Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,398)

Search Parameters:
Keywords = microscope property

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4254 KB  
Article
Effects of Straw Return on Soil Physicochemical Properties and Microbial Communities in a Cold-Region Alkaline Farmland
by Wei Zhang, Jinghong Wang, Aman Khan, Guinan Shen, Dan Wei and Weidong Wang
Agronomy 2025, 15(10), 2433; https://doi.org/10.3390/agronomy15102433 - 21 Oct 2025
Abstract
Straw return is crucial for sustainable agriculture, but its efficiency is limited by low temperatures in cold regions, especially in saline-alkali soils. This study investigates the degradation process of maize straw and the response of soil properties and microbial communities during the winter [...] Read more.
Straw return is crucial for sustainable agriculture, but its efficiency is limited by low temperatures in cold regions, especially in saline-alkali soils. This study investigates the degradation process of maize straw and the response of soil properties and microbial communities during the winter low-temperature period in the alkaline farmland of Anda, China. A two-year field experiment with straw return (SR) and no return (NR) treatments was conducted. Straw degradation rates and structural changes (as observed via scanning electron microscope, SEM) were monitored. Soil physicochemical properties and enzyme activities were analyzed. Microbial community composition was characterized using 16S rRNA and ITS sequencing. The cumulative straw degradation rate over two years reached 94.81%, with 18.33% occurring in the first winter freeze–thaw period. Freeze–thaw cycles significantly damaged the straw structure, facilitating microbial colonization. Straw return significantly improved soil properties after winter, increasing field water capacity (3.45%), content of large aggregates (6.57%), available nutrients (P 38.17 mg/kg, K 191.93 mg/kg), and organic carbon fractions compared to NR. Microbial analysis revealed that low temperatures filtered the community, enriching cold-tolerant taxa like Pseudogymnoascus, Penicillium, and Pedobacter, which are crucial for lignocellulose decomposition under cold conditions. The winter period plays a significant role in initiating straw degradation in cold regions. Straw return mitigates the adverse effects of winter freezing on soil quality and promotes the development of a cold-adapted microbial consortium, thereby enhancing the sustainability of alkaline farmland ecosystems in Northeast China. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

19 pages, 4576 KB  
Article
Study on Engineering Geopolymer Composites (EGCs) Under Sustained Thermal Environment: Linking Strain-Hardening Characteristics, Static/Impact Load Mechanical Properties, and Evolution Mechanism
by Shuo Wang, Wei Wang, Haoxing Liu, Ao Huang and Hongqiang Ma
Buildings 2025, 15(20), 3792; https://doi.org/10.3390/buildings15203792 - 21 Oct 2025
Abstract
This study focuses on the performance evolution of Engineering Geopolymer Composites (EGCs) in long-term thermal environments, investigating the mechanical properties and microstructural evolution of alkali-activated fly ash–slag composites under sustained 60 °C thermal conditions. The research results indicate that sustained exposure to 60 [...] Read more.
This study focuses on the performance evolution of Engineering Geopolymer Composites (EGCs) in long-term thermal environments, investigating the mechanical properties and microstructural evolution of alkali-activated fly ash–slag composites under sustained 60 °C thermal conditions. The research results indicate that sustained exposure to 60 °C significantly enhances the static and impact loading compressive strength of EGCs; however, single-slag or high-alkalinity systems exhibit strength retrogression due to insufficient long-term thermal stability. After exposure to elevated temperatures, the tensile strain-hardening curve of EGCs becomes smoother, with a reduced number of cracks but increased crack width, leading to a transition from a distributed multicrack propagation pattern to rapid widening of primary cracks. Due to the bridging effect of PVA fibers, sustained elevated temperature significantly enhances the peak impact load stress of the S50-6 sample. Microscopic analysis attributes this improvement to the matrix-strengthening effect caused by accelerated C-(A)-S-H gel polymerization and refined pore structure under continuous heat, as well as the energy dissipation role of the fiber system. The study recommends an optimal EGC system formulation with a fly ash–slag mass ratio of 1:1 and a Na2O concentration of 4–6%. This research provides a theoretical foundation for understanding the performance evolution and strength stability of EGC materials under sustained elevated temperature. Full article
Show Figures

