Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,762)

Search Parameters:
Keywords = miniaturized

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1429 KiB  
Article
Optimization Scheme for Modulation of Data Transmission Module in Endoscopic Capsule
by Meiyuan Miao, Chen Ye, Zhiping Xu, Laiding Zhao and Jiafeng Yao
Sensors 2025, 25(15), 4738; https://doi.org/10.3390/s25154738 (registering DOI) - 31 Jul 2025
Abstract
The endoscopic capsule is a miniaturized device used for medical diagnosis, which is less invasive compared to traditional gastrointestinal endoscopy and can reduce patient discomfort. However, it faces challenges in communication transmission, such as high power consumption, serious signal interference, and low data [...] Read more.
The endoscopic capsule is a miniaturized device used for medical diagnosis, which is less invasive compared to traditional gastrointestinal endoscopy and can reduce patient discomfort. However, it faces challenges in communication transmission, such as high power consumption, serious signal interference, and low data transmission rate. To address these issues, this paper proposes an optimized modulation scheme that is low-cost, low-power, and robust in harsh environments, aiming to improve its transmission rate. The scheme is analyzed in terms of the in-body channel. The analysis and discussion for the scheme in wireless body area networks (WBANs) are divided into three aspects: bit error rate (BER) performance, energy efficiency (EE), and spectrum efficiency (SE), and complexity. These correspond to the following issues: transmission rate, communication quality, and low power consumption. The results demonstrate that the optimized scheme is more suitable for improving the communication performance of endoscopic capsules. Full article
26 pages, 21618 KiB  
Review
Highly Versatile Photonic Integration Platform on an Indium Phosphide Membrane
by Sander Reniers, Yi Wang, Salim Abdi, Jasper de Graaf, Aleksandr Zozulia, Kevin Williams and Yuqing Jiao
Chips 2025, 4(3), 32; https://doi.org/10.3390/chips4030032 (registering DOI) - 31 Jul 2025
Abstract
The fast-maturing photonic integration technology is calling for a versatile platform that supports both active and passive functions as well as high scalability through component miniaturization. Indium phosphide (InP) has long been recognized for its ability to deliver a comprehensive suite of photonic [...] Read more.
The fast-maturing photonic integration technology is calling for a versatile platform that supports both active and passive functions as well as high scalability through component miniaturization. Indium phosphide (InP) has long been recognized for its ability to deliver a comprehensive suite of photonic components. InP membrane technology has emerged as a next-generation solution that could unite the functional completeness with high scalability. This paper describes recent advancements in the InP-membrane-on-Si (IMOS) platform, which supports high-performance passives, polarization and mode handling, native light sources, amplifiers, modulators and detectors, and novel material integration. Full article
(This article belongs to the Special Issue Silicon Photonic Integrated Circuits: Advancements and Challenges)
Show Figures

Figure 1

23 pages, 4117 KiB  
Review
Analytical Strategies for Tocopherols in Vegetable Oils: Advances in Extraction and Detection
by Yingfei Liu, Mengyuan Lv, Yuyang Wang, Jinchao Wei and Di Chen
Pharmaceuticals 2025, 18(8), 1137; https://doi.org/10.3390/ph18081137 - 30 Jul 2025
Abstract
Tocopherols, major lipid-soluble components of vitamin E, are essential natural products with significant nutritional and pharmacological value. Their structural diversity and uneven distribution across vegetable oils require accurate analytical strategies for compositional profiling, quality control, and authenticity verification, amid concerns over food fraud [...] Read more.
Tocopherols, major lipid-soluble components of vitamin E, are essential natural products with significant nutritional and pharmacological value. Their structural diversity and uneven distribution across vegetable oils require accurate analytical strategies for compositional profiling, quality control, and authenticity verification, amid concerns over food fraud and regulatory demands. Analytical challenges, such as matrix effects in complex oils and the cost trade-offs of green extraction methods, complicate these processes. This review examines recent advances in tocopherol analysis, focusing on extraction and detection techniques. Green methods like supercritical fluid extraction and deep eutectic solvents offer selectivity and sustainability, though they are costlier than traditional approaches. On the analytical side, hyphenated techniques such as supercritical fluid chromatography-mass spectrometry (SFC-MS) achieve detection limits as low as 0.05 ng/mL, improving sensitivity in complex matrices. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) provides robust analysis, while spectroscopic and electrochemical sensors offer rapid, cost-effective alternatives for high-throughput screening. The integration of chemometric tools and miniaturized systems supports scalable workflows. Looking ahead, the incorporation of Artificial Intelligence (AI) in oil authentication has the potential to enhance the accuracy and efficiency of future analyses. These innovations could improve our understanding of tocopherol compositions in vegetable oils, supporting more reliable assessments of nutritional value and product authenticity. Full article
Show Figures

