The Cyclic Peptide Cyclo-zp80r Controls Salmonella enterica and Listeria monocytogenes Replication in Non-Concentrated (NFC) Orange Juice: Antibacterial Effects and Mechanisms of Action
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of Antibacterial Activity
2.3. Growth Curve and Time–Kill Curve
2.4. Controlling S. enterica and L. monocytogenes in NFC Orange Juice
2.5. Microbiome
2.6. Stability
2.7. Membrane Potential
2.8. Determination of Outer Membrane’s Permeability
2.9. Transmission Electron Microscopy (TEM)
2.10. Scanning Electron Microscopy (SEM)
2.11. Determination of Intracellular Reactive Oxygen Species (ROS)
2.12. DNA–Cyclo-zp80r Binding Gel Retardation Assay
2.13. Statistical Analysis
3. Results
3.1. Antibacterial Activity of the Antimicrobial Peptide Cyclo-zp80r
3.2. Effects of Cyclo-zp80r on the Growth and Survival of S. enterica and L. monocytogenes
3.3. The Antibacterial Effect of Cyclo-zp80r Against S. enterica and L. monocytogenes in NFC Orange Juice
3.4. The Effect of Cyclo-zp80r on Microbes in NFC Orange Juice
3.5. The Stability of Cyclo-zp80r
3.6. Membrane Depolarization by Cyclo-zp80r
3.7. Effect of Cyclo-zp80r on the Outer Membrane of S. enterica and Observation of the Ultrastructure
3.8. Effect of Cyclo-zp80r on the Cell Morphology of S. enterica and L. monocytogenes
3.9. Effect of Cyclo-zp80r on Reactive Oxygen Species Production in S. enterica and L. monocytogenes
3.10. The Effect of Cyclo-zp80r on DNA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, H.; Xu, X.; Hao, J.; Zuo, X.; Wang, J.; Zhu, L.; Chen, M.; Lyu, Y.; Yan, Z.; Shen, Y.; et al. Mixed fermentation of citrus peel pomace with Trichoderma koningii, Aspergillus oryzae and Lactobacillus casei: Process optimization, antioxidant activities and non-targeted metabolomics analysis. Food Biosci. 2025, 66, 106180. [Google Scholar] [CrossRef]
- Liu, S.; Cai, Y.; Lou, Y.; Zhao, Y.; Cao, M.; Li, P.; Gu, Q. Understanding citrus aroma: Changes induced by postharvest treatments of fresh fruit. Postharvest Biol. Technol. 2025, 224, 113491. [Google Scholar] [CrossRef]
- Kumar, H.; Guleria, S.; Kimta, N.; Nepovimova, E.; Dhanjal, D.S.; Sethi, N.; Suthar, T.; Shaikh, A.M.; Bela, K.; Harsányi, E. Applications of citrus peels valorisation in circular bioeconomy. J. Agric. Food Res. 2025, 20, 101780. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Pesticidal Activity of Citrus Fruits for the Development of Sustainable Fruit-Processing Waste Management and Agricultural Production. Plants 2025, 14, 754. [Google Scholar] [CrossRef] [PubMed]
- Strano, M.C.; Altieri, G.; Allegra, M.; Di Renzo, G.C.; Paterna, G.; Matera, A.; Genovese, F. Postharvest Technologies of Fresh Citrus Fruit: Advances and Recent Developments for the Loss Reduction during Handling and Storage. Horticulturae 2022, 8, 612. [Google Scholar] [CrossRef]
- Zacarias, L.; Cronje, P.J.R.; Palou, L. Postharvest technology of citrus fruits. In The Genus Citrus; Talon, M., Caruso, M., Gmitter, F.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 421–446. [Google Scholar]
