Flexible Inkjet-Printed pH Sensors for Application in Organ-on-a-Chip Biomedical Testing
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. pH Sensor Fabrication and Characterization
2.2.1. Inkjet Printing of Electrodes
2.2.2. Hydrogen Selective Electrodes
2.2.3. Polyaniline Deposition Methods
2.2.4. Electrochemical Measurements
2.3. Lung-on-a-Chip Model Fabrication
3. Results and Discussion
3.1. Reference Electrode Optimization
3.2. Hydrogen-Selective Electrodes
3.3. Polyaniline Electrodeposition (PANI-ED)
3.4. Polyaniline Dropcast Deposition (PANI-EB)
3.5. Proof of Concept: Lung-on-a-Chip
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AgIJP | Silver inkjet-printed electrode |
| AgIJP-CD | Silver inkjet-printed electrode with chemically deposited silver chloride |
| AgIJP-ED | Silver inkjet-printed electrode with electrochemically deposited silver chloride |
| DCM | Dichloromethane |
| DMF | Dimethylformamide |
| DOS | Bis(2-ethylhexyl) sebacate |
| EG | Ethylene glycol |
| FIJP | Fully inkjet-printed |
| GCE | Glassy carbon electrode |
| HAc | Acetic acid |
| H-ISE | Hydrogen-selective electrode |
| IJP | Inkjet-printed |
| IJP-Gr | Inkjet-printed graphene |
| ISE | Ion-selective electrode |
| ISM | Ion-selective membrane |
| KTpClPB | Potassium tetrakis(4-chlorophenyl)borate |
| PANI | Polyaniline |
| PANI-EB | Polyaniline emeraldine base |
| PANI-ED | Electrodeposited polyaniline |
| PANI-ES | Polyaniline emeraldine salt |
| PCL | Polycaprolactone |
| PVC | Polyvinyl chloride |
| qRE | Quasireference electrode |
| RSD | Relative standard deviation |
| SPE | Screen-printed electrode |
| THF | Tetrahydrofuran |
References
- Bilbao, E.; Kapadia, S.; Riechert, V.; Amalvy, J.; Molinari, F.N.; Escobar, M.M.; Baumann, R.R.; Monsalve, L.N. Functional aqueous-based polyaniline inkjet inks for fully printed high-performance pH-sensitive electrodes. Sens. Actuators B Chem. 2021, 346, 130558. [Google Scholar] [CrossRef]
- Tang, Y.; Zhong, L.; Wang, W.; He, Y.; Han, T.; Xu, L.; Mo, X.; Liu, Z.; Ma, Y.; Bao, Y.; et al. Recent Advances in Wearable Potentiometric pH Sensors. Membranes 2022, 12, 504. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, B.; Li, H.; Li, M.; Song, Y.; Wang, R.; Wang, T.; Zhang, H. Flexible Wearable Sensors in Medical Monitoring. Biosensors 2022, 12, 1069. [Google Scholar] [CrossRef]
- Hossain, M.S.; Padmanathan, N.; Badal, M.M.R.; Razeeb, K.M.; Jamal, M. Highly Sensitive Potentiometric pH Sensor Based on Polyaniline Modified Carbon Fiber Cloth for Food and Pharmaceutical Applications. ACS Omega 2024, 9, 40122–40133. [Google Scholar] [CrossRef]
- Zea, M.; Texido, R.; Villa, R.; Borros, S.; Gabriel, G. Specially Designed Polyaniline/Polypyrrole Ink for a Fully Printed Highly Sensitive pH Microsensor. ACS Appl. Mater. Interfaces 2021, 13, 33524–33535. [Google Scholar] [CrossRef]
- Moya, A.; Gabriel, G.; Villa, R.; Javier del Campo, F. Inkjet-printed electrochemical sensors. Curr. Opin. Electrochem. 2017, 3, 29–39. [Google Scholar] [CrossRef]
- Ambaye, A.D.; Kefeni, K.K.; Mishra, S.B.; Nxumalo, E.N.; Ntsendwana, B. Recent developments in nanotechnology-based printing electrode systems for electrochemical sensors. Talanta 2021, 225, 121951. [Google Scholar] [CrossRef]
- Raut, N.C.; Al-Shamery, K. Inkjet printing metals on flexible materials for plastic and paper electronics. J. Mater. Chem. C 2018, 6, 1618–1641. [Google Scholar] [CrossRef]