Graphical abstract

10 pages, 1977 KiB  
Proceeding Paper
Finite-Element and Experimental Analysis of a Slot Line Antenna for NV Quantum Sensing
by Dennis Stiegekötter, Jonas Homrighausen, Ann-Sophie Bülter, Ludwig Horsthemke, Frederik Hoffmann, Jens Pogorzelski, Peter Glösekötter and Markus Gregor
Eng. Proc. 2025, 101(1), 9; https://doi.org/10.3390/engproc2025101009 - 30 Jul 2025
Viewed by 16
Abstract
Nitrogen vacancy (NV) diamonds are promising room temperature quantum sensors. As the technology moves towards application, efficient use of energy and cost become critical for miniaturization. This work focuses on microwave-based spin control using the short-circuited end of a slot line, analyzed by [...] Read more.
Nitrogen vacancy (NV) diamonds are promising room temperature quantum sensors. As the technology moves towards application, efficient use of energy and cost become critical for miniaturization. This work focuses on microwave-based spin control using the short-circuited end of a slot line, analyzed by finite element method (FEM) for magnetic field amplitude and uniformity. A microstrip-to-slot-line converter with a 10 dB bandwidth of 3.2 GHz was implemented. Rabi oscillation measurements with an NV microdiamond on a glass fiber show uniform excitation over 1.5 MHz across the slot, allowing spin manipulation within the coherence time of the NV center. Full article
Show Figures

Figure 1

19 pages, 5970 KiB  
Article
Interface Material Modification to Enhance the Performance of a Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS Resonator by Localized Annealing Through Joule Heating
by Adnan Zaman, Ugur Guneroglu, Abdulrahman Alsolami, Liguan Li and Jing Wang
Micromachines 2025, 16(8), 885; https://doi.org/10.3390/mi16080885 - 29 Jul 2025
Viewed by 135
Abstract
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still [...] Read more.
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still suffer from anchor-related energy losses and limited quality factors (Qs), posing significant challenges for high-performance applications. This study investigates interface modification to boost the quality factor (Q) and reduce the motional resistance, thus improving the electromechanical coupling coefficient and reducing insertion loss. To balance the trade-off between device miniaturization and performance, this work uniquely applies DC current-induced localized annealing to TPoS MEMS resonators, facilitating metal diffusion at the interface. This process results in the formation of platinum silicide, modifying the resonator’s stiffness and density, consequently enhancing the acoustic velocity and mitigating the side-supporting anchor-related energy dissipations. Experimental results demonstrate a Q-factor enhancement of over 300% (from 916 to 3632) and a reduction in insertion loss by more than 14 dB, underscoring the efficacy of this method for reducing anchor-related dissipations due to the highest annealing temperature at the anchors. The findings not only confirm the feasibility of Joule heating for interface modifications in MEMS resonators but also set a foundation for advancements of this post-fabrication thermal treatment technology. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

19 pages, 590 KiB  
Review
Comprehensive Review of Dielectric, Impedance, and Soft Computing Techniques for Lubricant Condition Monitoring and Predictive Maintenance in Diesel Engines
by Mohammad-Reza Pourramezan, Abbas Rohani and Mohammad Hossein Abbaspour-Fard
Lubricants 2025, 13(8), 328; https://doi.org/10.3390/lubricants13080328 - 29 Jul 2025
Viewed by 230
Abstract
Lubricant condition analysis is a valuable diagnostic tool for assessing engine performance and ensuring the reliable operation of diesel engines. While traditional diagnostic techniques—such as Fourier transform infrared spectroscopy (FTIR)—are constrained by slow response times, high costs, and the need for specialized personnel. [...] Read more.
Lubricant condition analysis is a valuable diagnostic tool for assessing engine performance and ensuring the reliable operation of diesel engines. While traditional diagnostic techniques—such as Fourier transform infrared spectroscopy (FTIR)—are constrained by slow response times, high costs, and the need for specialized personnel. In contrast, dielectric spectroscopy, impedance analysis, and soft computing offer real-time, non-destructive, and cost-effective alternatives. This review examines recent advances in integrating these techniques to predict lubricant properties, evaluate wear conditions, and optimize maintenance scheduling. In particular, dielectric and impedance spectroscopies offer insights into electrical properties linked to oil degradation, such as changes in viscosity and the presence of wear particles. When combined with soft computing algorithms, these methods enhance data analysis, reduce reliance on expert interpretation, and improve predictive accuracy. The review also addresses challenges—including complex data interpretation, limited sample sizes, and the necessity for robust models to manage variability in real-world operations. Future research directions emphasize miniaturization, expanding the range of detectable contaminants, and incorporating multi-modal artificial intelligence to further bolster system robustness. Collectively, these innovations signal a shift from reactive to predictive maintenance strategies, with the potential to reduce costs, minimize downtime, and enhance overall engine reliability. This comprehensive review provides valuable insights for researchers, engineers, and maintenance professionals dedicated to advancing diesel engine lubricant monitoring. Full article
Show Figures

