pathways. Full article
Show Figures

Graphical abstract

20 pages, 6178 KiB  
Article
Time Evolution of Bacterial Resistance Observed with Principal Component Analysis
by Claudia P. Barrera Patiño, Mitchell Bonner, Andrew Ramos Borsatto, Jennifer M. Soares, Kate C. Blanco and Vanderlei S. Bagnato
Antibiotics 2025, 14(7), 729; https://doi.org/10.3390/antibiotics14070729 - 20 Jul 2025
Viewed by 243
Abstract
Background/Objectives: In recent work, we have demonstrated that principal component analysis (PCA) and Fourier Transformation Infrared (FTIR) spectra are powerful tools for analyzing the changes in microorganisms at the biomolecular level to detect changes in bacteria with resistance to antibiotics. Here biochemical [...] Read more.
Background/Objectives: In recent work, we have demonstrated that principal component analysis (PCA) and Fourier Transformation Infrared (FTIR) spectra are powerful tools for analyzing the changes in microorganisms at the biomolecular level to detect changes in bacteria with resistance to antibiotics. Here biochemical structural changes in Staphylococcus aureus were analyzed over exposure time with the goal of identifying trends inside the samples that have been exposed to antibiotics for increasing amounts of time and developed resistance. Methods: All studied data was obtained from FTIR spectra of samples with induced antibiotic resistance to either Azithromycin, Oxacillin, or Trimethoprim/Sulfamethoxazole following the evolution of this development over four increasing antibiotic exposure periods. Results: The processing and data analysis with machine learning algorithms performed on this FTIR spectral database allowed for the identification of patterns across minimum inhibitory concentration (MIC) values associated with different exposure times and both clusters from hierarchical classification and PCA. Conclusions: The results enable the observation of resistance development pathways for the sake of knowing the present stage of resistance of a bacterial sample. This is carried out via machine learning methods for the purpose of faster and more effective infection treatment in healthcare settings. Full article
(This article belongs to the Section Mechanism and Evolution of Antibiotic Resistance)
Show Figures

