Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (295)

Search Parameters:
Keywords = microwave-assisted heating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1750 KiB  
Article
Mineral-Based Synthesis of CuFe2O4 Nanoparticles via Co-Precipitation and Microwave Techniques Using Leached Copper Solutions from Mined Minerals
by Carolina Venegas Abarzúa, Mauricio J. Morel, Gabriela Sandoval-Hevia, Thangavel Kavinkumar, Natarajan Chidhambaram, Sathish Kumar Kamaraj, Nagarajan Dineshbabu and Arun Thirumurugan
Minerals 2025, 15(8), 819; https://doi.org/10.3390/min15080819 - 1 Aug 2025
Viewed by 157
Abstract
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) [...] Read more.
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) was extracted from these minerals through acid leaching and used as a precursor for nanoparticle synthesis via both chemical co-precipitation and microwave-assisted methods. The influence of different precipitating agents—NaOH, Na2CO3, and NaF—was systematically evaluated. XRD and FESEM analyses revealed that NaOH produced the most phase-pure and well-dispersed nanoparticles, while NaF resulted in secondary phase formation. The microwave-assisted method further improved particle uniformity and reduced agglomeration due to rapid and homogeneous heating. Electrochemical characterization was conducted to assess the suitability of the synthesized CuFe2O4 for supercapacitor applications. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) measurements confirmed pseudocapacitive behavior, with a specific capacitance of up to 1000 F/g at 2 A/g. These findings highlight the potential of CuFe2O4 as a low-cost, high-performance electrode material for energy storage. This study underscores the feasibility of converting primary mined minerals into functional nanomaterials while promoting sustainable mineral valorization. The approach can be extended to other critical metals and mineral residues, including tailings, supporting the broader goals of a circular economy and environmental remediation. Full article
Show Figures

Figure 1

17 pages, 3269 KiB  
Article
Microwave-Assisted Degradation of Azo Dyes Using NiO Catalysts
by Celinia de Carvalho Chan, Lamiaa F. Alsalem, Mshaal Almalki, Irina Bozhinovska, James S. Hayward, Stephen S. N. Williams and Jonathan K. Bartley
Catalysts 2025, 15(8), 702; https://doi.org/10.3390/catal15080702 - 24 Jul 2025
Viewed by 350
Abstract
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low [...] Read more.
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low temperature solutions have been investigated, collectively known as advanced oxidation processes. However, many of these advanced oxidation processes use expensive oxidants such as perchlorate, hydroxy radicals or ozone to react with contaminants, and therefore have high running costs. This study has investigated microwave catalysis as a low-energy, low-cost technology for water treatment using NiO catalysts that can be heated in the microwave field to drive the decomposition of azo-dye contaminants. Using this methodology for the microwave-assisted degradation of two azo dyes (azorubine and methyl orange), conversions of >95% were achieved in only 10 s with 100 W microwave power. Full article
Show Figures

Graphical abstract

49 pages, 4131 KiB  
Review
Municipal Solid Waste Gasification: Technologies, Process Parameters, and Sustainable Valorization of By-Products in a Circular Economy
by Nicoleta Ungureanu, Nicolae-Valentin Vlăduț, Sorin-Ștefan Biriș, Mariana Ionescu and Neluș-Evelin Gheorghiță
Sustainability 2025, 17(15), 6704; https://doi.org/10.3390/su17156704 - 23 Jul 2025
Viewed by 417
Abstract
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper [...] Read more.
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper provides a comprehensive analysis of major gasification technologies, including fixed bed, fluidized bed, entrained flow, plasma, supercritical water, microwave-assisted, high-temperature steam, and rotary kiln systems. Key aspects such as feedstock compatibility, operating parameters, technology readiness level, and integration within circular economy frameworks are critically evaluated. A comparative assessment of incineration and pyrolysis highlights the environmental and energetic advantages of gasification. The valorization pathways for main product (syngas) and by-products (syngas, ash, tar, and biochar) are also explored, emphasizing their reuse in environmental, agricultural, and industrial applications. Despite progress, large-scale adoption in Europe is constrained by economic, legislative, and technical barriers. Future research should prioritize scaling emerging systems, optimizing by-product recovery, and improving integration with carbon capture and circular energy infrastructures. Supported by recent European policy frameworks, gasification is positioned to play a key role in sustainable waste-to-energy strategies, biomass valorization, and the transition to a low-emission economy. Full article
(This article belongs to the Special Issue Sustainable Waste Process Engineering and Biomass Valorization)
Show Figures