Graphical abstract

15 pages, 2865 KiB  
Article
Mitigation of Alkali–Silica Reactivity of Greywacke Aggregate in Concrete for Sustainable Pavements
by Kinga Dziedzic, Aneta Brachaczek, Dominik Nowicki and Michał A. Glinicki
Sustainability 2025, 17(15), 6825; https://doi.org/10.3390/su17156825 - 27 Jul 2025
Viewed by 319
Abstract
Quality requirements for mineral aggregate for concrete used to construct pavement for busy highways are high because of the fatigue traffic loads and environmental exposure. The use of local aggregate for infrastructure projects could result in important sustainability improvements, provided that the concrete’s [...] Read more.
Quality requirements for mineral aggregate for concrete used to construct pavement for busy highways are high because of the fatigue traffic loads and environmental exposure. The use of local aggregate for infrastructure projects could result in important sustainability improvements, provided that the concrete’s durability is assured. The objective of this study was to identify the potential alkaline reactivity of local greywacke aggregate and select appropriate mitigation measures against the alkali–silica reaction. Experimental tests on concrete specimens were performed using the miniature concrete prism test at 60 °C. Mixtures of coarse greywacke aggregate up to 12.5 mm with natural fine aggregate of different potential reactivity were evaluated in respect to the expansion, compressive strength, and elastic modulus of the concrete. Two preventive measures were studied—the use of metakaolin and slag-blended cement. A moderate reactivity potential of the greywacke aggregate was found, and the influence of reactive quartz sand on the expansion and instability of the mechanical properties of concrete was evaluated. Both crystalline and amorphous alkali–silica reaction products were detected in the cracks of the greywacke aggregate. Efficient expansion mitigation was obtained for the replacement of 15% of Portland cement by metakaolin or the use of CEM III/A cement with the slag content of 52%, even if greywacke aggregate was blended with moderately reactive quartz sand. It resulted in a relative reduction in expansion by 85–96%. The elastic modulus deterioration was less than 10%, confirming an increased stability of the elastic properties of concrete. Full article
(This article belongs to the Special Issue Sustainability of Pavement Engineering and Road Materials)
Show Figures

Figure 1

25 pages, 4453 KiB  
Article
Regulatory Mechanisms of Exogenous Gibberellin on Seed Germination and Transcriptomic Responses in Lomatogonium rotatum
by Kefan Cao, Yingtong Mu, Sihai Lu and Yanyan Zhao
Genes 2025, 16(8), 878; https://doi.org/10.3390/genes16080878 - 26 Jul 2025
Viewed by 222
Abstract
Gibberellins (GAs) are essential phytohormones that regulate seed dormancy release and germination. Lomatogonium rotatum (L.) Fries ex Nym is a traditional medicinal plant whose seed germination is often hindered by physiological dormancy. In this study, we systematically investigated the effects of exogenous GA [...] Read more.
Gibberellins (GAs) are essential phytohormones that regulate seed dormancy release and germination. Lomatogonium rotatum (L.) Fries ex Nym is a traditional medicinal plant whose seed germination is often hindered by physiological dormancy. In this study, we systematically investigated the effects of exogenous GA3 on the seed germination of L. rotatum and elucidated the underlying molecular regulatory mechanisms via transcriptomic analysis. GA3 treatment (500 mg/L for 24 h) significantly improved the germination rate, vigor index, and other germination traits. RNA-seq analysis identified time-dependent transcriptional changes in GA3-treated seeds across three developmental stages (24 h, 72 h, and 96 h). KEGG enrichment and K-means clustering revealed dynamic actiSvation of hormonal signaling, secondary metabolism, and DNA replication pathways. WGCNA uncovered two hormone-responsive co-expression modules (Red and Lightcyan) corresponding to early and late stages of germination, respectively. Key genes related to ABA and GA biosynthesis and signal transduction showed phase-specific expression, highlighting the coordinated hormonal regulation during seed germination. Our findings provide new insights into the molecular basis of GA3-regulated seed germination and offer theoretical support for the cultivation and utilization of L. rotatum. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