Figure 1

19 pages, 11176 KB  
Article
Multiscale Investigation of the Anti-Friction Mechanism in Graphene Coatings on Copper Substrates: Substrate Reinforcement via Microstructural Evolution
by Di Ran, Zewei Yuan, Po Du, Ning Wang, Na Wang, Li Zhao, Song Feng, Weiwei Jia and Chaoqun Wu
Lubricants 2025, 13(10), 457; https://doi.org/10.3390/lubricants13100457 - 20 Oct 2025
Abstract
Graphene exhibits great potential as an anti-friction coating material in MEMS. However, its underlying microscopic friction-reduction mechanism remains unclear. In this paper, the microstructural evolution and nanomechanical behavior of graphene coatings on copper substrates were systematically investigated by AFM friction experiments and MD [...] Read more.
Graphene exhibits great potential as an anti-friction coating material in MEMS. However, its underlying microscopic friction-reduction mechanism remains unclear. In this paper, the microstructural evolution and nanomechanical behavior of graphene coatings on copper substrates were systematically investigated by AFM friction experiments and MD simulations. MD simulations reveal that the anti-friction properties of graphene coatings primarily stem from microstructural regulation and load-bearing reinforcement of the substrate. The graphene coatings increase indentation diameter by forming transition radii at the indentation edges, and suppress the plowing effect of the substrate by restricting atomic upward movement, both of which enhance the dislocation density and load-bearing capacity of the substrate. Additionally, graphene coatings also reduce the scratch edge angle, weakening the interlocking effect between the substrate and tip, further lowering the friction force. Experimental results indicate that the tribological behavior of graphene coatings exhibits staged characteristics: graphene coatings show excellent ultrafriction properties under intact structural conditions, while showing a higher friction force in wear and tear states. This research provides a theoretical basis and technical guidance for the development of anti-friction and wear-resistant coatings for micro-nano devices. Full article
Show Figures

Graphical abstract

27 pages, 16085 KB  
Article
The Mechanical Properties, Microstructure Analysis and Damage Behavior of AlMg7 Matrix Composites Reinforced with α-Al2O3 Particles
by Adam Kurzawa
Appl. Sci. 2025, 15(20), 11173; https://doi.org/10.3390/app152011173 - 18 Oct 2025
Viewed by 113
Abstract
This research investigated the influence of volume fraction (30 vol.% and 40 vol.%) and particle size α-Al2O3 on the physical and mechanical properties of AlMg7 composites manufactured by the squeeze casting technique. The aim of the study was to characterize [...] Read more.
This research investigated the influence of volume fraction (30 vol.% and 40 vol.%) and particle size α-Al2O3 on the physical and mechanical properties of AlMg7 composites manufactured by the squeeze casting technique. The aim of the study was to characterize the microstructure, hardness, density, tensile strength (σmax), compressive strength (σcmax), and impact strength, with a discussion of the mechanisms of destruction. The obtained materials exhibited very low porosity (below 2%), confirming the high efficiency of the ceramic preforms infiltration process. It was found that both hardness and tensile strength increase with decreasing size of the reinforcing particles. The highest growth in hardness at 113% was observed for the composite with 40 vol.% of F1200 particles, while the highest tensile strength, 341 MPa, was noted for materials with 30 vol.% of the same fraction of α-Al2O3 particles. In the case of compressive strength, the opposite relationship was observed, where an increase in volume fraction to 40% resulted in a significant rise in σcmax to 522 MPa. The tests also indicated that an increase in the proportion of the brittle ceramic phase radically reduces the impact strength of composites compared to the matrix, which is typical for composite materials with a metallic matrix. Microstructure analysis of the fractures revealed that the mechanism of destruction depends on the type of load and the size and proportion of particles, which is reflected in the transition from transcrystalline cracking to delamination at the phase boundary. The results confirm that the strengthening processes of composites depend on the effective transfer of stresses at the microscopic level. Full article
(This article belongs to the Special Issue Recent Advances in Foundry Engineering and Technology)
Show Figures