Figure 1

15 pages, 990 KiB  
Article
Towards a Green and Sustainable Valorization of Salix amplexicaulis: Integrating Natural Deep Eutectic Solvents and Microwave-Assisted Extraction for Enhanced Recovery of Phenolic Compounds
by Milica Vidić, Nevena Grujić-Letić, Branislava Teofilović and Emilia Gligorić
Sustainability 2025, 17(14), 6347; https://doi.org/10.3390/su17146347 - 10 Jul 2025
Viewed by 318
Abstract
Combining advanced extraction technologies with non-pollutant solvents represents a sustainable approach toward valorizing medicinal plants and aligns with the principles of green chemistry. This study aimed to evaluate the efficiency of microwave-assisted extraction (MAE) combined with natural deep eutectic solvents (NADES) to extract [...] Read more.
Combining advanced extraction technologies with non-pollutant solvents represents a sustainable approach toward valorizing medicinal plants and aligns with the principles of green chemistry. This study aimed to evaluate the efficiency of microwave-assisted extraction (MAE) combined with natural deep eutectic solvents (NADES) to extract bioactive compounds from the underexplored leaves and bark of Salix amplexicaulis Bory & Chaub. Additionally, the potential of NADES as sustainable alternatives to conventional solvents was assessed through a comparative evaluation of MAE-NADES with MAE–water and traditional ethanol maceration. NADES based on lactic acid–glycerol, lactic acid–glucose, glycerol–glucose, and glycerol–urea were synthesized by heating and stirring. Willow extracts were characterized by HPLC-DAD, resulting in the identification and quantification of seven phenolic acids and four flavonoids. Lactic acid–glucose (5:1)-based NADES extracted the highest number of phenolics in the greatest amount from the bark and leaves of S. amplexicaulis. MAE-NADES offers a fast, cost-effective preparation, high extraction efficiency, and environmentally friendly properties, opening new perspectives on the valorization of S. amplexicaulis in the pharmaceutical field. Furthermore, NADES provide a promising alternative to water and toxic organic solvents for extracting bioactives. Full article
Show Figures

Figure 1

26 pages, 5399 KiB  
Article
Microwave-Assisted Pyrolysis of Polyethylene and Polypropylene from End-of-Life Vehicles: Hydrogen Production and Energy Valorization
by Grigore Psenovschi, Ioan Calinescu, Alexandru Fiti, Ciprian-Gabriel Chisega-Negrila, Sorin-Lucian Ionascu and Lucica Barbes
Sustainability 2025, 17(13), 6196; https://doi.org/10.3390/su17136196 - 6 Jul 2025
Viewed by 651
Abstract
Plastic waste is currently a major concern in Romania due to the annual increase in quantities generated from anthropogenic and industrial activities, especially from end-of-life vehicles (ELVs), and the need to reduce environmental impact. This study investigates an alternative valorization route for polypropylene [...] Read more.
Plastic waste is currently a major concern in Romania due to the annual increase in quantities generated from anthropogenic and industrial activities, especially from end-of-life vehicles (ELVs), and the need to reduce environmental impact. This study investigates an alternative valorization route for polypropylene (PP) and polyethylene (PE) plastic waste through microwave-assisted pyrolysis, aiming to maximize conversion into gaseous products, particularly hydrogen-rich gas. A monomode microwave reactor was employed, using layered configurations of plastic feedstock, silicon carbide as a microwave susceptor, and activated carbon as a catalyst. The influence of catalyst loading, reactor configuration, and plastic type was assessed through systematic experiments. Results showed that technical-grade PP, under optimal conditions, yielded up to 81.4 wt.% gas with a hydrogen concentration of 45.2 vol.% and a hydrogen efficiency of 44.8 g/g. In contrast, PE and mixed PP + PE waste displayed lower hydrogen performance, particularly when containing inorganic fillers. For all types of plastics studied, the gaseous fractions obtained have a high calorific value (46,941–55,087 kJ/kg) and at the same time low specific CO2 emissions (4.4–6.1 × 10−5 kg CO2/kJ), which makes these fuels very efficient and have a low carbon footprint. Comparative tests using conventional heating revealed significantly lower hydrogen yields (4.77 vs. 19.7 mmol/g plastic). These findings highlight the potential of microwave-assisted pyrolysis as an efficient method for transforming ELV-derived plastic waste into energy carriers, offering a pathway toward low-carbon, resource-efficient waste management. Full article
(This article belongs to the Special Issue Novel and Scalable Technologies for Sustainable Waste Management)
Show Figures