3 pages, 144 KiB  
Editorial
Editorial for the Special Issue on Emerging Micro Manufacturing Technologies and Applications, 2nd Edition
by Nikolaos Tapoglou
Micromachines 2025, 16(8), 859; https://doi.org/10.3390/mi16080859 - 25 Jul 2025
Viewed by 163
Abstract
Manufacturing micro-components has become a key area of interest for research, owing to the growing demand for miniaturized components and assemblies, and a series of applications across multiple industrial sectors [...] Full article
28 pages, 1775 KiB  
Review
Forensic Narcotics Drug Analysis: State-of-the-Art Developments and Future Trends
by Petar Ristivojević, Božidar Otašević, Petar Todorović and Nataša Radosavljević-Stevanović
Processes 2025, 13(8), 2371; https://doi.org/10.3390/pr13082371 - 25 Jul 2025
Viewed by 370
Abstract
Narcotics trafficking is a fundamental part of organized crime, posing significant and evolving challenges for forensic investigations. Addressing these challenges requires rapid, precise, and scientifically validated analytical methods for reliable identification of illicit substances. Over the past five years, forensic drug testing has [...] Read more.
Narcotics trafficking is a fundamental part of organized crime, posing significant and evolving challenges for forensic investigations. Addressing these challenges requires rapid, precise, and scientifically validated analytical methods for reliable identification of illicit substances. Over the past five years, forensic drug testing has advanced considerably, improving detection of traditional drugs—such as tetrahydrocannabinol, cocaine, heroin, amphetamine-type stimulants, and lysergic acid diethylamide—as well as emerging new psychoactive substances (NPS), including synthetic cannabinoids (e.g., 5F-MDMB-PICA), cathinones (e.g., α-PVP), potent opioids (e.g., carfentanil), designer psychedelics (e.g., 25I-NBOMe), benzodiazepines (e.g., flualprazolam), and dissociatives (e.g., 3-HO-PCP). Current technologies include colorimetric assays, ambient ionization mass spectrometry, and chromatographic methods coupled with various detectors, all enhancing accuracy and precision. Vibrational spectroscopy techniques, like Raman and Fourier transform infrared spectroscopy, have become essential for non-destructive identification. Additionally, new sensors with disposable electrodes and miniaturized transducers allow ultrasensitive on-site detection of drugs and metabolites. Advanced chemometric algorithms extract maximum information from complex data, enabling faster and more reliable identifications. An important emerging trend is the adoption of green analytical methods—including direct analysis, solvent-free extraction, miniaturized instruments, and eco-friendly chromatographic processes—that reduce environmental impact without sacrificing performance. This review provides a comprehensive overview of innovations over the last five years in forensic drug analysis based on the ScienceDirect database and highlights technological trends shaping the future of forensic toxicology. Full article
(This article belongs to the Special Issue Feature Review Papers in Section “Pharmaceutical Processes”)
Show Figures

Figure 1

19 pages, 1307 KiB  
Article
Three-Dimensional Non-Stationary MIMO Channel Modeling for UAV-Based Terahertz Wireless Communication Systems
by Kai Zhang, Yongjun Li, Xiang Wang, Zhaohui Yang, Fenglei Zhang, Ke Wang, Zhe Zhao and Yun Wang
Entropy 2025, 27(8), 788; https://doi.org/10.3390/e27080788 - 25 Jul 2025
Viewed by 149
Abstract
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between [...] Read more.
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between the UAVs in the THz band. The proposed channel model considers not only the 3D scattering and reflection scenarios (i.e., reflection and scattering fading) but also the atmospheric molecule absorption attenuation, arbitrary 3D trajectory, and antenna arrays of both terminals. In addition, the statistical properties of the proposed GSCM (i.e., the time auto-correlation function (T-ACF), space cross-correlation function (S-CCF), and Doppler power spectrum density (DPSD)) are derived and analyzed under several important UAV-related parameters and different carrier frequencies, including millimeter wave (mmWave) and THz bands. Finally, the good agreement between the simulated results and corresponding theoretical ones demonstrates the correctness of the proposed GSCM, and some useful observations are provided for the system design and performance evaluation of UAV-based air-to-air (A2A) THz-MIMO wireless communications. Full article
Show Figures