Figure 1

24 pages, 8290 KB  
Article
Experimental and Numerical Investigation of Fines Migration Mechanisms in Porous Media: Implications for Marine Gas Hydrate Production
by Shuang Cindy Cao, Mengzhen Cao, Yanli Yuan, Jongwon Jung and Xiaoshuang Li
J. Mar. Sci. Eng. 2025, 13(10), 2002; https://doi.org/10.3390/jmse13102002 - 18 Oct 2025
Viewed by 83
Abstract
Fines migration and clogging in porous media have significant implications for engineering applications. For example, during the extraction of marine gas hydrates, fines migration can lead to pore clogging and reduced permeability. This study combines micromodel experiments with DEM-CFD simulations to investigate the [...] Read more.
Fines migration and clogging in porous media have significant implications for engineering applications. For example, during the extraction of marine gas hydrates, fines migration can lead to pore clogging and reduced permeability. This study combines micromodel experiments with DEM-CFD simulations to investigate the effects of fine type (latex/mica), fine shape (spherical/flake), pore size (50 to 700 μm), and pore fluid composition (DW/brine) on fines migration, fine clogging behavior, and the evolution of host sediment porosity. Experiments demonstrate that clogging is geometrically influenced by the relationship between pore size and fines dimensions. Even when the size of fines (mica) is smaller than the pore throat size, their aggregates can still lead to clogging at very low concentrations (0.1–0.2%). The aggregate size of irregular mica is affected by changes in pore fluid properties, which may occur due to the freshening of pore water during hydrate dissociation. Furthermore, a moving gas/liquid interface concentrates fines, thereby increasing the risk of pore clogging. Simulations further reveal that fines migration causes dynamic changes in porosity, which requires a comprehensive consideration of the coupled effects of fine type, fluid velocity, pore size, and fluid chemistry. This study elucidates the microscopic mechanisms and quantifies the macroscopic effects of fines migration behavior in porous media, providing a theoretical foundation for further research. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

14 pages, 2702 KB  
Article
Research on the Mechanism and Process Technology of Pressure-Driven Pressure Reduction and Injection Increase in Low-Permeability Oil Reservoirs: A Case Study of the Sha II Section of Daluhu Block in Shengli Oilfield
by Bin Chen, Rongjun Zhang, Jian Sun, Qunqun Zhou and Jiaxi Huang
Processes 2025, 13(10), 3332; https://doi.org/10.3390/pr13103332 - 18 Oct 2025
Viewed by 180
Abstract
In response to the problems encountered during the pressure-driven oil recovery process in low-permeability oil reservoirs, such as slow pressure transmission, poor liquid supply, vulnerability of the reservoir to damage, and difficulties in injection and production, in order to achieve the goal of [...] Read more.
In response to the problems encountered during the pressure-driven oil recovery process in low-permeability oil reservoirs, such as slow pressure transmission, poor liquid supply, vulnerability of the reservoir to damage, and difficulties in injection and production, in order to achieve the goal of high-quality water injection development, based on the theories of rock mechanics and seepage mechanics, combined with large-scale physical model experiments, acoustic emission crack monitoring, and microscopic scanning technology, an oil reservoir and fracture model was established to conduct a feasibility analysis of pressure-driven assisted pressure reduction and enhanced injection, and it was successfully applied in the exploration and development practice of the Shengli Oilfield. The research shows the following: (1) During the pressure-driven process, the distribution of the fracture network system is relatively limited. In the early stages of the process, there will be minor fractures, but they do not communicate or activate effectively. The improvement of physical properties and pore-throat structure is negligible. As the injection flow rate increases, the effective fracture network system begins to be established, and the range of fluid coverage begins to expand. With the progress of the pressure-driven process, the hydraulic fractures gradually extend, the number of activated original fractures gradually increases, the communication area between hydraulic fractures and original fractures gradually increases, and the reservoir modification effect gradually improves. (2) Based on the compression cracking experiment of large object molds, it is concluded that generating effective micro-cracks and activating them to form efficient diversion channels is the key to pressure flooding injection. Combining the mechanical characteristics of the rock in the target layer to precisely control the injection speed and injection pressure can maximize the fracture network, thereby improving the reservoir to achieve the purpose of pressure reduction and injection increase. (3) Different pressure flooding injection parameters were set for the low-permeability oil reservoirs in the study area to simulate the fracture network expansion. Finally, it was concluded that the optimal injection speed for fracture expansion was 1.2 m3/min and the optimal total injection volume was 20,000 m3. Through research, the mechanism of pressure-driven injection and the extent of reservoir modification caused by this pressure-driven process have been enhanced in terms of understanding. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 3818 KB  
Article
Synthesis of a CCNC–Silica–Graphene Oxide Porous Monolith for Efficient Copper Ion Removal
by Nduduzo Khumalo, Samson Mohomane, Vetrimurugan Elumalai and Tshwafo Motaung
Gels 2025, 11(10), 832; https://doi.org/10.3390/gels11100832 - 17 Oct 2025
Viewed by 148
Abstract
Heavy metal contamination in water, predominantly from copper (Cu(II)) ions, poses substantial risks to human and environmental health. This study developed a novel, robust adsorbent known as a carboxylate cellulose nanocrystal–silica–graphene oxide hybrid composite porous monolith, which effectively removes Cu(II) from water in [...] Read more.
Heavy metal contamination in water, predominantly from copper (Cu(II)) ions, poses substantial risks to human and environmental health. This study developed a novel, robust adsorbent known as a carboxylate cellulose nanocrystal–silica–graphene oxide hybrid composite porous monolith, which effectively removes Cu(II) from water in a rapid manner. Carboxylate cellulose nanocrystals with enhanced metal-binding properties were synthesized from cellulose extracted from sugarcane bagasse, a significant agricultural byproduct. The porous monolith was synthesized through the combination of carboxylate cellulose nanocrystals, tetraethyl orthosilicate (TEOS), and graphene oxide, utilizing a sol–gel method. The efficacy of the synthesis was confirmed using Fourier-Transform Infra-red (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and Brunauer–Emmett–Teller (BET) analyses. The material exhibited a highly porous mesoporous structure with a surface area of 512 m2/g, signifying a significant enhancement. Batch adsorption experiments under optimal conditions (pH = 5.5, contact time = 240 min, initial concentration = 200 mg/L) demonstrated a high experimental adsorption capacity of 172 mg/g for Cu(II). The adsorption process was best described by the Langmuir isotherm model, which yielded a theoretical maximum capacity (qm) of 172 mg/g, and the pseudo-second-order kinetic model, confirming monolayer coverage and chemisorption as the rate-limiting step. Thermodynamic analyses demonstrate that the process is both spontaneous and exothermic. The porous monolith demonstrates the capability for multiple uses, maintaining over 70% efficiency after five cycles. The findings indicate that the carboxylate cellulose nanocrystal–silica–graphene oxide hybrid composite porous monolith is an efficient and robust method for the remediation of copper-contaminated water. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Figure 1

