Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (882)

Search Parameters:
Keywords = miniature mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1035 KB  
Review
Motor Soft-Start Technology: Intelligent Control, Wide Bandwidth Applications, and Energy Efficiency Optimization
by Peng Li, Li Fang, Pengkun Ji, Shuaiqi Li and Weibo Li
Energies 2026, 19(3), 603; https://doi.org/10.3390/en19030603 (registering DOI) - 23 Jan 2026
Abstract
Direct-starting of industrial motors has problems such as large current impact (five to eight times the rated current), mechanical stress damage, and low energy efficiency. This paper explores the technological innovations in motor soft-start driven by intelligent control and wide-bandgap semiconductors, and constructs [...] Read more.
Direct-starting of industrial motors has problems such as large current impact (five to eight times the rated current), mechanical stress damage, and low energy efficiency. This paper explores the technological innovations in motor soft-start driven by intelligent control and wide-bandgap semiconductors, and constructs a highly reliable and low energy consumption solution. Firstly, based on a material–device–algorithm system framework, a comparative study is conducted on the performance breakthroughs of SiC/GaN in replacing silicon-based devices. Secondly, an intelligent control model is established and a highly reliable system architecture is developed. A comprehensive review of recent literature indicates that SiC devices can reduce switching losses by up to 80%, and intelligent algorithms significantly improve control accuracy. System-level solutions reported in the industry demonstrate the capability to limit current to 1.5–3 times the rated current and achieve substantial carbon emission reductions. These technologies provide key technical support for the intelligent upgrading of industrial motor systems and the dual-carbon goal. In the future, development will continue to evolve in the direction of device miniaturization and other directions. Full article
15 pages, 2317 KB  
Article
Experimental Study on Double-Sided Chemical Mechanical Polishing of Molybdenum Substrates for LED Devices
by Zhihao Zhou, Jiabin Wang, Zhongwei Hu, Pinhui Hsieh and Xipeng Xu
Micromachines 2026, 17(2), 150; https://doi.org/10.3390/mi17020150 - 23 Jan 2026
Abstract
As LED devices continue to advance toward miniaturization and higher power density, heat dissipation has become a critical factor constraining their reliability and service life. Molybdenum is widely employed as a substrate material in LED devices owing to its high thermal conductivity and [...] Read more.
As LED devices continue to advance toward miniaturization and higher power density, heat dissipation has become a critical factor constraining their reliability and service life. Molybdenum is widely employed as a substrate material in LED devices owing to its high thermal conductivity and low coefficient of thermal expansion. However, substrate applications impose stringent requirements on surface finish, flatness, and low-damage processing. Chemical mechanical polishing (CMP) can effectively balance global and local flatness and serves as the final step in producing high-quality molybdenum substrate surfaces. To enable efficient and precise processing of molybdenum substrates, this study adopts an orthogonal experimental design for double-sided CMP to systematically investigate the effects of polishing pressure, polishing slurry pH, additives in the polishing slurry, and abrasive particle size on the material removal rate (MRR) and surface roughness (Sa). An optimal parameter combination was identified via weight-matrix optimization: a polishing pressure of 115 kPa, pH 11, H2O2 (0.5%) and glycine (5 mg/L) as additives, and an abrasive particle size of 0.6 μm. Under these conditions, the MRR reached 80 nm·min−1 and Sa decreased to 1.1 nm, yielding a smooth, mirror-like surface. The results indicate that multi-factor synergistic optimization can substantially enhance both surface quality and processing efficiency in double-sided CMP of molybdenum substrates, providing a process basis for applications in high-power LED devices. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