- Sjöberg, P.; Määttänen, A.; Vanamo, U.; Novell, M.; Ihalainen, P.; Andrade, F.J.; Bobacka, J.; Peltonen, J. Paper-based potentiometric ion sensors constructed on ink-jet printed gold electrodes. Sens. Actuators B Chem. 2016, 224, 325–332. [Google Scholar] [CrossRef]
- Ivanišević, I.; Milardović, S.; Ressler, A.; Kassal, P. Fabrication of an All-Solid-State Ammonium Paper Electrode Using a Graphite-Polyvinyl Butyral Transducer Layer. Chemosensors 2021, 9, 333. [Google Scholar] [CrossRef]
- Krivačić, S.; Boček, Ž.; Zubak, M.; Kojić, V.; Kassal, P. Flexible ammonium ion-selective electrode based on inkjet-printed graphene solid contact. Talanta 2024, 279, 126614. [Google Scholar] [CrossRef]
- Pol, R.; Moya, A.; Gabriel, G.; Gabriel, D.; Céspedes, F.; Baeza, M. Inkjet-Printed Sulfide-Selective Electrode. Anal. Chem. 2017, 89, 12231–12236. [Google Scholar] [CrossRef]
- Lin, L.-K.; Tsai, J.-T.; Díaz-Amaya, S.; Oduncu, M.R.; Zhang, Y.; Huang, P.-Y.; Ostos, C.; Schmelzel, J.P.; Mohammadrahimi, R.; Xu, P.; et al. Antidelaminating, Thermally Stable, and Cost-Effective Flexible Kapton Platforms for Nitrate Sensors, Mercury Aptasensors, Protein Sensors, and p-Type Organic Thin-Film Transistors. ACS Appl. Mater. Interfaces 2021, 13, 11369–11384. [Google Scholar] [CrossRef]
- Shao, Y.; Ying, Y.; Ping, J. Recent advances in solid-contact ion-selective electrodes: Functional materials, transduction mechanisms, and development trends. Chem. Soc. Rev. 2020, 49, 4405–4465. [Google Scholar] [CrossRef]
- Bakker, E.; Pretsch, E. Modern Potentiometry. Angew. Chem. Int. Ed. 2007, 46, 5660–5668. [Google Scholar] [CrossRef] [PubMed]
- Isildak, Ö.; Özbek, O. Application of Potentiometric Sensors in Real Samples. Crit. Rev. Anal. Chem. 2021, 51, 218–231. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef]
- Bakker, E.; Bühlmann, P.; Pretsch, E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics. Chem. Rev. 1997, 97, 3083–3132. [Google Scholar] [CrossRef]
- Bobacka, J.; Ivaska, A.; Lewenstam, A. Potentiometric Ion Sensors. Chem. Rev. 2008, 108, 329–351. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, P.; Zhao, H.; Liu, A.; Liang, R.; Qin, W. Polymeric Membrane Potentiometric Ion Sensors with Dual Biocompatible Functionality. Anal. Chem. 2025, 97, 25567–25575. [Google Scholar] [CrossRef] [PubMed]
- Humpolicek, P.; Kasparkova, V.; Saha, P.; Stejskal, J. Biocompatibility of polyaniline. Synth. Met. 2012, 162, 722–727. [Google Scholar] [CrossRef]
- Karyakin, A.A.; Lukachova, L.V.; Karyakina, E.E.; Orlov, A.V.; Karpachova, G.P. The improved potentiometric pH response of electrodes modified with processible polyaniline. Application to glucose biosensor. Anal. Commun. 1999, 36, 153–156. [Google Scholar] [CrossRef]
- Lindfors, T.; Ivaska, A. pH sensitivity of polyaniline and its substituted derivatives. J. Electroanal. Chem. 2002, 531, 43–52. [Google Scholar] [CrossRef]
- Lindfors, T.; Ervelä, S.; Ivaska, A. Polyaniline as pH-sensitive component in plasticized PVC membranes. J. Electroanal. Chem. 2003, 560, 69–78. [Google Scholar] [CrossRef]
- Lindfors, T.; Sandberg, H.; Ivaska, A. The influence of lipophilic additives on the emeraldine base–emeraldine salt transition of polyaniline. Synth. Met. 2004, 142, 231–242. [Google Scholar] [CrossRef]
- Laffitte, Y.; Gray, B.L. Potentiometric pH Sensor Based on Flexible Screen-Printable Polyaniline Composite for Textile-Based Microfluidic Applications. Micromachines 2022, 13, 1376. [Google Scholar] [CrossRef] [PubMed]