Figure 1

16 pages, 298 KiB  
Article
Antimicrobial-Resistant Staphylococcus spp. Harbored by Hedgehogs (Erinaceus europaeus) in Central Italy
by Fabrizio Bertelloni, Francesca Pauselli, Giulia Cagnoli, Roberto Biscontri, Renato Ceccherelli and Valentina Virginia Ebani
Antibiotics 2025, 14(7), 725; https://doi.org/10.3390/antibiotics14070725 - 18 Jul 2025
Viewed by 192
Abstract
Background/Objectives: European hedgehogs (Erinaceus europaeus) are present in areas where there is human activity; therefore, they can be a source of pathogens for other animals and humans. Methods: Eighteen hedgehog carcasses were collected and analyzed for Staphylococcus spp. Isolated strains were [...] Read more.
Background/Objectives: European hedgehogs (Erinaceus europaeus) are present in areas where there is human activity; therefore, they can be a source of pathogens for other animals and humans. Methods: Eighteen hedgehog carcasses were collected and analyzed for Staphylococcus spp. Isolated strains were typed and analyzed for exfoliative toxins genes and the phenotypic and genotypic characteristics of antimicrobial resistance. Results: A total of 54 strains were isolated and typed as S. aureus, S. xylosus, S. sciuri, S. pseudintermedius, S. simulans, S. chromogenes, S. epidermidis, S. hyicus, and S. lentus. No strains had the eta and etb genes coding for exfoliative toxins. Overall, 39/54 (72.20%) isolates showed phenotypic resistance to at least one antimicrobial and 21/54 (38.80%) showed more than one resistance. The lowest efficacy was observed for erythromycin, with 40/54 (74.08%) strains classified as intermediate and 6/54 (11.11%) classified as resistant. Among the 29 isolates shown to be penicillin-resistant, 11 (37.93%) were oxacillin-resistant, with a minimum inhibitory concentration (MIC). Among the 54 staphylococcal strains, 2 (3.70%) were resistant to vancomycin, both with an MIC value equal to the maximum concentration of the antibiotic tested (256 μg/mL) and 2 (3.70%) had an intermediate resistance profile with an 8 μg/mL MIC value. No strains had the genes vanA and vanB. Two of the 29 (6.90%) penicillin-resistant strains had the blaZ gene; 8 (27.13%) strains had the mecA gene. Overall, 2/54 (3.70%) isolates were classified as extensively drug-resistant (XDR) and 9/54 (16.66%) were classified as multidrug-resistant (MDR). Conclusions: Hedgehogs can harbor antimicrobial-resistant staphylococci and can be sources of these bacteria for other animals and humans. They can also serve as bioindicators of the pathogens and antimicrobial-resistant bacteria circulating in a given habitat. Full article
15 pages, 311 KiB  
Article
Antibacterial Activity of Clove Essential Oil (Syzygium aromaticum) Against Oxacillin-Resistant Staphylococcus pseudintermedius Isolated from Dogs with Otitis Externa
by Vanessa Danielle de Freitas, Edison Lorran Jerdlicka Coelho, Janaina Marcela Assunção Rosa Moreira, Valéria Dutra, Valéria Régia Franco Sousa and Arleana do Bom Parto Ferreira de Almeida
Pathogens 2025, 14(7), 709; https://doi.org/10.3390/pathogens14070709 - 17 Jul 2025
Viewed by 289
Abstract
Infections caused by oxacillin-resistant Staphylococcus pseudintermedius are increasingly common in veterinary medicine. The indiscriminate use of antibiotics by pet owners worsens this problem, reducing treatment efficacy and creating the need for alternative therapies. This study aimed to evaluate the inhibitory effect of clove [...] Read more.
Infections caused by oxacillin-resistant Staphylococcus pseudintermedius are increasingly common in veterinary medicine. The indiscriminate use of antibiotics by pet owners worsens this problem, reducing treatment efficacy and creating the need for alternative therapies. This study aimed to evaluate the inhibitory effect of clove essential oil (Syzygium aromaticum) on both oxacillin-resistant and susceptible S. pseudintermedius. Thirty-five isolates from dogs with otitis externa were analyzed. The bacteria were identified by phenotypic tests and tested for susceptibility to 22 antibiotics using disk diffusion. Resistance genes (mecA and blaZ) were detected using conventional PCR. Among the isolates, 34.28% (12/35) were positive for mecA, and 97.14% (34/35) for blaZ. The essential oil’s efficacy was assessed using broth microdilution to determine its minimum inhibitory concentration (MIC). Clove oil showed an average MIC and minimum bactericidal concentration (MBC) of 6.4 mg/mL, inhibiting both resistant and susceptible isolates. In conclusion, clove essential oil demonstrated in vitro antimicrobial activity against S. pseudintermedius. Full article
18 pages, 4030 KiB  
Article
The Cyclic Peptide Cyclo-zp80r Controls Salmonella enterica and Listeria monocytogenes Replication in Non-Concentrated (NFC) Orange Juice: Antibacterial Effects and Mechanisms of Action
by Zhouxia Wang, Ping Zeng, Jinhui Lu, Sharon Shui Yee Leung and Lanhua Yi
Foods 2025, 14(14), 2506; https://doi.org/10.3390/foods14142506 - 17 Jul 2025
Viewed by 190
Abstract
The market for non-concentrated (NFC) orange juice is increasing rapidly due to consumer demand for nutrients and flavor. However, it encounters challenges in microbial safety, particularly from Salmonella enterica and Listeria monocytogenes. This study aimed to exploit a bio-preservative for NFC orange juice. [...] Read more.
The market for non-concentrated (NFC) orange juice is increasing rapidly due to consumer demand for nutrients and flavor. However, it encounters challenges in microbial safety, particularly from Salmonella enterica and Listeria monocytogenes. This study aimed to exploit a bio-preservative for NFC orange juice. Results showed that the cyclic peptide cyclo-zp80r had good antibacterial activity, with minimum inhibitory concentration values of 2–8 μM against S. enterica and L. monocytogenes. It exhibited bactericidal action against S. enterica and bacteriostatic action against L. monocytogenes at a concentration of 128 μM. This study explored the effect of cyclo-zp80r on the pathogenicity of S. enterica and L. monocytogenes. The mortality rate of Galleria mellonella exposed to these pathogens in NFC orange juice decreased from 100% to 60% after cyclo-zp80r treatment, surpassing the effectiveness of nisin. Cyclo-zp80r exhibited depolarization effects on S. enterica and L. monocytogenes. It increased outer membrane permeability and damaged the membrane structure of S. enterica. Cyclo-zp80r also caused distinct morphological changes, mainly cell collapse in S. enterica and localized bubble-like protrusions in L. monocytogenes. It induced reactive oxygen species production and DNA binding. The species diversity and abundance in NFC orange juice were also reduced by cyclo-zp80r, particularly in the genera Pantoea, Aeromonas, Pseudomonas, and Erwinia. Additionally, cyclo-zp80r exhibited excellent stability at high temperature (121 °C, 5 min) and in fresh orange juice. These results suggest that cyclo-zp80r could be developed as an effective food bio-preservative. Full article
Show Figures