18 pages, 1501 KB  
Review
Extracorporeal Carbon Dioxide Removal in Acute Respiratory Distress Syndrome: Physiologic Rationale and Phenotype-Based Perspectives
by Raffaele Merola, Denise Battaglini and Silvia De Rosa
Medicina 2026, 62(2), 236; https://doi.org/10.3390/medicina62020236 - 23 Jan 2026
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of morbidity and mortality despite decades of progress in ventilatory support. Mechanical ventilation, while essential for oxygenation, may exacerbate lung injury through excessive mechanical power delivery, even when using lung-protective strategies. Extracorporeal carbon dioxide [...] Read more.
Acute respiratory distress syndrome (ARDS) is a major cause of morbidity and mortality despite decades of progress in ventilatory support. Mechanical ventilation, while essential for oxygenation, may exacerbate lung injury through excessive mechanical power delivery, even when using lung-protective strategies. Extracorporeal carbon dioxide removal (ECCO2R) was conceived to enable “ultra-protective” ventilation, allowing for further reductions in tidal volume and respiratory rate by selectively removing CO2 at low extracorporeal blood flows, typically between 0.3 and 1.0 L/min. This physiological decoupling of ventilation and gas exchange aims to mitigate ventilator-induced lung injury (VILI) while maintaining adequate acid–base homeostasis. Although early physiological studies demonstrated feasibility, large, randomized trials have failed to show a survival benefit and have raised concerns about bleeding and technical complications. Recent evidence suggests that these neutral outcomes may stem from the biological and physiological heterogeneity of ARDS rather than from inefficacy of the intervention itself. Patients with high driving pressures, poor compliance, or hyperinflammatory phenotypes may derive greater benefit from ECCO2R-mediated mechanical unloading. Ongoing technological improvements, including circuit miniaturization, enhanced biocompatibility, and integration with renal replacement therapy, have improved safety and feasibility, yet the procedure remains complex and resource-intensive. Future research should focus on phenotype-enriched trials and the integration of ECCO2R into precision ventilation frameworks. Ultimately, ECCO2R should be regarded not as a universal therapy for ARDS but as a targeted physiological tool for selected patients in experienced centers. Full article
Show Figures

Figure 1

17 pages, 1238 KB  
Review
The Genetic Landscape of Androgenetic Alopecia: Current Knowledge and Future Perspectives
by Aditya K. Gupta, Daniel J. Dennis, Vasiliki Economopoulos and Vincent Piguet
Biology 2026, 15(2), 192; https://doi.org/10.3390/biology15020192 - 21 Jan 2026
Abstract
Androgenetic alopecia (AGA) is the most common cause of progressive hair thinning in adults and has traditionally been viewed as an androgen-driven inherited condition. Genomic research now demonstrates that AGA is a complex polygenic disorder involving multiple biological pathways, including androgen signaling, hair [...] Read more.
Androgenetic alopecia (AGA) is the most common cause of progressive hair thinning in adults and has traditionally been viewed as an androgen-driven inherited condition. Genomic research now demonstrates that AGA is a complex polygenic disorder involving multiple biological pathways, including androgen signaling, hair follicle development, cell survival, and extracellular matrix remodeling. Genome-wide association studies have identified numerous susceptibility loci, revealing that follicle miniaturization arises from interacting molecular mechanisms rather than a single pathogenic process. Genetic risk and predictive value vary across populations, with many loci identified in European cohorts showing limited transferability to other ancestries, highlighting the need for more diverse genetic studies. In women, genetic studies remain underpowered, and emerging data suggest partially distinct risk architecture compared with male AGA. Pharmacogenetic findings indicate that genetic variation may influence response to commonly used therapies, although no markers are currently validated for routine clinical use. Advances in single-cell and multi-omic approaches are improving understanding of how genetic risk translates into follicular dysfunction, supporting the development of more personalized and mechanism-based treatment strategies. Full article
Show Figures

Figure 1

15 pages, 5132 KB  
Article
A Spaceborne Integrated S/Ka Dual-Band Dual-Reflector Antenna
by Zenan Yang, Weiqiang Han, Liang Tang, Haihua Wang, Yilin Wang and Yongchang Jiao
Micromachines 2026, 17(1), 124; https://doi.org/10.3390/mi17010124 - 18 Jan 2026
Viewed by 148
Abstract
To address the diverse requirements of satellite communication applications involving medium-/low-rate reliable links and high-rate high-capacity services, an integrated S/Ka dual-band dual-reflector antenna is proposed as an effective solution. Owing to the stringent spatial constraints of satellite platforms, the longer operating wavelengths in [...] Read more.
To address the diverse requirements of satellite communication applications involving medium-/low-rate reliable links and high-rate high-capacity services, an integrated S/Ka dual-band dual-reflector antenna is proposed as an effective solution. Owing to the stringent spatial constraints of satellite platforms, the longer operating wavelengths in the S-band lead to oversized feed horns in the integrated antenna design, which induces severe secondary aperture blockage, thus degrading aperture efficiency and impeding practical mechanical layout implementation. To alleviate this critical drawback, the proposed antenna achieves multi-band aperture reuse by deploying an array with four miniaturized S-band radiating elements around a broadband Ka-band feed horn. A frequency-selective surface (FSS)-based sub-reflector is further designed to effectively enhance the effective aperture size for the S-band operation, while ensuring unobstructed electromagnetic propagation in the Ka-band, thus enabling simultaneous dual-band high-gain radiation. After comprehensive electromagnetic simulation and parametric optimization for the antenna feed and the FSS sub-reflector, experimental measurements verify that the S-band left-hand and right-hand circularly polarized (LHCP/RHCP) channels achieve more than 20.2 dBic gains with more than 6° half-power beamwidths (HPBWs), and the Ka-band channel yields gains exceeding 41.2 dBic, with HPBWs greater than 0.8°. Full article
Show Figures