29 pages, 9861 KB  
Article
Multiscale Investigation of Interfacial Behaviors in Rubber Asphalt–Aggregate Systems Under Salt Erosion: Insights from Laboratory Tests and Molecular Dynamics Simulations
by Yun Li, Youxiang Si, Shuaiyu Wang, Peilong Li, Ke Zhang and Yuefeng Zhu
Materials 2025, 18(20), 4746; https://doi.org/10.3390/ma18204746 - 16 Oct 2025
Viewed by 200
Abstract
Deicing salt effectively melts ice and snow to maintain traffic flow in seasonal freezing zones, but its erosion effect compromises the water stability and structural integrity of asphalt pavements. To comprehensively explore the impacts of salt erosion on the interfacial behaviors of rubber [...] Read more.
Deicing salt effectively melts ice and snow to maintain traffic flow in seasonal freezing zones, but its erosion effect compromises the water stability and structural integrity of asphalt pavements. To comprehensively explore the impacts of salt erosion on the interfacial behaviors of rubber asphalt–aggregate systems, this study developed a multiscale characterization method integrating a macroscopic mechanical test, microscopic tests, and molecular dynamics (MD) simulations. Firstly, laboratory-controlled salt–freeze–thaw cycles were employed to simulate field conditions, followed by quantitative evaluation of interfacial bonding properties through pull-out tests. Subsequently, the atomic force microscopy (AFM) and Fourier transform infrared spectrometer (FTIR) tests were conducted to characterize the microscopic morphology evolution and chemical functional group transformations, respectively. Moreover, by combining the diffusion coefficients of water molecules, salt solution ions, and asphalt components, the mechanism of interfacial salt erosion was elucidated. The results demonstrate that increasing NaCl concentration and freeze–thaw cycles progressively reduces interfacial pull-out strength and fracture energy, with NaCl-induced damage becoming limited after twelve salt–freeze–thaw cycles. In detail, with exposure to 15 freeze–thaw cycles in 6% NaCl solution, the pull-out strength and fracture energy of the rubber asphalt–limestone aggregate decrease by 50.47% and 51.57%, respectively. At this stage, rubber asphalt exhibits 65.42% and 52.34% increases in carbonyl and sulfoxide indexes, respectively, contrasted by 49.24% and 42.5% decreases in aromatic and aliphatic indexes. Long-term exposure to salt–freeze–thaw conditions promotes phase homogenization, ultimately reducing surface roughness and causing rubber asphalt to resemble matrix asphalt morphologically. At the rubber asphalt–NaCl solution–aggregate interface, the diffusion of Na+ is faster than that of Cl. Meanwhile, compared with other asphalt components, saturates exhibit notably enhanced mobility under salt erosion conditions. The synergistic effects of accelerated aging, salt crystallization pressure, and enhanced ionic diffusion jointly induce the deterioration of interfacial bonding, which accounts for the decrease in macroscopic pull-out strength. This multiscale investigation advances understanding of salt-induced deterioration while providing practical insights for developing durable asphalt mixtures in cold regions. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 6400 KB  
Article
Microstructure and Mechanical Property Regulation of As-Cast AlCoCrFeNi2.1Six (x = 0, 0.1, 0.2, 0.3) High-Entropy Alloys
by Rongbin Li, Saiya Li, Jiahao Zhang and Jiaming Tian
Metals 2025, 15(10), 1146; https://doi.org/10.3390/met15101146 - 16 Oct 2025
Viewed by 193
Abstract
Eutectic high-entropy alloys (EHEAs) combine the casting advantages of eutectic alloys with the comprehensive properties of high-entropy alloys, making them a research hotspot in the field of metallic materials. Among them, the AlCoCrFeNi2.1 EHEA has attracted significant attention due to its excellent [...] Read more.
Eutectic high-entropy alloys (EHEAs) combine the casting advantages of eutectic alloys with the comprehensive properties of high-entropy alloys, making them a research hotspot in the field of metallic materials. Among them, the AlCoCrFeNi2.1 EHEA has attracted significant attention due to its excellent strength–toughness balance characteristics. In this study, alloy samples of AlCoCrFeNi2.1Six (x = 0, 0.1, 0.2, 0.3) were prepared to investigate the regulatory effects of trace Si on its phase composition, microstructure, and mechanical properties. The results show that the base alloy AlCoCrFeNi2.1 is composed of an FCC and BCC phase composition. With the increase in the Si content to x = 0.3, the CrSi2 phase gradually precipitates in the alloy, and its microscopic morphology transforms from the regular lamellar to the dendrite and network structure. The introduction of Si significantly enhances the room-temperature microhardness, wear resistance, and yield strength of the alloy through the mechanisms of solid solution strengthening and second phase strengthening. However, an excessive addition leads to a decrease in ductility and toughness. This study reveals the role of Si in phase control and the strengthening and toughening mechanism of eutectic high-entropy alloys, providing experimental evidence and a theoretical reference for the design of high-performance silicon-modified high-entropy alloys. Full article
(This article belongs to the Section Entropic Alloys and Meta-Metals)
Show Figures