Figure 1

17 pages, 1570 KiB  
Article
Overcoming Scaling Challenges in Sol–Gel Synthesis: A Microwave-Assisted Approach for Iron-Based Energy Materials
by Judith González-Lavín, Ana Arenillas and Natalia Rey-Raap
Microwave 2025, 1(2), 6; https://doi.org/10.3390/microwave1020006 - 30 Jun 2025
Viewed by 319
Abstract
There is currently an effort to scale up sol–gel nanomaterials without compromising quality, and microwave heating can pave the way for this due to its heating efficiency, resulting in a fast and homogeneous process. In this work, the sol–gel synthesis of transition metal [...] Read more.
There is currently an effort to scale up sol–gel nanomaterials without compromising quality, and microwave heating can pave the way for this due to its heating efficiency, resulting in a fast and homogeneous process. In this work, the sol–gel synthesis of transition metal aerogels, specifically iron-based aerogels, is studied using a microwave-assisted sol–gel methodology in an open-system multimode device as a potential route to scale-up production. Different approaches were tested to evaluate the best way to increase yield per batch, with different vessel shapes and volumes. It is shown that the shape and size of the vessel can be determinant in the interaction with microwaves and, thus, in the heating process, influencing the sol–gel reactions and the characteristics and homogeneity of the obtained nanomaterials. It has been found that a wide vessel is preferable to a tall and narrow one since the heating process is more homogeneous in the former and the sol–gel and cross-linking reactions take place earlier, which improves the mechanical properties of the final nanomaterial. For mass production of nanomaterials, the interaction of the reagents with the microwave field must be considered, and this depends not only on their nature but also on their volume, shape, and arrangement inside the cavity. Full article
Show Figures

Graphical abstract

22 pages, 3142 KiB  
Article
High-Power Closed-Loop Pilot System for Nitric Acid Production Using Inductively Coupled Microwave Plasma
by Ian McKinney, Qi Rao, Elizaveta Grushnikova, Kenshin Ushiroda, Tommy Kesler, Stephen Dvorak and Jovan Jevtic
Nitrogen 2025, 6(3), 51; https://doi.org/10.3390/nitrogen6030051 - 28 Jun 2025
Viewed by 507
Abstract
This work presents the characterization of a large-scale pilot plant for nitric acid production that employs atmospheric-pressure plasma in a closed-loop configuration. The primary objective here is to evaluate the scientific and practical feasibility of using high-power Cerawave™ plasma torch technology, manufactured by [...] Read more.
This work presents the characterization of a large-scale pilot plant for nitric acid production that employs atmospheric-pressure plasma in a closed-loop configuration. The primary objective here is to evaluate the scientific and practical feasibility of using high-power Cerawave™ plasma torch technology, manufactured by Radom Corporation, to enhance the rate of nitric acid production of plasma-assisted nitrogen fixation systems, while achieving specific energy consumption (SEC) comparable to that of smaller-scale setups reported in the literature. We provide a comprehensive overview of the components of the pilot plant, its operational strategy, and the analytical models underlying its processes. Preliminary system optimization results are discussed alongside the outcomes from a controlled batch run. After 30.9 h of operation at 50 kW plasma power, the system produced 198.9 L of nitric acid with a concentration of 28.6% by weight, corresponding to overall SEC of approximately 5.3 MJ/mol. This SEC could be improved to 3.7 MJ/mol using absorption columns with greater than 90% absorption efficiency. Additionally, around 60% of the plasma power was recovered as usable process heat via a heat exchanger. These results demonstrate that plasma-based nitrogen fixation is scientifically and technically viable at higher production scales while maintaining competitive specific energy consumption using microwave plasma. Full article
Show Figures