Figure 1

13 pages, 1823 KiB  
Article
Wearable Personal Uroflowmeter for Measuring Urine Leakage in Women with Incontinence: Feasibility Study
by Ali Attari, Faezeh Shanehsazzadeh, Tana Kirkbride, Carol Day, John O. L. DeLancey and James A. Ashton-Miller
Biosensors 2025, 15(8), 481; https://doi.org/10.3390/bios15080481 - 24 Jul 2025
Viewed by 317
Abstract
This paper describes a novel wearable personal uroflowmeter and its use to log urine leakage episodes in women. Consisting of a miniature flow rate sensor attached under the urethral meatus, it recorded both urine flow rate and volume during activities of daily living. [...] Read more.
This paper describes a novel wearable personal uroflowmeter and its use to log urine leakage episodes in women. Consisting of a miniature flow rate sensor attached under the urethral meatus, it recorded both urine flow rate and volume during activities of daily living. The sensor communicated with a determining unit incorporating a microcontroller and an inertial measurement unit worn at the waist, facilitating the post-hoc determination of which activities and changes in pose caused leakage. Six women participated in a feasibility study performed in a clinical setting. The results indicate that the uroflowmeter was 97.5% accurate in assessing micturition flow compared to gold standard uroflowmetry and leakage measurements. The system also provides subject-specific information on the relationship between physical activity and urine leakage, thereby eliminating errors due to missing data and recall bias in bladder leakage diaries and circumventing the limitations of office-based uroflowmeters. Full article
(This article belongs to the Special Issue Advances in Flexible and Wearable Biosensors)
Show Figures

Figure 1

23 pages, 6498 KiB  
Article
Design and Testing of Miniaturized Electrically Driven Plug Seedling Transplanter
by Meng Chen, Yang Xu, Changjie Han, Desheng Li, Binning Yang, Shilong Qiu, Yan Luo, Hanping Mao and Xu Ma
Agriculture 2025, 15(15), 1589; https://doi.org/10.3390/agriculture15151589 - 24 Jul 2025
Viewed by 288
Abstract
To address the issues of bulky structure and complex transmission systems in current transplanters, a compact, electric-driven automatic transplanter was designed. Using pepper plug seedlings as the test subject, this study investigated plug tray dimensions and planting patterns. According to the design requirement [...] Read more.
To address the issues of bulky structure and complex transmission systems in current transplanters, a compact, electric-driven automatic transplanter was designed. Using pepper plug seedlings as the test subject, this study investigated plug tray dimensions and planting patterns. According to the design requirement that the width of the single-row transplanter must be less than 62.5 cm, a three-dimensional transplanter model was constructed. The transplanter comprises a coaxially installed dual-layer seedling conveying device and a sector-expanding automatic seedling picking and depositing device. The structural dimensions, drive configurations, and driving forces of the transplanter were also determined. Finally, the circuit and pneumatic system were designed, and the transplanter was assembled. Both bench and field tests were conducted to select the optimal working parameters. The test results demonstrated that the seedling picking and depositing mechanism met the required operational efficiency. In static seedling picking and depositing tests, at three transplanting speeds of 120 plants/min, 160 plants/min, and 200 plants/min, the success rates of seedling picking and depositing were 100%, 100%, and 97.5%, respectively. In the field test, at three transplanting speeds of 80 plants/min, 100 plants/min, and 120 plants/min, the transplanting success rates were 94.17%, 90.83%, and 88.33%, respectively. These results illustrate that the compact, electric-driven seedling conveying and picking and depositing devices meet the operational demands of automatic transplanting, providing a reference for the miniaturization and electrification of transplanters. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