Figure 1

16 pages, 14613 KB  
Article
Research on Bio-Inspired Decussated Bamboo-Fiber-Reinforced Epoxy Composites: The Effect of Vertical Fiber Proportion on Tribological Performances
by Heng Xiao, Hao Yi, Zijie Zhou, Ningfeng Wu, Shengwei Liang, Lei Ma and Wen Zhong
Polymers 2025, 17(20), 2765; https://doi.org/10.3390/polym17202765 - 15 Oct 2025
Viewed by 284
Abstract
Bamboo fiber is a prime green fiber due to its renewability, biodegradability, and high specific strength. Bamboo-fiber-reinforced epoxy (BFRE) composites have seen extensive use and shown great promise for natural biofiber-reinforced friction materials. Inspired by the decussated fiber alignment of bovine enamel, this [...] Read more.
Bamboo fiber is a prime green fiber due to its renewability, biodegradability, and high specific strength. Bamboo-fiber-reinforced epoxy (BFRE) composites have seen extensive use and shown great promise for natural biofiber-reinforced friction materials. Inspired by the decussated fiber alignment of bovine enamel, this study investigated how fiber orientation influences the tribological properties of BFRE composites. Specifically, the proportion of fibers oriented vertically to the surface was varied at seven levels: 0%, 25%, 33%, 50%, 67%, 75%, and 100%. The tribological performance was assessed through wear reciprocating testing and microscopic morphological characterization techniques. Results indicate that the bio-inspired fiber decussation can reduce the wear loss of the BFRE composites. Among all bio-inspired BFRE composites, BFRE composites with 67% vertical fibers achieve the best wear resistance. The vertical fibers in the BFRE composites can withstand pressure to provide a “compression–rebound” effect, while the parallel fibers can resist shear stress. The decussated structure inhibits crack initiation and propagation during wear and promotes transfer film formation, reducing wear loss. The findings expand understanding of the correlation between the bovine-tooth-like decussated structure and its tribological mechanisms, thereby offering essential guidance for the biomimetic design of high-performance BFRE composites for friction material application. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Graphical abstract