Figure 1

26 pages, 2781 KiB  
Article
Pyrolysis Mechanism of Victorian Brown Coal Under Microwave and Conventional Conditions for Hydrogen-Rich Gas Production
by Quan Sun, Salman Khoshk Rish, Jianglong Yu and Arash Tahmasebi
Energies 2025, 18(11), 2863; https://doi.org/10.3390/en18112863 - 30 May 2025
Viewed by 464
Abstract
Fast microwave pyrolysis technology can effectively convert brown coal into hydrogen-rich syngas. However, the unique pyrolysis behaviour of brown coal under microwave conditions is not fully understood in comparison with conventional pyrolysis. This study used Victorian brown coal as a raw material to [...] Read more.
Fast microwave pyrolysis technology can effectively convert brown coal into hydrogen-rich syngas. However, the unique pyrolysis behaviour of brown coal under microwave conditions is not fully understood in comparison with conventional pyrolysis. This study used Victorian brown coal as a raw material to conduct pyrolysis experiments under conventional and microwave heating methods. The results demonstrate that the microwave-assisted pyrolysis of Victorian brown coal can selectively crack polar functional groups, enhancing H2 and CO production via radical-driven secondary reactions and gasification, while conventional heating favours the formation of tar containing phenols and fewer aromatic compounds. The result is a high-quality syngas (75.03 vol.%) with a hydrogen yield of 10.28 (mmol Gas/g Coal (daf)) at 700 °C under microwave heating, offering a scalable route for valorising low-rank coals. Full article
(This article belongs to the Special Issue Clean Utilization and Conversion Technologies of Coal)
Show Figures

Figure 1

13 pages, 844 KiB  
Article
The Influential Mechanism of Absorbers and Active Metal on Microwave-Assisted Pyrolysis of Sargassum
by Kai Chen, Qing Xu and Shenwei Zhang
Energies 2025, 18(11), 2723; https://doi.org/10.3390/en18112723 - 23 May 2025
Viewed by 333
Abstract
Composite catalysts combining absorbers and active metal hold significant potential for improving the efficiency of biomass microwave-assisted pyrolysis (MAP). Compatibility optimization of composite catalysts can be facilitated through comparative analysis for the influential mechanisms of absorbers and catalysts. Therefore, decoupling experiments about the [...] Read more.
Composite catalysts combining absorbers and active metal hold significant potential for improving the efficiency of biomass microwave-assisted pyrolysis (MAP). Compatibility optimization of composite catalysts can be facilitated through comparative analysis for the influential mechanisms of absorbers and catalysts. Therefore, decoupling experiments about the MAP of Sargassum and calculations based on density functional theory (DFT) were conducted in this research, to investigate the influential mechanisms of absorbers and active metal. The results show the introduction of both the absorbers (SiC) and active metal (MgO) increase the yields of high-value components, such as hydrogen and hydrocarbons. However, their influential mechanisms are different. The introduction of SiC enhances the heating rate within the reaction zone, shortening the duration of MAP and inhibiting the condensation of bio-oil and the interaction between bio-oil and bio-char, and thereby increasing the bio-oil yield by 4%. The introduction of MgO lowers the energy barriers for macromolecular decomposition and gas generation, promoting the decomposition of bio-char and bio-oil, and thus leading to a 12% increase in the yield of bio-gas. This research conclusion provides a theoretical basis for the optimization and design of composite catalysts. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