- Mahinnezhad, S.; Izquierdo, R.; Shih, A. Fully Printed pH Sensor based on Polyaniline/Graphite Nanocomposites. J. Electrochem. Soc. 2023, 170, 027501. [Google Scholar] [CrossRef]
- da Silva, E.T.S.G.; Miserere, S.; Kubota, L.T.; Merkoçi, A. Simple On-Plastic/Paper Inkjet-Printed Solid-State Ag/AgCl Pseudoreference Electrode. Anal. Chem. 2014, 86, 10531–10534. [Google Scholar] [CrossRef]
- Papamatthaiou, S.; Zupancic, U.; Kalha, C.; Regoutz, A.; Estrela, P.; Moschou, D. Ultra stable, inkjet-printed pseudo reference electrodes for lab-on-chip integrated electrochemical biosensors. Sci. Rep. 2020, 10, 17152. [Google Scholar] [CrossRef]
- Kellum, J.A. Determinants of blood pH in health and disease. Crit. Care 2000, 4, 6. [Google Scholar] [CrossRef]
- Müller, B.; Sulzer, P.; Walch, M.; Zirath, H.; Buryška, T.; Rothbauer, M.; Ertl, P.; Mayr, T. Measurement of respiration and acidification rates of mammalian cells in thermoplastic microfluidic devices. Sens. Actuators B Chem. 2021, 334, 129664. [Google Scholar] [CrossRef]
- Ostermann, C.; Linde, S.; Siegling-Vlitakis, C.; Reinhold, P. Evaluation of pulmonary dysfunctions and acid–base imbalances induced by Chlamydia psittaci in a bovine model of respiratory infection. Multidiscip. Respir. Med. 2014, 9, 10. [Google Scholar] [CrossRef]
- Ciabattoni, A.; Chiumello, D.; Mancusi, S.; Pozzi, T.; Monte, A.; Rocco, C.; Coppola, S. Acid–Base Status in Critically Ill Patients: Physicochemical vs. Traditional Approach. J. Clin. Med. 2025, 14, 3227. [Google Scholar] [CrossRef]
- Politakos, N.; Gregoriou, V.G.; Chochos, C.L. Pulmonary Drug Delivery through Responsive Materials. Macromol 2024, 4, 490–508. [Google Scholar] [CrossRef]
- Torres, I.M.; Patankar, Y.R.; Berwin, B. Acidosis exacerbates in vivo IL-1-dependent inflammatory responses and neutrophil recruitment during pulmonary Pseudomonas aeruginosa infection. Am. J. Physiol. Lung Cell. Mol. Physiol. 2018, 314, L225–L235. [Google Scholar] [CrossRef]
- Nalayanda, D.D.; Puleo, C.; Fulton, W.B.; Sharpe, L.M.; Wang, T.-H.; Abdullah, F. An open-access microfluidic model for lung-specific functional studies at an air-liquid interface. Biomed. Microdevices 2009, 11, 1081. [Google Scholar] [CrossRef] [PubMed]
- Sone, N.; Gotoh, S. Micro-physiological system of human lung: The current status and application to drug discovery. Drug Metab. Pharmacokinet. 2025, 60, 101050. [Google Scholar] [CrossRef] [PubMed]
- Ingber, D.E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 2022, 23, 467–491. [Google Scholar] [CrossRef]
- Rezić Meštrović, I.; Somogyi Škoc, M.; Dragun, D.D.; Glagolić, P.; Meštrović, E. Sustainable Solutions for Producing Advanced Biopolymer Membranes—From Net-Zero Technology to Zero Waste. Polymers 2025, 17, 1432. [Google Scholar] [CrossRef] [PubMed]
- Ivanišević, I.; Kassal, P.; Milinković, A.; Rogina, A.; Milardović, S. Combined Chemical and Thermal Sintering for High Conductivity Inkjet-printed Silver Nanoink on Flexible Substrates. Chem. Biochem. Eng. Q. 2019, 33, 377–384. [Google Scholar] [CrossRef]
- Krivačić, S.; Speck, A.; Kassal, P.; Bakker, E. Towards mass-production of ion-selective electrodes by spotting: Optimization of membrane composition and real-time tracking of membrane drying. Sens. Actuators B Chem. 2025, 423, 136759. [Google Scholar] [CrossRef]
- Weyand, F.; Gianvittorio, S.; Longo, F.; Wang, J.; Lesch, A. Switching between boosting and suppression of sensitivity and selectivity of inkjet-printed graphene electrodes for biomolecule detection. Electrochim. Acta 2025, 526, 146174. [Google Scholar] [CrossRef]