64 pages, 10522 KB  
Review
Spectroscopic and Microscopic Characterization of Inorganic and Polymer Thermoelectric Materials: A Review
by Temesgen Atnafu Yemata, Tessera Alemneh Wubieneh, Yun Zheng, Wee Shong Chin, Messele Kassaw Tadsual and Tadisso Gesessee Beyene
Spectrosc. J. 2025, 3(4), 24; https://doi.org/10.3390/spectroscj3040024 - 14 Oct 2025
Viewed by 251
Abstract
Thermoelectric (TE) materials represent a critical frontier in sustainable energy conversion technologies, providing direct thermal-to-electrical energy conversion with solid-state reliability. The optimizations of TE performance demand a nuanced comprehension of structure–property relationships across diverse length scales. This review summarizes established and emerging spectroscopic [...] Read more.
Thermoelectric (TE) materials represent a critical frontier in sustainable energy conversion technologies, providing direct thermal-to-electrical energy conversion with solid-state reliability. The optimizations of TE performance demand a nuanced comprehension of structure–property relationships across diverse length scales. This review summarizes established and emerging spectroscopic and microscopic techniques used to characterize inorganic and polymer TE materials, specifically poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS). For inorganic TE, ultraviolet–visible (UV–Vis) spectroscopy, energy-dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS) are widely applied for electronic structure characterization. For phase analysis of inorganic TE materials, Raman spectroscopy (RS), electron energy loss spectroscopy (EELS), and nuclear magnetic resonance (NMR) spectroscopy are utilized. For analyzing the surface morphology and crystalline structure, chemical scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) are commonly used. For polymer TE materials, ultraviolet−visible–near-infrared (UV−Vis−NIR) spectroscopy and ultraviolet photoelectron spectroscopy (UPS) are generally employed for determining electronic structure. For functional group analysis of polymer TE, attenuated total reflectance–Fourier-transform infrared (ATR−FTIR) spectroscopy and RS are broadly utilized. XPS is used for elemental composition analysis of polymer TE. For the surface morphology of polymer TE, atomic force microscopic (AFM) and SEM are applied. Grazing incidence wide-angle X-ray scattering (GIWAXS) and XRD are employed for analyzing the crystalline structures of polymer TE materials. These techniques elucidate electronic, structural, morphological, and chemical properties, aiding in optimizing TE properties like conductivity, thermal stability, and mechanical strength. This review also suggests future research directions, including in situ methods and machine learning-assisted multi-dimensional spectroscopy to enhance TE performance for applications in electronic devices, energy storage, and solar cells. Full article
(This article belongs to the Special Issue Advances in Spectroscopy Research)
Show Figures

Graphical abstract

13 pages, 2753 KB  
Article
Effect of CMT and MIG Welding on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu-Er-Zr Alloy
by Wu Wei, Yijie Sun, Chao Zhang, Limin Zhai, Peng Wang, Li Cui, Shengping Wen, Wei Shi and Xiaorong Zhou
Materials 2025, 18(20), 4688; https://doi.org/10.3390/ma18204688 - 13 Oct 2025
Viewed by 246
Abstract
Cold metal transfer (CMT) welding and metal inert gas (MIG) arc welding of a novel Al-Zn-Mg-Cu-Er-Zr alloy are systematically analyzed. The effect of the two welding processes on the morphology, microstructure, and mechanical properties of welded joints was investigated. The evolution of the [...] Read more.
Cold metal transfer (CMT) welding and metal inert gas (MIG) arc welding of a novel Al-Zn-Mg-Cu-Er-Zr alloy are systematically analyzed. The effect of the two welding processes on the morphology, microstructure, and mechanical properties of welded joints was investigated. The evolution of the microstructures and grain structures in the welded joints is studied using an optical microscope (OM), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The results show that both welding methods obtain well-formed full-penetration welds, and the width of the heat-affected zone (HAZ) of CMT welding is smaller than that of MIG welding. The two welded joints reveal coarse cellular grain structures with precipitates of η (MgZn2), Al3Er, and S (Al6CuMg4) secondary phases. The average grain size of the weld metal in the cold metal transfer welding (12.96 μm) joint is much finer than that of the metal inert gas arc welding joint (22.63 μm), with a higher proportion of high-angle grain boundaries (HAGBs). The hardness of cold metal transfer welding and metal inert gas arc welding weld zones is 103.9 HV and 92.6 HV, respectively, and the tensile strength of the joint is 334.0 MPa and 270.3 MPa, respectively. Full article
(This article belongs to the Special Issue Advanced Machining and Technologies in Materials Science)
Show Figures