39 pages, 1456 KiB  
Review
Legume Proteins in Food Products: Extraction Techniques, Functional Properties, and Current Challenges
by Grazielle Náthia-Neves, Adane Tilahun Getachew, Ádina L. Santana and Charlotte Jacobsen
Foods 2025, 14(9), 1626; https://doi.org/10.3390/foods14091626 - 4 May 2025
Viewed by 2198
Abstract
The aim of this review is to provide a comprehensive overview of protein extraction from legume sources, with a focus on both conventional and emerging techniques. Particular attention is given to the impact of innovative methods on protein functionality, a key factor for [...] Read more.
The aim of this review is to provide a comprehensive overview of protein extraction from legume sources, with a focus on both conventional and emerging techniques. Particular attention is given to the impact of innovative methods on protein functionality, a key factor for food applications. Due to their nutritional profile and techno-functional properties, legumes are increasingly regarded as promising alternatives to animal-based protein sources in the food industry. Traditional extraction methods, such as alkaline and acidic extraction, are discussed and compared with novel approaches including enzymatic extraction, ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), ohmic heating (OH), subcritical water extraction (SWE), deep eutectic solvents (DES), and dry fractionation. The potential of these emerging technologies to improve protein yield and functionality is critically assessed, alongside key challenges such as scalability, cost-effectiveness, and potential allergenicity. This review also identifies current research gaps and highlights opportunities for innovation in sustainable protein extraction. Therefore, this review contributes to the development of more efficient, functional, and sustainable protein ingredients production, highlighting the role of innovative extraction technologies in shaping the future of plant-based foods. Full article
Show Figures

Figure 1

24 pages, 4299 KiB  
Article
Green Synthesis, Characterization, and Biological Activity of 4-Aminoquinoline Derivatives: Exploring Antibacterial Efficacy, MRSA Inhibition, and PBP2a Docking Insights
by Lo’ay A. Al-Momani, Ula A. Abu Shawar, Ayman H. Abu Sarhan, Rand Shahin, Panayiotis A. Koutentis, Mohammad K. Abu-Sini and Nada J. Mohammad
Chemistry 2025, 7(3), 71; https://doi.org/10.3390/chemistry7030071 - 25 Apr 2025
Viewed by 1296
Abstract
A series of 4-aminoquinoline derivatives were prepared using a microwave-assisted method. The reactions were initially carried out on a small scale and subsequently scaled up using a sealed tube. Heating the reactions to 90–150 °C for 90–120 minutes obtained products with up to [...] Read more.
A series of 4-aminoquinoline derivatives were prepared using a microwave-assisted method. The reactions were initially carried out on a small scale and subsequently scaled up using a sealed tube. Heating the reactions to 90–150 °C for 90–120 minutes obtained products with up to 95% yields. Structural analysis and characterization were achieved using FT-IR, 1H- and 13C-NMR spectroscopy and HR-MS. Four compounds displayed low-to-moderate antibacterial activity, with 6-chlorocyclopentaquinolinamine (7b) exhibiting potent inhibition against MRSA (MIC = 0.125 mM) and 2-fluorocycloheptaquinolinamine (9d) showing activity against S. pyogenes (MIC = 0.25 mM). Structure–activity relationship (SAR) docking studies within the Penicillin Binding Protein (PBP2a) binding site (PDB: 4DK1) showed that compounds 7b and 5b (7-chlorophenylquinolinamine) bind through hydrophobic interactions (ALA601, ILE614), hydrogen bonding (GLN521), and halogen contacts (TYR519, THR399). Compound 7b demonstrated enhanced MRSA inhibition due to additional π-alkyl interactions and optimal docking parameters. Conversely, the bulky structure of 9d may explain its weaker activity as it likely hindered binding to the target site. This paper highlights the role of structural features in antibacterial efficacy and guides the future optimization of 4-aminoquinoline derivatives. Full article
(This article belongs to the Section Molecular Organics)
Show Figures