20 pages, 12384 KiB  
Article
Oxidative Stress Model of Lipopolysaccharide-Challenge in Piglets of Wuzhishan Miniature Pig
by Ruiying Bao, Pingfei Qiu, Yanrong Hu, Junpu Chen, Xiaochun Li, Qin Wang, Yongqiang Li, Huiyu Shi, Haiwen Zhang and Xuemei Wang
Vet. Sci. 2025, 12(8), 694; https://doi.org/10.3390/vetsci12080694 - 24 Jul 2025
Viewed by 174
Abstract
Oxidative stress (OS) is a major concern in young poultry and livestock, prompting extensive research on OS models. This study aimed to systematically investigate the dynamic effects and temporal trends of OS induced with lipopolysaccharide (LPS) over time. Twenty-eight piglets were randomly divided [...] Read more.
Oxidative stress (OS) is a major concern in young poultry and livestock, prompting extensive research on OS models. This study aimed to systematically investigate the dynamic effects and temporal trends of OS induced with lipopolysaccharide (LPS) over time. Twenty-eight piglets were randomly divided into four groups and equally intraperitoneally injected with LPS at doses of 0 μg/kg (control), 50 μg/kg (L-LPS), 100 μg/kg (M-LPS) and 150 μg/kg (H-LPS) body weight, respectively. The results showed that total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), and catalase (CAT) were decreased, while malondialdehyde (MDA), nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α (TNF-α), diamine oxidase (DAO) and D-lactic acid (D-LA) were increased in the M-LPS and H-LPS group on day 1 in comparison with the control group, but no differences were found among treatments on day 7. However, LPS treatments gave rise to varying degrees of pathological injury in the intestines, livers and spleens on day 7. Metabolomics analysis indicated that compared with the control group, glycyl-valine, histamine and lepidine F were decreased in the M-LPS group. Most differentially expressed metabolites were enriched in amino acid-related metabolism pathways on both day 1 and day 7. Microbiome analysis identified that Oscillibacter_sp._CAG:241 was decreased in the M-LPS group compared with the control group on day 1, while Bacteroides_thetaiotaomicron and Lactobacillus_amylovorus were reduced in the M-LPS group on day 7. Collectively, an LPS dose of 100 μg/kg body weight is optimal for inducing acute inflammation in Wuzhishan miniature pigs. These findings highlight the importance of considering both the duration of OS induction and the specific research objectives when establishing OS models. Full article
Show Figures

Figure 1

13 pages, 9208 KiB  
Article
Hormonal Signaling and Follicular Regulation in Normal and Miniature Pigs During Corpus Luteum Regression
by Sang-Hwan Kim
Int. J. Mol. Sci. 2025, 26(15), 7147; https://doi.org/10.3390/ijms26157147 - 24 Jul 2025
Viewed by 160
Abstract
Reproductive efficiency in pigs is regulated by hormonal pathways that control follicular development at Day 15 of the estrous cycle, during corpus luteum regression. Miniature pigs are extensively employed as human-relevant models in biomedical research, yet their reproductive characteristics during mid-luteal regression remain [...] Read more.
Reproductive efficiency in pigs is regulated by hormonal pathways that control follicular development at Day 15 of the estrous cycle, during corpus luteum regression. Miniature pigs are extensively employed as human-relevant models in biomedical research, yet their reproductive characteristics during mid-luteal regression remain inadequately characterized, limiting assessments of their translational reliability. Differences in follicular morphology, hormonal signaling, and vascular development may underlie their lower fertility compared to conventional pigs. In this study, follicular development after corpus luteum formation was compared between conventional pigs and minipigs using histological staining, immunofluorescence, hormonal assays, and transcriptomic profiling. The expression of VEGF, mTOR, LH, FSH, PAPP-A, and apoptosis markers was evaluated across the granulosa and thecal regions. Differential gene expression was analyzed using microarray data followed by GO categorization. Minipigs exhibited smaller follicles, reduced vascularization, and lower VEGF and MMP activity compared to conventional pigs. Expression of LH and PAPP-A was higher in conventional pigs, while minipigs showed relatively elevated E2 and FSH levels. Transcriptomic data revealed greater upregulation of cell-survival- and angiogenesis-related genes in conventional pigs, including genes involved in IGF pathways. Apoptosis and poor extracellular matrix remodeling were more pronounced in minipigs. Minipigs demonstrated impaired follicular remodeling and weaker hormonal signaling after corpus luteum formation, which likely contributed to their reduced reproductive efficiency. Understanding these species differences can guide breeding strategies and fertility management in biomedical and agricultural settings. Full article
(This article belongs to the Special Issue Molecular Research on Reproductive Physiology and Endocrinology)
Show Figures

Figure 1

Back to TopTop