Figure 1

24 pages, 2872 KB  
Article
Moisture Sorption Isotherms of Fructooligosaccharide and Inulin Powders and Their Gelling Competence in Delaying the Retrogradation of Rice Starch
by Bing Dai, Ruijun Chen, Zheng Wei, Jianzhang Wu and Xingjun Li
Gels 2025, 11(10), 817; https://doi.org/10.3390/gels11100817 - 12 Oct 2025
Viewed by 170
Abstract
The accurate determination of the equilibrium moisture content (EMC) of gel-related powdery samples requires strictly controlled conditions and a long time period. In this study, the adsorption and desorption isotherms of two fructooligosaccharide (FOS) powders and three inulin powders were determined using a [...] Read more.
The accurate determination of the equilibrium moisture content (EMC) of gel-related powdery samples requires strictly controlled conditions and a long time period. In this study, the adsorption and desorption isotherms of two fructooligosaccharide (FOS) powders and three inulin powders were determined using a dynamic moisture sorption analyzer at 0.1–0.9 water activity (aw) and 20–35 °C, respectively. The adsorption and desorption isotherms all exhibited type IIa sigmoidal curves; the desorptive isotherm was smooth, the FOS adsorption curves had three inflection points, and the inulin adsorption curves had five inflection points. Large hysteresis between the adsorption and desorption isotherms occurred at 0.1–0.7 aw for FOS and 0.1–0.6 aw for inulin. Seven equations, Boquet, Ferro–Fontan, Guggenheim–Anderson–de Boer (GAB), Generalized D’Arcy and Watt (GDW), modified GAB (MGAB), Peleg, and our developed Polynomial, were found to fit the isotherms of the FOS and inulin samples; for adsorption, the best equations were Ferro–Fontan and GDW, and for desorption, the best equations were Polynomial and MGAB. The GDW and MGAB equations could not distinguish the effect of temperature on the isotherms, while the Polynomial equation could. The mean adsorptive monolayer moisture content (M0) values in FOS and inulin samples were predicted as 7.29% and 7.94% wet basis, respectively. The heat of moisture sorption of FOS and inulin approached that of pure water at about 32.5% and 22.5% wet basis (w.b.) moisture content (MC), respectively. Fourier Transform Infrared Spectroscopy (FTIR) showed that the peaks in inulin with absorbance values above 0.52 and in FOS with absorbance values above 0.35 were at 1020, 1084, and 337 cm−1; these could represent the amorphous structure (primary alcohol C-OH), C-O group, and hydroxyl functional group, respectively. Microscopic structure analysis showed that inulin powder particles were more round-shaped and adhered together, resulting in hygroscopic and sticky characteristics, with a maximum equilibrium moisture content (EMC) of 34% w.b. In contrast, the FOS powders exhibited irregular amorphous particles and a maximum EMC of 60% w.b. As hydrogels, 3–10% FOS or inulin addition reduced the peak, trough, final, breakdown, and setback viscosities of rice starch pasting, but increased the peak time and pasting temperature. FOS addition gave stronger reduction in the setback viscosity and in amylose retrogradation of rice starch pasting than inulin addition. The differential scanning calorimeter (DSC) showed 3–10% FOS addition reduced the amylopectin aging of retrograded paste of rice starch, but 5–7% inulin addition tended to reduce. These results suggest that FOS and inulin have strong hygroscopic properties and can be used to maintain the freshness of starch-based foods. These data can be used for drying, storage, and functional food design of FOS and inulin products. Full article
(This article belongs to the Special Issue Modification of Gels in Creating New Food Products (2nd Edition))
Show Figures