Figure 1

23 pages, 5792 KB  
Review
A Review of Eddy Current In-Line Inspection Technology for Oil and Gas Pipelines
by Xianbing Liang, Chaojie Xu, Xi Zhang and Wenming Jiang
Processes 2026, 14(2), 247; https://doi.org/10.3390/pr14020247 - 10 Jan 2026
Viewed by 223
Abstract
Pipeline infrastructure constitutes the primary transportation system within the oil and gas industry, where operational safety is critically dependent on advanced in-line inspection technologies. This study presents a comprehensive analysis of eddy current testing (ECT) applications for pipeline integrity assessment. The fundamental principles [...] Read more.
Pipeline infrastructure constitutes the primary transportation system within the oil and gas industry, where operational safety is critically dependent on advanced in-line inspection technologies. This study presents a comprehensive analysis of eddy current testing (ECT) applications for pipeline integrity assessment. The fundamental principles of ECT are first elucidated, followed by a systematic comparative evaluation of five key ECT methodologies: conventional, multi-frequency, remote field, pulsed, and array eddy current techniques. The analysis examines their detection mechanisms, technical specifications, comparative advantages, and current developmental trajectories, with particular emphasis on future technological evolution. Subsequently, integrating global pipeline infrastructure development trends and market requirements, representative designs of pipeline inspection tools are detailed and we review relevant industry applications. Finally, persistent challenges in ECT applications are identified, particularly regarding adaptability to complex operational environments, quantification accuracy for micro-scale defects, and predictive capability for defect progression. This study proposes that future ECT equipment development should prioritize multi-modal integration, miniaturization, and intelligent analysis to enable comprehensive pipeline safety management throughout the entire asset lifecycle. Full article
Show Figures

Figure 1

23 pages, 4098 KB  
Review
Contactless Inductive Sensors Using Glass-Coated Microwires
by Larissa V. Panina, Adrian Acuna, Nikolay A. Yudanov, Alena Pashnina, Valeriya Kolesnikova and Valeria Rodionova
Sensors 2026, 26(2), 428; https://doi.org/10.3390/s26020428 - 9 Jan 2026
Viewed by 225
Abstract
This paper explores the potential of amorphous and nanocrystalline glass-coated microwires as highly versatile, miniaturized sensing elements, leveraging their intrinsic nonlinear magnetization dynamics. In magnetic systems, this approach is particularly advantageous because the degree of nonlinearity can be externally tuned using stimuli such [...] Read more.
This paper explores the potential of amorphous and nanocrystalline glass-coated microwires as highly versatile, miniaturized sensing elements, leveraging their intrinsic nonlinear magnetization dynamics. In magnetic systems, this approach is particularly advantageous because the degree of nonlinearity can be externally tuned using stimuli such as applied magnetic fields, mechanical stress, or temperature variations. From this context, we summarize key properties of microwires—including bistability, a specific easy magnetization direction, internal stress distributions, and magnetostriction—that can be tailored through composition and annealing. In this review, we compare for the first time two key contactless readout methodologies: (i) time-domain detection of the switching field and (ii) frequency-domain harmonic analysis of the induced voltage. These principles have been successfully applied to a broad range of practical sensors, including devices for monitoring mechanical stress in structural materials, measuring temperature in biomedical settings, and detecting magnetic particles. Together, these advances highlight the potential of microwires for embedded, wireless sensing in both engineering and medical applications. Full article
(This article belongs to the Special Issue Recent Trends and Advances in Magnetic Sensors)
Show Figures