Graphical abstract

15 pages, 1352 KiB  
Article
Evaluation of Polycyclic Aromatic Hydrocarbons (PAHs) in Pork Meat Cooked with Two Different Methods
by Chiara Conchione, Silvia Socal, Laura Barp and Sabrina Moret
Molecules 2025, 30(9), 1886; https://doi.org/10.3390/molecules30091886 - 23 Apr 2025
Viewed by 638
Abstract
During domestic grilling, polycyclic aromatic hydrocarbons (PAHs), which include genotoxic and carcinogenic compounds, can be produced as a result of fat pyrolysis, leakage of cellular juices onto the heat source, and incomplete combustion of fuel. This study aimed to assess the formation of [...] Read more.
During domestic grilling, polycyclic aromatic hydrocarbons (PAHs), which include genotoxic and carcinogenic compounds, can be produced as a result of fat pyrolysis, leakage of cellular juices onto the heat source, and incomplete combustion of fuel. This study aimed to assess the formation of PAHs in pork neck cooked using two different grilling methods (traditional flat grill with beech charcoal and asado grill with beech wood flame) under controlled conditions, with cooking stopping at a core temperature of 72 °C. The impact of marinating and cooking speed (fast or slow) was also evaluated over three cooking sessions. After grilling, the meat samples underwent microwave-assisted extraction, purification through solid-phase extraction (SPE), and analysis using ultra-high-performance liquid chromatography (UHPLC) with spectrofluorometric detection. Statistical analysis was performed using ANOVA (R software, version 4.3.0). None of the samples exceeded the legal limits for benzo[a]pyrene (BaP) and PAH4 (sum of chrysene, benzo[a]anthracene, BaP, and benzo[b]fluoranthene). However, the asado grill showed a significantly higher average PAH contamination (1.21 µg/kg of BaP and 3.92 µg/kg of PAH4) compared with the traditional grill (0.22 µg/kg of BaP and 1.71 µg/kg of PAH4). Marinating and cooking speed did not have a significant impact on PAH levels. Full article
(This article belongs to the Special Issue Molecules in 2025)
Show Figures

Graphical abstract

24 pages, 5572 KiB  
Review
Research Progress on Microwave Synthesis of 3d Transition Metal (Mn, Fe, Co, and Ni) Oxide Nanomaterials for Supercapacitors
by Chengqi Sun, Maosheng Ge, Shuhuang Tan, Yichen Liu, Haowei Wang, Wenhao Jiang, Shoujun Zhang and Yin Sun
Molecules 2025, 30(8), 1843; https://doi.org/10.3390/molecules30081843 - 19 Apr 2025
Cited by 1 | Viewed by 765
Abstract
3d transition metal oxides composed of Mn, Fe, Co, and Ni have emerged as promising candidates for supercapacitor electrode materials due to their high theoretical specific capacitance, abundant redox-active sites, variable oxidation states, environmental friendliness, and low cost. Various synthesis strategies have been [...] Read more.
3d transition metal oxides composed of Mn, Fe, Co, and Ni have emerged as promising candidates for supercapacitor electrode materials due to their high theoretical specific capacitance, abundant redox-active sites, variable oxidation states, environmental friendliness, and low cost. Various synthesis strategies have been developed to fabricate these nanostructures, including hydrothermal/solvothermal methods, sol–gel processing, and microwave-assisted synthesis. Among them, microwave irradiation technology, with its rapid heating characteristics and unique thermal/non-thermal effects, offers significant advantages in controlling crystallinity and particle size distribution, suppressing particle agglomeration, and enhancing material purity. Furthermore, microwave effects facilitate the self-assembly and morphological evolution of transition metal oxides, promote the formation of crystal defects, and strengthen interfacial interactions. These effects enable precise microstructural tuning, leading to an increased specific surface area and a higher density of active sites, ultimately enhancing specific capacitance, rate capability, and cycling stability. In recent years, microwave-assisted synthesis has made significant progress in constructing 3d transition metal oxides and their composites, particularly in the development of single-metal and binary-metal oxides, as well as their hybrids with carbon-based materials (e.g., graphene and carbon nanotubes) and other metal oxides. This review systematically summarizes the research progress on microwave-assisted techniques for 3d transition metal oxide-based nanomaterials, with a particular focus on the role of microwave effects in morphology control, interfacial optimization, and electrochemical performance enhancement. Additionally, key challenges in current research are critically analyzed, and potential optimization strategies are proposed. This review aims to provide new insights and perspectives for advancing microwave-assisted synthesis of 3d transition metal oxides in energy storage applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