Figure 1

16 pages, 4519 KB  
Article
Preparation of CoMn Layered Double Metal Oxide and Its Performance in Activating Peroxymonosulfate to Degrade Bisphenol A
by Guanyu Wang and Mengmeng Jin
Catalysts 2025, 15(10), 973; https://doi.org/10.3390/catal15100973 - 11 Oct 2025
Viewed by 375
Abstract
To address the technical challenges in bisphenol A (BPA) pollution control, this research introduced a novel synthetic approach combining co-precipitation with subsequent thermal treatment to engineer layered double hydroxides (LDHs) with a spinel-structured CoMn-LDO catalyst. Systematic material characterizations such as a scanning electron [...] Read more.
To address the technical challenges in bisphenol A (BPA) pollution control, this research introduced a novel synthetic approach combining co-precipitation with subsequent thermal treatment to engineer layered double hydroxides (LDHs) with a spinel-structured CoMn-LDO catalyst. Systematic material characterizations such as a scanning electron microscope (SEM), an X-ray diffractometer (XRD), a transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS) were employed to analyze the structural and chemical properties of the synthesized CoMn-LDO calcined at 500 °C. The catalytic performance was evaluated under optimized conditions (35 °C, pH 7.0, 2.0 mM PMS, 0.3 g/L catalyst), and mechanistic studies were conducted to identify the dominant reactive oxygen species. The CoMn-LDO exhibited exceptional peroxymonosulfate (PMS) activation performance, achieving 96.75% BPA degradation within 90 min and 58.22% TOC removal. The synergistic redox cycling between Co2+/Co3+ and Mn3+/Mn4+ promoted the generation of ·OH (72.3% contribution) and SO4·−. The catalyst demonstrated superior stability, maintaining 89% degradation efficiency after five cycles. These results provide theoretical and practical insights for developing high-efficiency persulfate-activating catalysts. Full article
Show Figures

Figure 1

28 pages, 8557 KB  
Article
Surface Optimization of Additively Manufactured (AM) Stainless Steel Components Using Combined Chemical and Electrochemical Post-Processing
by Pablo Edilberto Sanchez Guerrero, Andrew Grizzle, Daniel Fulford, Juan Estevez Hernandez, Lucas Rice and Pawan Tyagi
Coatings 2025, 15(10), 1197; https://doi.org/10.3390/coatings15101197 - 11 Oct 2025
Viewed by 334
Abstract
The design and production of goods have been completely transformed by additive manufacturing (AM), which makes it possible to create components with intricate and complex geometries that were previously impossible or impractical to produce. However, current technologies continue to produce coarse-surfaced metal components [...] Read more.
The design and production of goods have been completely transformed by additive manufacturing (AM), which makes it possible to create components with intricate and complex geometries that were previously impossible or impractical to produce. However, current technologies continue to produce coarse-surfaced metal components that typically exhibit fatigue properties, resulting in component failure and unfavorable friction coefficients on the printed part. Therefore, to improve the surface quality of the fabricated parts, post-processing of AM-created components is required. With emphasis on electroless nickel plating, ChemPolishing (CP), and ElectroPolishing (EP), this study investigates post-processing methods for stainless steel that is additively manufactured (AM). The rough surfaces created by additive manufacturing (AM) restrict direct use. While ElectroPolishing (EP) achieves high material removal rates but may not be consistent, ChemPolishing (CP) offers uniform smoothening. Nickel plating enhances additive manufacturing (AM) products’ resistance to wear and scratches and corrosion protection. To optimize nickel deposition, medium (6%–9%) and high (10%–13%) phosphorus nickel was tested using the L9 Taguchi design of experiments (DOE). Mechanical properties, including scratch resistance and adhesion, were evaluated using the TABER 5900 reciprocating (Taber Industries, North Tonawanda, NY, USA) abraser apparatus, a 5 N scratch test, and ASTM B-733 thermal shock method. Surface analysis was performed with the KEYENCE VHX-7000 microscope (Keyence Corporation, Itasca, IL, USA), and chemical composition before and after nickel deposition was assessed via the ThermoFisher Phenom XL scanning electron microscope (SEM, Thermo Fisher Scientific, Waltham, MA, USA) Optimal processing conditions, determined using Qualitek-4 software, Version 20.1.0 revealed improvements in both surface finish and mechanical robustness. This comprehensive analysis underscores the potential of nickel-coated additive manufacturing (AM) parts for enhanced performance, offering a pathway to more durable and efficient additive manufacturing (AM) applications. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation, 2nd Edition)
Show Figures

Figure 1

Back to TopTop