Figure 1

13 pages, 1147 KB  
Article
Experimental Study of a Planar Solid-Propellant Pulsed Plasma Thruster Using Graphite
by Merlan Dosbolayev, Zhanbolat Igibayev and Ongdassyn Yertayev
Aerospace 2026, 13(1), 63; https://doi.org/10.3390/aerospace13010063 - 8 Jan 2026
Viewed by 196
Abstract
The study presents an upgraded design and the results of experimental investigations of a solid-propellant pulsed plasma thruster (PPT) in which graphite simultaneously serves as both the propellant and the ignition element. The proposed configuration comprises a planar parallel system of copper electrodes [...] Read more.
The study presents an upgraded design and the results of experimental investigations of a solid-propellant pulsed plasma thruster (PPT) in which graphite simultaneously serves as both the propellant and the ignition element. The proposed configuration comprises a planar parallel system of copper electrodes and a graphite initiating electrode equipped with an electromagnetic discharge-triggering mechanism. Experimental tests were conducted under vacuum conditions of approximately 10−5 Torr at an energy-storage capacitor voltage of 800–1400 V. Discharge current amplitudes of up to 3.16 kA were recorded at a single-pulse energy of up to 4.41 J. The measured impulse bit was about 17.1 μN ·s, and the plasma jet exhaust velocity reached 11.1 km/s. Spectroscopic analysis of the plasma confirmed the presence of characteristic carbon emission lines, thereby indicating the active participation of the graphite propellant in the formation of the plasma plume. The present work continues previous research on PPTs with graphite electrodes and is aimed at further miniaturization of the earlier developed design. The primary objective of the study is the experimental validation of the proposed discharge concept in a planar parallel electrode configuration while preserving the key thrust and energy performance characteristics of the thruster. Full article
Show Figures

Figure 1

15 pages, 3058 KB  
Article
Influence of N2/Ar Flow Ratio on the Microstructure and Electrochemical Capacitive Performance of TiN Thin-Film Electrodes for Micro-Supercapacitors
by Jiaxin Tan, Lin Yi, Min Zhang and Suyuan Bai
Coatings 2026, 16(1), 69; https://doi.org/10.3390/coatings16010069 - 7 Jan 2026
Viewed by 222
Abstract
With the rapid development of the Internet of Things (IoT), micro-energy storage devices face increasing demands for miniaturization, high energy density, and high power density. Owing to their excellent electrical conductivity and mechanical strength, TiN thin films are promising candidates for micro-supercapacitor electrodes. [...] Read more.
With the rapid development of the Internet of Things (IoT), micro-energy storage devices face increasing demands for miniaturization, high energy density, and high power density. Owing to their excellent electrical conductivity and mechanical strength, TiN thin films are promising candidates for micro-supercapacitor electrodes. In this work, TiN thin films were prepared by direct current magnetron sputtering under different N2/Ar flow ratios. The effects of the N2/Ar flow ratio on the crystal structure, surface morphology, roughness, and electrochemical capacitive performance of TiN thin films were systematically investigated. The results show that at lower N2/Ar flow ratios, the films consist of a mixture of TiN and Ti2O3 phases, while at higher N2/Ar ratios, single-phase TiN with a preferred orientation along the (220) plane is detected in the obtained films. AFM measurements indicate that the root mean square roughness first increases and then decreases with increases in N2/Ar flow ratios, and it reaches a maximum of around 15.9 nm when the N2/Ar flow ratio is 5:15. XPS results show that the 5:15 sample contains the highest oxygen vacancy concentration, offering it the best conductivity, which is confirmed by four-probe measurements. Electrochemical tests demonstrate that the N2/Ar flow ratio has a significant influence on the specific capacitance of TiN films, with the highest value of 3.29 mF/cm2 achieved at a N2/Ar flow ratio of 5:15, which is likely due to the rough and porous surface and much better conductivity of the as-deposited films. This study provides an important experimental basis for optimizing the performance of TiN thin-film electrodes. Full article
Show Figures