- Zubak, M.; Kassal, P. Scalable fabrication of voltammetric sensors by inkjet printing and intense pulsed light: Azithromycin determination. Electrochim. Acta 2025, 513, 145561. [Google Scholar] [CrossRef]
- Ruecha, N.; Chailapakul, O.; Suzuki, K.; Citterio, D. Fully Inkjet-Printed Paper-Based Potentiometric Ion-Sensing Devices. Anal. Chem. 2017, 89, 10608–10616. [Google Scholar] [CrossRef]
- Li, F.; Ye, J.; Zhou, M.; Gan, S.; Zhang, Q.; Han, D.; Niu, L. All-solid-state potassium-selective electrode using graphene as the solid contact. Analyst 2012, 137, 618–623. [Google Scholar] [CrossRef]
- Rutkowska, M.; Lindfors, T.; Boeva, Z.; Strawski, M. Low-cost flexible laminated graphene paper solid-contact ion-selective electrodes. Sens. Actuators B Chem. 2021, 337, 129808. [Google Scholar] [CrossRef]
- Kašpárková, V.; Humpolíček, P.; Stejskal, J.; Capáková, Z.; Bober, P.; Skopalová, K.; Lehocký, M. Exploring the Critical Factors Limiting Polyaniline Biocompatibility. Polymers 2019, 11, 362. [Google Scholar] [CrossRef] [PubMed]
- Zamprogno, P.; Wüthrich, S.; Achenbach, S.; Thoma, G.; Stucki, J.D.; Hobi, N.; Schneider-Daum, N.; Lehr, C.-M.; Huwer, H.; Geiser, T.; et al. Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane. Commun. Biol. 2021, 4, 168. [Google Scholar] [CrossRef]
- Robles, K.N.; Zahra, F.t.; Mu, R.; Giorgio, T. Advances in Electrospun Poly(ε-caprolactone)-Based Nanofibrous Scaffolds for Tissue Engineering. Polymers 2024, 16, 2853. [Google Scholar] [CrossRef]
- Phogat, S.; Thiam, F.; Al Yazeedi, S.; Abokor, F.A.; Osei, E.T. 3D in vitro hydrogel models to study the human lung extracellular matrix and fibroblast function. Respir. Res. 2023, 24, 242. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Liu, T.; Liao, J.; Maharjan, S.; Xie, X.; Pérez, M.; Anaya, I.; Wang, S.; Tirado Mayer, A.; Kang, Z.; et al. Reversed-engineered human alveolar lung-on-a-chip model. Proc. Natl. Acad. Sci. USA 2021, 118, e2016146118. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Wu, B.; Yuan, P.; Liu, Y.; Hu, C. Research Progress of Sodium Alginate-Based Hydrogels in Biomedical Engineering. Gels 2025, 11, 758. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lou, Y.; Sun, L.; Chia, C.H.; Nilghaz, A.; Tian, J. Play on Electrodes. ACS Sens. 2025, 10, 1356–1365. [Google Scholar] [CrossRef] [PubMed]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Boček, Ž.; Dragun, D.D.; Offner, L.; Krivačić, S.; Meštrović, E.; Kassal, P. Flexible Inkjet-Printed pH Sensors for Application in Organ-on-a-Chip Biomedical Testing. Biosensors 2026, 16, 38. https://doi.org/10.3390/bios16010038
Boček Ž, Dragun DD, Offner L, Krivačić S, Meštrović E, Kassal P. Flexible Inkjet-Printed pH Sensors for Application in Organ-on-a-Chip Biomedical Testing. Biosensors. 2026; 16(1):38. https://doi.org/10.3390/bios16010038
Chicago/Turabian StyleBoček, Željka, Donna Danijela Dragun, Laeticia Offner, Sara Krivačić, Ernest Meštrović, and Petar Kassal. 2026. "Flexible Inkjet-Printed pH Sensors for Application in Organ-on-a-Chip Biomedical Testing" Biosensors 16, no. 1: 38. https://doi.org/10.3390/bios16010038
APA StyleBoček, Ž., Dragun, D. D., Offner, L., Krivačić, S., Meštrović, E., & Kassal, P. (2026). Flexible Inkjet-Printed pH Sensors for Application in Organ-on-a-Chip Biomedical Testing. Biosensors, 16(1), 38. https://doi.org/10.3390/bios16010038