Figure 1

23 pages, 2625 KiB  
Article
Effects of Andrographolide-Loaded Nanostructured Lipid Carriers on Growth, Feed Efficiency, and Resistance to Streptococcus agalactiae in Nile Tilapia (Oreochromis niloticus)
by Warut Kengkittipat, Manoj Tukaram Kamble, Sirikorn Kitiyodom, Jakarwan Yostawonkul, Gotchagorn Sawatphakdee, Kim D. Thompson, Seema Vijay Medhe and Nopadon Pirarat
Animals 2025, 15(14), 2117; https://doi.org/10.3390/ani15142117 - 17 Jul 2025
Viewed by 288
Abstract
The increasing demand for sustainable disease management in aquaculture has intensified interest in plant-based therapeutics. This study evaluated the formulation and efficacy of andrographolide-loaded nanostructured lipid carriers (AND-NLCs) in Nile tilapia (Oreochromis niloticus) challenged with Streptococcus agalactiae ENC06. AND-NLCs were prepared [...] Read more.
The increasing demand for sustainable disease management in aquaculture has intensified interest in plant-based therapeutics. This study evaluated the formulation and efficacy of andrographolide-loaded nanostructured lipid carriers (AND-NLCs) in Nile tilapia (Oreochromis niloticus) challenged with Streptococcus agalactiae ENC06. AND-NLCs were prepared by the phase-inversion technique and characterized by dynamic light scattering, transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and in vitro release profiling. Antibacterial activity was assessed by measuring inhibition zone diameters, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). Growth performance, feed utilization, hepatosomatic index (HSI), and disease resistance were evaluated over a 60-day feeding trial. The AND-NLCs exhibited an optimal particle size (189.6 nm), high encapsulation efficiency (90.58%), sustained release, and structural stability. Compared to the free AND and control group, AND-NLC supplementation significantly improved growth, feed efficiency, HSI, and positive allometric growth. It also enhanced survival (73.3%) and relative percent survival (RPS = 65.6%) following S. agalactiae ENC06 infection. Antibacterial efficacy and physiological responses showed positive correlations with nanoparticle characteristics. These findings suggest that AND-NLCs enhance bioavailability and therapeutic efficacy, supporting their potential as a functional dietary additive to promote growth and improve disease resistance in tilapia aquaculture. Full article
(This article belongs to the Special Issue Lipid-Based Nanoparticles for Sustainable Aquaculture)
Show Figures

Figure 1

Back to TopTop