Figure 1

37 pages, 7246 KB  
Review
Wearable Sensing Systems for Multi-Modal Body Fluid Monitoring: Sensing-Combination Strategy, Platform-Integration Mechanism, and Data-Processing Pattern
by Manqi Peng, Yuntong Ning, Jiarui Zhang, Yuhang He, Zigan Xu, Ding Li, Yi Yang and Tian-Ling Ren
Biosensors 2026, 16(1), 46; https://doi.org/10.3390/bios16010046 - 6 Jan 2026
Viewed by 598
Abstract
Wearable multi-modal body fluid monitoring enables continuous, non-invasive, and context-aware assessment of human physiology. By integrating biochemical and physical information across multiple modalities, wearable systems overcome the limitations of single-marker sensing and provide a more holistic view of dynamic health states. This review [...] Read more.
Wearable multi-modal body fluid monitoring enables continuous, non-invasive, and context-aware assessment of human physiology. By integrating biochemical and physical information across multiple modalities, wearable systems overcome the limitations of single-marker sensing and provide a more holistic view of dynamic health states. This review offers a system-level overview of recent advances in multi-modal body fluid monitoring, structured into three hierarchical dimensions. We first examine sensing-combination strategies such as multi-marker analysis within single fluids, coupling biochemical signals with bioelectrical, mechanical, or thermal parameters, and emerging multi-fluid acquisition to improve analytical accuracy and physiological relevance. Next, we discuss platform-integration mechanisms based on biochemical, physical, and hybrid sensing principles, along with monolithic and modular architectures enabled by flexible electronics, microfluidics, microneedles, and smart textiles. Finally, the data-processing patterns are analyzed, involving cross-modal calibration, machine learning inference, and multi-level data fusion to enhance data reliability and support personalized and predictive healthcare. Beyond summarizing technical advances, this review establishes a comprehensive framework that moves beyond isolated signal acquisition or simple metric aggregation toward holistic physiological interpretation. It guides the development of next-generation wearable multi-modal body fluid monitoring systems that overcome the challenges of high integration, miniaturization, and personalized medical applications. Full article
(This article belongs to the Special Issue Biosensors for Personalized Treatment)
Show Figures

Figure 1

16 pages, 1219 KB  
Article
Flexible Inkjet-Printed pH Sensors for Application in Organ-on-a-Chip Biomedical Testing
by Željka Boček, Donna Danijela Dragun, Laeticia Offner, Sara Krivačić, Ernest Meštrović and Petar Kassal
Biosensors 2026, 16(1), 38; https://doi.org/10.3390/bios16010038 - 3 Jan 2026
Viewed by 405
Abstract
Reliable models of the lung environment are important for research on inhalation products, drug delivery, and how aerosols interact with tissue. pH fluctuations frequently accompany real physiological processes in pulmonary environments, so monitoring pH changes in lung-on-a-chip devices is of considerable relevance. Presented [...] Read more.
Reliable models of the lung environment are important for research on inhalation products, drug delivery, and how aerosols interact with tissue. pH fluctuations frequently accompany real physiological processes in pulmonary environments, so monitoring pH changes in lung-on-a-chip devices is of considerable relevance. Presented here are flexible, miniaturized, inkjet-printed pH sensors that have been developed with the aim of integration into lung-on-a-chip systems. Different types of functional pH-sensitive materials were tested: hydrogen-selective plasticized PVC membranes and polyaniline (both electrodeposited and dropcast). Their deposition and performance were evaluated on different flexible conducting substrates, including screen-printed carbon electrodes (SPE) and inkjet-printed graphene electrodes (IJP-Gr). Finally, a biocompatible dropcast polyaniline-modified IJP was selected and paired with an inkjet-printed Ag/AgCl quasireference electrode. The printed potentiometric device showed Nernstian sensitivity (58.8 mV/pH) with good reproducibility, reversibility, and potential stability. The optimized system was integrated with a developed lung-on-a-chip model with an electrospun polycaprolactone membrane and alginate, simulating the alveolar barrier and the natural mucosal environment, respectively. The permeability of the system was studied by monitoring the pH changes upon the introduction of a 10 wt.% acetic acid aerosol. Overall, the presented approach shows that electrospun-hydrogel materials together with integrated microsensors can help create improved models for studying aerosol transport, diffusion, and chemically changing environments that are relevant for inhalation therapy and respiratory research. These results show that our system can combine mechanical behavior with chemical sensing in one platform, which may be useful for future development of lung-on-a-chip technologies. Full article
Show Figures