8 pages, 3452 KiB  
Communication
Solvent-Free and Microwave-Assisted Synthesis Enables Formation of Imidazole and Pyrazole Derivatives Through Epoxide Ring Opening
by MaryGrace McAfee, Joshua Pack and Brian Walker
Molecules 2025, 30(8), 1760; https://doi.org/10.3390/molecules30081760 - 14 Apr 2025
Viewed by 2789
Abstract
A solvent-free, microwave-assisted approach for the ring-opening reactions of phenyl glycidyl ether with a series of commercially available imidazoles and pyrazoles is described. Microwave irradiation allows reactions to proceed rapidly. This straightforward approach efficiently generated adducts with competitive yields compared to traditional methods [...] Read more.
A solvent-free, microwave-assisted approach for the ring-opening reactions of phenyl glycidyl ether with a series of commercially available imidazoles and pyrazoles is described. Microwave irradiation allows reactions to proceed rapidly. This straightforward approach efficiently generated adducts with competitive yields compared to traditional methods that use conventional heating or organic solvents. This technique is particularly suited for high-throughput screening in drug discovery, offering a significant reduction in time and resource consumption. Full article
(This article belongs to the Special Issue The Application of Microwave-Assisted Technology in Chemical Reaction)
Show Figures

Figure 1

14 pages, 5565 KiB  
Article
Influencing Factors and Mechanisms of Zinc Recovery from Electric Arc Furnace Dust via Microwave-Assisted Carbothermic Reduction
by Kai Wang, Chunyang Lu, Taida Wei, Yuandong Xiong, Jie Ren, Dejin Qiu and Yaowei Yu
Metals 2025, 15(4), 437; https://doi.org/10.3390/met15040437 - 14 Apr 2025
Viewed by 644
Abstract
Electric arc furnace dust (EAFD) is a zinc-containing solid waste generated during steelmaking, and advanced recycling strategies are needed to facilitate the recovery of valuable zinc. This study investigated the microwave-assisted carbothermic reduction in EAFD using coke as a reductant, with a focus [...] Read more.
Electric arc furnace dust (EAFD) is a zinc-containing solid waste generated during steelmaking, and advanced recycling strategies are needed to facilitate the recovery of valuable zinc. This study investigated the microwave-assisted carbothermic reduction in EAFD using coke as a reductant, with a focus on temperature (900–1100 °C), holding time (0–60 min), and the C/Zn molar ratio (3–5). The results demonstrated that the zinc removal rate exhibited positive correlations with both temperature and time. Under optimized conditions (1100 °C, 60 min), a zinc removal rate of 95.45% was achieved, accompanied by a complete decomposition of the ZnO phases. Furthermore, increasing the C/Zn molar ratio enhanced the zinc recovery efficiency and product purity. Isothermal kinetic analyses indicated that the reaction proceeds in two stages: during the initial stage (0–30 min), the process was governed by three-dimensional diffusion control with an activation energy of 146.50 kJ/mol, while the final stage (30–60 min) transitioned to chemical reaction control with an activation energy of 267.32 kJ/mol. Comparative assessments indicated that microwave processing significantly reduced the activation energy compared to conventional heating methods. These findings suggest that microwave-assisted reduction is capable of attaining a high-grade recovery of Zn from EAFD, thus opening up new avenues for the resource-oriented utilization of EAFD. Full article
(This article belongs to the Special Issue Advances in Flotation Separation and Mineral Processing)
Show Figures

Figure 1

Back to TopTop