- Jia, X.; Ren, J.; Fan, G.; Reineccius, G.A.; Li, X.; Zhang, N.; An, Q.; Wang, Q.; Pan, S. Citrus juice off-flavor during different processing and storage: Review of odorants, formation pathways, and analytical techniques. Crit. Rev. Food Sci. Nutr. 2024, 64, 3018–3043. [Google Scholar] [CrossRef]
- Bauersachs, E.; Dunkel, A.; Mall, V.; Reglitz, K.; Steinhaus, M. Using a combined volatilomics and sensomics approach to identify candidate markers for the differentiation of variously preserved not from concentrate (NFC) orange juices. Food Chem. 2025, 480, 143966. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Z.; Wu, Y.; Chen, Q.; Zhang, Y.; Zhang, F. Rheological effects of high-pressure processing and high-pressure homogenization on not-from-concentrate orange juice. J. Sci. Food Agric. 2025, 105, 4433–4442. [Google Scholar] [CrossRef]
- Souza, D.V.S.; Melo, M.F.; Ambrosio, M.M.Q.; Alves Junior, C.; Melo, N.J.A.; Costa, L.L.; Morais, P.L.D. Effect of plasma and heat treatments on orange juice quality. Braz. J. Biol. 2023, 83, e272709. [Google Scholar] [CrossRef]
- Zhou, G.; Shen, Z.; Fan, H.; Chang, T.; Yang, Y.; Yang, L. Innovative plasma treatment of orange juice to improve bioactive concentration: The effects of various parameters using response surface analysis. J. Food Sci. 2024, 89, 5689–5700. [Google Scholar] [CrossRef]
- Pan, X.; Bi, S.; Lao, F.; Wu, J. Factors affecting aroma compounds in orange juice and their sensory perception: A review. Food Res. Int. 2023, 169, 112835. [Google Scholar] [CrossRef] [PubMed]
- Etzbach, L.; Stolle, R.; Anheuser, K.; Herdegen, V.; Schieber, A.; Weber, F. Impact of Different Pasteurization Techniques and Subsequent Ultrasonication on the In Vitro Bioaccessibility of Carotenoids in Valencia Orange (Citrus sinensis (L.) Osbeck) Juice. Antioxidants 2020, 9, 534. [Google Scholar] [CrossRef] [PubMed]
- Camara, M.; Dominguez, L.; Medina, S.; Mena, P.; Garcia-Viguera, C. A Comparative Analysis of Folate and Mineral Contents in Freshly Squeezed and Commercial 100% Orange Juices Available in Europe. Nutrients 2024, 16, 3605. [Google Scholar] [CrossRef]
- Salar, F.J.; Sanchez-Bravo, P.; Mena, P.; Camara, M.; Garcia-Viguera, C. Comparison of vitamin C and flavanones between freshly squeezed orange juices and commercial 100% orange juices from four European countries. Int. J. Food Sci. Nutr. 2024, 75, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Vieira, F.N.; Lourenco, S.; Fidalgo, L.G.; Santos, S.A.O.; Silvestre, A.J.D.; Jeronimo, E.; Saraiva, J.A. Long-Term Effect on Bioactive Components and Antioxidant Activity of Thermal and High-Pressure Pasteurization of Orange Juice. Molecules 2018, 23, 2706. [Google Scholar] [CrossRef]
- Margalho, L.P.; Martins, C.S.; Almeida, N.A.; Carusi, J.; Mahfouz, M.; Sant’Ana, A.S.; Nascimento, M.S.; de Oliveira Rocha, L. Fungi associated with orange juice production and assessment of adhesion ability and resistance to sanitizers. Int. J. Food Microbiol. 2025, 430, 111035. [Google Scholar] [CrossRef]