Graphical abstract

37 pages, 2575 KB  
Review
A Review of High-Throughput Optical Sensors for Food Detection Based on Machine Learning
by Yuzhen Wang, Yuchen Yang and Huilin Liu
Foods 2026, 15(1), 133; https://doi.org/10.3390/foods15010133 - 2 Jan 2026
Viewed by 435
Abstract
As the global food industry expands and consumers demand higher food safety and quality standards, high-throughput detection technology utilizing digital intelligent optical sensors has emerged as a research hotspot in food testing due to its advantages of speed, precision, and non-destructive operation. Integrating [...] Read more.
As the global food industry expands and consumers demand higher food safety and quality standards, high-throughput detection technology utilizing digital intelligent optical sensors has emerged as a research hotspot in food testing due to its advantages of speed, precision, and non-destructive operation. Integrating cutting-edge achievements in optics, electronics, and computer science with machine learning algorithms, this technology efficiently processes massive datasets. This paper systematically summarizes the construction principles of intelligent optical sensors and their applications in food inspection. Sensors convert light signals into electrical signals using nanomaterials such as quantum dots, metal nanoparticles, and upconversion nanoparticles, and then employ machine learning algorithms including support vector machines, random forests, and convolutional neural networks for data analysis and model optimization. This enables efficient detection of target substances like pesticide residues, heavy metals, microorganisms, and food freshness. Furthermore, the integration of multiple detection mechanisms—including spectral analysis, fluorescence imaging, and hyperspectral imaging—has significantly broadened the sensors’ application scenarios. Looking ahead, optical sensors will evolve toward multifunctional integration, miniaturization, and intelligent operation. By leveraging cloud computing and IoT technologies, they will deliver innovative solutions for comprehensive monitoring of food quality and safety across the entire supply chain. Full article
(This article belongs to the Special Issue Advances in AI for the Quality Assessment of Agri-Food Products)
Show Figures

Figure 1

73 pages, 3131 KB  
Review
Magnetic Barkhausen Noise Sensor: A Comprehensive Review of Recent Advances in Non-Destructive Testing and Material Characterization
by Polyxeni Vourna, Pinelopi P. Falara, Aphrodite Ktena, Evangelos V. Hristoforou and Nikolaos D. Papadopoulos
Sensors 2026, 26(1), 258; https://doi.org/10.3390/s26010258 - 31 Dec 2025
Viewed by 470
Abstract
Magnetic Barkhausen noise (MBN) represents a powerful non-destructive testing and material characterization methodology enabling quantitative assessment of microstructural features, mechanical properties, and stress states in ferromagnetic materials. This comprehensive review synthesizes recent advances spanning theoretical foundations, sensor design, signal processing methodologies, and industrial [...] Read more.
Magnetic Barkhausen noise (MBN) represents a powerful non-destructive testing and material characterization methodology enabling quantitative assessment of microstructural features, mechanical properties, and stress states in ferromagnetic materials. This comprehensive review synthesizes recent advances spanning theoretical foundations, sensor design, signal processing methodologies, and industrial applications. The physical basis rooted in domain wall dynamics and statistical mechanics provides rigorous frameworks for interpreting MBN signals in terms of grain structure, dislocation density, phase composition, and residual stress. Contemporary instrumentation innovations including miniaturized sensors, multi-parameter systems, and high-entropy alloy cores enable measurements in challenging environments. Advanced signal processing techniques—encompassing time-domain analysis, frequency-domain spectral methods, time–frequency transforms, and machine learning algorithms—extract comprehensive material information from raw Barkhausen signals. Deep learning approaches demonstrate superior performance for automated material classification and property prediction compared to traditional statistical methods. Industrial applications span manufacturing quality control, structural health monitoring, railway infrastructure assessment, and predictive maintenance strategies. Key achievements include establishing quantitative correlations between material properties and stress states, with measurement uncertainties of ±15–20 MPa for stress and ±20 HV for hardness. Emerging challenges include standardization imperatives, characterization of advanced materials, machine learning robustness, and autonomous system integration. Future developments prioritizing international standards, physics-informed neural networks, multimodal sensor fusion, and wireless monitoring networks will accelerate industrial adoption supporting safe, efficient engineering practice across diverse sectors. Full article
(This article belongs to the Special Issue Recent Trends and Advances in Magnetic Sensors)
Show Figures