- do Prado-Silva, L.; Gomes, A.; Mesquita, M.Q.; Neri-Numa, I.A.; Pastore, G.M.; Neves, M.; Faustino, M.A.F.; Almeida, A.; Braga, G.U.L.; Sant’Ana, A.S. Antimicrobial photodynamic treatment as an alternative approach for Alicyclobacillus acidoterrestris inactivation. Int. J. Food Microbiol. 2020, 333, 108803. [Google Scholar] [CrossRef]
- Bainotti, M.B.; Colas-Meda, P.; Vinas, I.; Neggazi, I.; Alegre, I. Impact of intrinsic factors and storage temperature on Escherichia coli O157:H7, Salmonella enterica subsp. enterica and Listeria monocytogenes survival in fruit juices. Int. J. Food Microbiol. 2025, 432, 111109. [Google Scholar] [CrossRef]
- Ge, W.; Yang, Q.; Wang, H.; Pan, C.; Lv, M.; Liang, L.; Ya, S.; Luo, X.; Wang, W.; Ma, H. Acid tolerance response of Salmonella during the squid storage and its amine production capacity analysis. Arch. Microbiol. 2024, 206, 139. [Google Scholar] [CrossRef]
- Bardsley, C.A.; Orsi, R.H.; Clark, S.; Murphy, C.M.; McEntire, J.C.; Wiedmann, M.; Strawn, L.K. Role of Whole Genome Sequencing in Assessing Resident and Transient Listeria monocytogenes in a Produce Packinghouse. J. Food Prot. 2024, 87, 100201. [Google Scholar] [CrossRef]
- Li, X.; Zuo, S.; Wang, B.; Zhang, K.; Wang, Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022, 27, 2675. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Zeng, P.; Wong, K.-Y.; Chan, K.-F.; Chen, S. Controlling Listeria monocytogenes in ready-to-eat leafy greens by amphipathic α-helix peptide zp80 and its antimicrobial mechanisms. LWT 2021, 152, 112412. [Google Scholar] [CrossRef]
- Zeng, P.; Zhang, P.; Yi, L.; Wang, H.; Gao, W.; Yao, L.; Zhang, L.; Chen, P.; Wong, K.Y.; Chen, S.; et al. Ternary Thermosensitive Hydrogel-Encapsulated Macrolactam Heneicosapeptide Eliminates Epidermal Multidrug-Resistant Bi-Microbial Colonization. Adv. Funct. Mater. 2024, 35, 2420652. [Google Scholar] [CrossRef]
- Bah, C.S.F.; Bekhit, A.E.D.A.; Carne, A.; McConnell, M.A. Slaughterhouse Blood: An Emerging Source of Bioactive Compounds. Compr. Rev. Food Sci. Food Saf. 2013, 12, 314–331. [Google Scholar] [CrossRef]
- Lü, X.; Yi, L.; Dang, J.; Dang, Y.; Liu, B. Purification of novel bacteriocin produced by Lactobacillus coryniformis MXJ 32 for inhibiting bacterial foodborne pathogens including antibiotic-resistant microorganisms. Food Control 2014, 46, 264–271. [Google Scholar] [CrossRef]
- Grossi, J.L.; Yamatogi, R.S.; Call, D.R.; Nero, L.A. High prevalence of intermediate resistance to ciprofloxacin in Salmonella enterica isolated from a Brazilian poultry production chain, located in Minas Gerais state. Int. J. Food Microbiol. 2023, 394, 110180. [Google Scholar] [CrossRef]
- Etty, M.C.; D’Auria, S.; Fraschini, C.; Salmieri, S.; Lacroix, M. Effect of the optimized selective enrichment medium on the expression of the p60 protein used as Listeria monocytogenes antigen in specific sandwich ELISA. Res. Microbiol. 2019, 170, 182–191. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhao, Q.; Li, J.; Yi, L. Antibacterial Activity and Action Mechanism of Bacteriocin Paracin wx7 as a Selective Biopreservative against Vancomycin-Resistant Enterococcus faecalis in Fresh-Cut Lettuce. Foods 2024, 13, 1448. [Google Scholar] [CrossRef]
- Sun, J.; Liu, H.; Dang, L.; Liu, J.; Wang, J.; Lu, Z.; Lu, Y. Genome shuffling of Lactobacillus plantarum 163 enhanced antibacterial activity and usefulness in preserving orange juice. Lett. Appl. Microbiol. 2021, 73, 741–749. [Google Scholar] [CrossRef]
- Yi, L.; Zeng, P.; Liu, J.; Wong, K.-Y.; Chan, E.W.-C.; Lin, Y.; Chan, K.-F.; Chen, S. Antimicrobial peptide zp37 inhibits Escherichia coli O157:H7 in alfalfa sprouts by inflicting damage in cell membrane and binding to DNA. LWT 2021, 146, 111392. [Google Scholar] [CrossRef]
- Meng, F.; Liu, Y.; Nie, T.; Tang, C.; Lyu, F.; Bie, X.; Lu, Y.; Zhao, M.; Lu, Z. Plantaricin A, Derived from Lactiplantibacillus plantarum, Reduces the Intrinsic Resistance of Gram-Negative Bacteria to Hydrophobic Antibiotics. Appl. Environ. Microbiol. 2022, 88, e0037122. [Google Scholar] [CrossRef] [PubMed]
- Vishweshwaraiah, Y.L.; Acharya, A.; Hegde, V.; Prakash, B. Rational design of hyperstable antibacterial peptides for food preservation. NPJ Sci. Food 2021, 5, 26. [Google Scholar] [CrossRef] [PubMed]
- Mentor, S.; Cummings, F.; Fisher, D. Preparation of biological monolayers for producing high-resolution scanning electron micrographs. PLoS ONE 2022, 17, e0266943. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xu, Y.; Hu, J. Intracellular mechanism of antimicrobial peptide HJH-3 against Salmonella pullorum. RSC Adv. 2022, 12, 14485–14491. [Google Scholar] [CrossRef]
- Ochiai, Y.; Yoshikawa, Y.; Mochizuki, M.; Takano, T.; Ueda, F. Unique response characteristics in persistent strains of Listeria monocytogenes exposed to low pH. Food Microbiol. 2020, 86, 103312. [Google Scholar] [CrossRef]
- Pernin, A.; Dubois-Brissonnet, F.; Roux, S.; Masson, M.; Bosc, V.; Maillard, M.N. Phenolic compounds can delay the oxidation of polyunsaturated fatty acids and the growth of Listeria monocytogenes: Structure-activity relationships. J. Sci. Food Agric. 2018, 98, 5401–5408. [Google Scholar] [CrossRef]
- Andreote, F.D.; Rossetto, P.B.; Souza, L.C.; Marcon, J.; Maccheroni, W., Jr.; Azevedo, J.L.; Araujo, W.L. Endophytic population of Pantoea agglomerans in citrus plants and development of a cloning vector for endophytes. J. Basic Microbiol. 2008, 48, 338–346. [Google Scholar] [CrossRef]
- Guz, N.; Arshad, M.; Cagatay, N.S.; Dageri, A. High Prevalence of Pantoea in Diaphorina citri (Hemiptera: Liviidae): Vector of Citrus Huanglongbing Disease. Curr. Microbiol. 2020, 77, 1525–1531. [Google Scholar] [CrossRef]
- Shao, L.; Tian, Y.; Chen, S.; Xu, X.; Wang, H. Characterization of the spoilage heterogeneity of Aeromonas isolated from chilled chicken meat: In vitro and in situ. LWT 2022, 162, 113470. [Google Scholar] [CrossRef]
- Abbott, D.W.; Boraston, A.B. Structural biology of pectin degradation by Enterobacteriaceae. Microbiol. Mol. Biol. Rev. 2008, 72, 301–316. [Google Scholar] [CrossRef]
- Benarroch, J.M.; Asally, M. The Microbiologist’s Guide to Membrane Potential Dynamics. Trends. Microbiol. 2020, 28, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Weng, Z.; Zeng, F.; Wang, M.; Guo, S.; Tang, Z.; Itagaki, K.; Lin, Y.; Shen, X.; Cao, Y.; Duan, J.A.; et al. Antimicrobial activities of lavandulylated flavonoids in Sophora flavences against methicillin-resistant Staphylococcus aureus via membrane disruption. J. Adv. Res. 2024, 57, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Gao, X.; Qu, J.; Xiong, F.; Xuan, H.; Jin, Y.; Yuan, H. Visible-Light-Driven Antimicrobial Activity and Mechanism of Polydopamine-Reduced Graphene Oxide/BiVO(4) Composite. Int. J. Mol. Sci. 2022, 23, 7712. [Google Scholar] [CrossRef]
- de Haan, L.R.; Reiniers, M.J.; Reeskamp, L.F.; Belkouz, A.; Ao, L.; Cheng, S.; Ding, B.; van Golen, R.F.; Heger, M. Experimental Conditions That Influence the Utility of 2’7’-Dichlorodihydrofluorescein Diacetate (DCFH(2)-DA) as a Fluorogenic Biosensor for Mitochondrial Redox Status. Antioxidants 2022, 11, 1424. [Google Scholar] [CrossRef]
- Ye, J.Z.; Su, Y.B.; Lin, X.M.; Lai, S.S.; Li, W.X.; Ali, F.; Zheng, J.; Peng, B. Alanine Enhances Aminoglycosides-Induced ROS Production as Revealed by Proteomic Analysis. Front. Microbiol. 2018, 9, 29. [Google Scholar] [CrossRef]
- Toushik, S.H.; Kim, K.; Park, S.H.; Park, J.H.; Ashrafudoulla, M.; Ulrich, M.S.I.; Mizan, M.F.R.; Hossain, M.I.; Shim, W.B.; Kang, I.; et al. Prophylactic efficacy of Lactobacillus curvatus B67-derived postbiotic and quercetin, separately and combined, against Listeria monocytogenes and Salmonella enterica ser. Typhimurium on processed meat sausage. Meat Sci. 2023, 197, 109065. [Google Scholar] [CrossRef]
- Mokhtar, M.; Youcefi, F.; Keddari, S.; Saimi, Y.; Otsmane Elhaou, S.; Cacciola, F. Phenolic Content and in Vitro Antioxidant, Anti-Inflammatory and antimicrobial Evaluation of Algerian Ruta graveolens L. Chem. Biodivers. 2022, 19, e202200545. [Google Scholar] [CrossRef]
- Lee, D.U.; Park, Y.J.; Yu, H.H.; Jung, S.C.; Park, J.H.; Lee, D.H.; Lee, N.K.; Paik, H.D. Antimicrobial and Antibiofilm Effect of epsilon-Polylysine against Salmonella Enteritidis, Listeria monocytogenes, and Escherichia coli in Tryptic Soy Broth and Chicken Juice. Foods 2021, 10, 2211. [Google Scholar] [CrossRef]
- Mohamed, M.E.B.; Sebaei, A.S.; Mahmoud, N.M.; Mohammed, N.A.; Hassan, H.A.; Abdel-Aal, R.R. Electrochemical and chromatographic methods for the determination of some natural food preservatives—A review. Food Chem. 2025, 468, 142491. [Google Scholar] [CrossRef]
- Chahouri, A.; Yacoubi, B.; Moukrim, A.; Banaoui, A. Integration assay of bacteriological risks in marine environment using Salmonella spp. and multimarker response in the bivalve Donax trunculus: Novel biomonitoring approach. Chemosphere 2022, 297, 134149. [Google Scholar] [CrossRef]
- Kannan, S.; Balakrishnan, J.; Govindasamy, A. Listeria monocytogens—Amended understanding of its pathogenesis with a complete picture of its membrane vesicles, quorum sensing, biofilm and invasion. Microb. Pathog. 2020, 149, 104575. [Google Scholar] [CrossRef]
- Pant, I.; Shashidhar, R. Inter-species competition of surface bacterial flora of pomegranate and their role in spoilage. World J. Microbiol. Biotechnol. 2023, 39, 260. [Google Scholar] [CrossRef]
- Reyes-Rodriguez, N.E.; Salgado-Miranda, C.; Flores-Valle, I.T.; Gonzalez-Gomez, M.; Soriano-Vargas, E.; Pelaez-Acero, A.; Vega-Sanchez, V. Molecular Identification and Virulence Potential of the Genus Aeromonas Isolated from Wild Rainbow Trout (Oncorhynchus mykiss) in Mexico. J. Food Prot. 2019, 82, 1706–1713. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.; Ren, J.; Zhang, Y.; Wang, X.; Guo, J.; Li, B.; Li, Q.; Chen, Y.; Chen, P.; Zhang, B. Lactic acid/tartaric acid-maltitol antibacterial activity against spoilage bacteria and prevention of yellowing and wilting in spinach and oilseed rape. Food Chem. 2025, 471, 142557. [Google Scholar] [CrossRef] [PubMed]
- Bucataru, C.; Ciobanasu, C. Antimicrobial peptides: Opportunities and challenges in overcoming resistance. Microbiol. Res. 2024, 286, 127822. [Google Scholar] [CrossRef] [PubMed]
- Arasu, M.V.; Al-Dhabi, N.A. Antibacterial activity of peptides and bio-safety evaluation: In vitro and in vivo studies against bacterial and fungal pathogens. J. Infect. Public Health 2023, 16, 2031–2037. [Google Scholar] [CrossRef]
- Yi, L.; Qi, T.; Li, X.; Zeng, K. Controlling soft rot of green pepper by bacteriocin paracin wx3 and its effect on storage quality of green pepper. Food Chem. 2024, 447, 138962. [Google Scholar] [CrossRef]
- Vila Dominguez, A.; Ayerbe Algaba, R.; Miro Canturri, A.; Rodriguez Villodres, A.; Smani, Y. Antibacterial Activity of Colloidal Silver against Gram-Negative and Gram-Positive Bacteria. Antibiotics 2020, 9, 36. [Google Scholar] [CrossRef]
Treatment Condition | High Temperature (121 °C, 5 min) | Pasteurization (65 °C, 30 min) | Fresh Orange Juice (37 °C, 2 h) |
---|---|---|---|
MIC value (μM) | 4 | 4 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zeng, P.; Lu, J.; Leung, S.S.Y.; Yi, L. The Cyclic Peptide Cyclo-zp80r Controls Salmonella enterica and Listeria monocytogenes Replication in Non-Concentrated (NFC) Orange Juice: Antibacterial Effects and Mechanisms of Action. Foods 2025, 14, 2506. https://doi.org/10.3390/foods14142506
Wang Z, Zeng P, Lu J, Leung SSY, Yi L. The Cyclic Peptide Cyclo-zp80r Controls Salmonella enterica and Listeria monocytogenes Replication in Non-Concentrated (NFC) Orange Juice: Antibacterial Effects and Mechanisms of Action. Foods. 2025; 14(14):2506. https://doi.org/10.3390/foods14142506
Chicago/Turabian StyleWang, Zhouxia, Ping Zeng, Jinhui Lu, Sharon Shui Yee Leung, and Lanhua Yi. 2025. "The Cyclic Peptide Cyclo-zp80r Controls Salmonella enterica and Listeria monocytogenes Replication in Non-Concentrated (NFC) Orange Juice: Antibacterial Effects and Mechanisms of Action" Foods 14, no. 14: 2506. https://doi.org/10.3390/foods14142506
APA StyleWang, Z., Zeng, P., Lu, J., Leung, S. S. Y., & Yi, L. (2025). The Cyclic Peptide Cyclo-zp80r Controls Salmonella enterica and Listeria monocytogenes Replication in Non-Concentrated (NFC) Orange Juice: Antibacterial Effects and Mechanisms of Action. Foods, 14(14), 2506. https://doi.org/10.3390/foods14142506