Figure 1

27 pages, 1098 KB  
Review
Organ-on-a-Chip and Lab-on-a-Chip Technologies in Cardiac Tissue Engineering
by Daniele Marazzi, Federica Trovalusci, Paolo Di Nardo and Felicia Carotenuto
Biomimetics 2026, 11(1), 18; https://doi.org/10.3390/biomimetics11010018 - 30 Dec 2025
Viewed by 496
Abstract
Microfluidic technologies have ushered in a new era in cardiac tissue engineering, providing more predictive in vitro models compared to two-dimensional culture studies. This review examines Organ-on-a-Chip (OoC) and Lab-on-a-Chip (LoC) platforms, with a specific focus on cardiovascular applications. OoCs, and particularly Heart-on-a-Chip [...] Read more.
Microfluidic technologies have ushered in a new era in cardiac tissue engineering, providing more predictive in vitro models compared to two-dimensional culture studies. This review examines Organ-on-a-Chip (OoC) and Lab-on-a-Chip (LoC) platforms, with a specific focus on cardiovascular applications. OoCs, and particularly Heart-on-a-Chip systems, have advanced biomimicry to a higher level by recreating complex 3D cardiac microenvironments in vitro and dynamic fluid flow. These platforms employ induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), engineered extracellular matrices, and dynamic mechanical and electrical stimulation to reproduce the structural and functional features of myocardial tissue. LoCs have introduced miniaturization and integration of analytical functions into compact devices, enabling high-throughput screening, advanced diagnostics, and efficient pharmacological testing. They enable the investigation of pathophysiological mechanisms, the assessment of cardiotoxicity, and the development of precision medicine approaches. Furthermore, progress in multi-organ systems expands the potential of microfluidic technologies to simulate heart–liver, heart–kidney, and heart–tumor interactions, providing more comprehensive predictive models. However, challenges remain, including the immaturity of iPSC-derived cells, the lack of standardization, and scalability issues. In general, microfluidic platforms represent strategic tools for advancing cardiovascular research in translation and accelerating therapeutic innovation within precision medicine. Full article
Show Figures

Graphical abstract

23 pages, 24530 KB  
Article
MFAP5 Activates ITGA5 to Drive Tooth Germ Mineralization Through the MAPK/ERK Pathway: Insights from Single-Cell Transcriptomics
by Xu Wang, Lanxin Gu, Ping Zhang and Yongsheng Zhou
Int. J. Mol. Sci. 2026, 27(1), 394; https://doi.org/10.3390/ijms27010394 - 30 Dec 2025
Viewed by 217
Abstract
Tooth germ development is a precisely orchestrated process dependent on integrated cellular interactions and molecular signals, yet its regulatory mechanisms remain incompletely defined. Here, we constructed a high-resolution cellular atlas of miniature pig tooth germs using 10× single-cell RNA sequencing to investigate the [...] Read more.
Tooth germ development is a precisely orchestrated process dependent on integrated cellular interactions and molecular signals, yet its regulatory mechanisms remain incompletely defined. Here, we constructed a high-resolution cellular atlas of miniature pig tooth germs using 10× single-cell RNA sequencing to investigate the molecular mechanisms underlying tooth mineralization. By leveraging cellular heterogeneity and dynamic gene expression trajectories in epithelial and mesenchymal populations, we identified microfibril-associated protein 5 (MFAP5) as a previously unrecognized regulator of the odontogenic program. Functional assays demonstrate that MFAP5, an extracellular matrix component, is indispensable for mesenchymal differentiation and matrix mineralization in vitro. Mechanistically, MFAP5 engages Integrin alpha-5 (ITGA5) to activate Extracellular Signal-Regulated Kinase/Mitogen-Activated Protein Kinase (ERK/MAPK) signaling in odontoblast-lineage cells, thereby promoting odontoblast differentiation and dentin deposition. Collectively, our single-cell–resolved analyses uncovered a MFAP5–ITGA5–ERK/MAPK signaling axis that operates in a cell-state–specific manner during tooth germ mineralization, providing new mechanistic insights into odontogenic differentiation and a potential molecular basis for dental tissue regeneration strategies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop