Preparation of CoMn Layered Double Metal Oxide and Its Performance in Activating Peroxymonosulfate to Degrade Bisphenol A
Abstract
1. Introduction
2. Results and Discussion
2.1. Composition and Structural Analysis of CoMn-LDO
2.1.1. SEM/EDS Characterization
2.1.2. XRD Characterization and Analysis
2.1.3. TEM/HRTEM Characterization and Analysis
2.1.4. FT-IR Characterization Analysis
2.1.5. BET Specific Surface Area and Pore Size Distribution
2.2. Degradation Behavior of BPA via CoMn-LDO-Activated PMS
2.2.1. The Effect of Calcination Temperature on CoMn-LDO Activated PMS for BPA Degradation
2.2.2. Operational Parameters Affecting PMS Activation by CoMn-LDO for BPA Degradation
2.3. Mechanism Analysis of PMS-Catalyzed BPA Degradation
2.4. Performance Comparison Between CoMn-LDO and CoMn-LDH
3. Experimental Section
3.1. Synthesis of CoMn-LDO
3.2. Physicochemical Characterization of CoMn-LDO
3.3. Catalytic Performance Evaluation
3.3.1. Catalytic Degradation of BPA
3.3.2. Radical Scavenging Experiments
3.3.3. Catalyst Stability Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, W.; Su, X.; Wu, Y.; Yi, G.; Guo, X.; Shi, S.; Zhang, C.; Zhang, Y. A comprehensive review of PbO2 electrodes in electrocatalytic degradation of organic pollutants. Environ. Res. 2025, 279, 121885. [Google Scholar] [CrossRef]
- Liu, W.; Su, X.; Wu, Y.; Yi, G.; Guo, X.; Oderinde, O.; Xiao, G.; Zhang, C.; Zhang, Y. Recent advances in tungsten-based photocatalysts for organic pollutant degradation: A comprehensive review. J. Alloys Compd. 2025, 1036, 181624. [Google Scholar] [CrossRef]
- Wu, Y.; Yin, Y.; Su, X.; Liu, W.; Yi, G.; Shi, S.; Oderinde, O.; Zeng, H.; Xiao, G.; Zhang, C.; et al. GO/Bi2O2CO3/NiWO4 with Z-scheme heterojunction: Efficiently enhanced degradation of organic pollutants under visible light and DFT studies. Process Saf. Environ. Prot. 2024, 190, 173–185. [Google Scholar]
- Hu, Y.; Zhu, Q.; Yan, X.; Liao, C.; Jiang, G. Occurrence, fate and risk assessment of BPA and its substituents in wastewater treatment plant: A review. Environ. Res. 2019, 178, 108732. [Google Scholar] [CrossRef]
- Wang, L.; Yun, J.; Zhang, H.; Si, J.; Fang, X.; Shao, L. Degradation of Bisphenol A by ozonation in rotating packed bed: Effects of operational parameters and co-existing chemicals. Chemosphere 2021, 274, 129769. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, D.; Yu, Y.; Ding, Y.; Cao, X.; Fu, M.; Zeng, G. Magnetic porous carbon nanopolyhedron modified rGO composites as recyclable sorbent for effective removal of bisphenol A from water. J. Environ. Chem. Eng. 2021, 9, 105911. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, H.; Wang, H.; Show, P.L.; Ivanets, A.; Luo, D.; Wang, C. MXenes as heterogeneous Fenton-like catalysts for removal of organic pollutants: A review. J. Environ. Chem. Eng. 2022, 10, 108954. [Google Scholar] [CrossRef]
- Nguyen, T.-B.; Do, Q.-H.; Chen, C.-W.; Chen, W.-H.; Bui, X.-T.; Dong, C.-D. Decoration of marigold flower-like CoMo LDH on reinforced cow manure-derived biochar as an effective peroxymonosulfate activator for degradation of Bisphenol A in water. J. Environ. Chem. Eng. 2024, 12, 114699. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Q.; She, Y.; Yu, Y.; Hong, J. High-efficiency degradation of bisphenol A by heterogeneous Mn–Fe layered double oxides through peroxymonosulfate activation: Performance and synergetic mechanism. Sep. Purif. Technol. 2021, 270, 118770. [Google Scholar] [CrossRef]
- Du, J.; Bao, J.; Liu, Y.; Kim, S.H.; Dionysiou, D.D. Facile preparation of porous Mn/Fe3O4 cubes as peroxymonosulfate activating catalyst for effective bisphenol A degradation. Chem. Eng. J. 2019, 376, 119193. [Google Scholar] [CrossRef]
- Oguzie, K.L.; Qiao, M.; Zhao, X.; Oguzie, E.E.; Njoku, V.O.; Obodo, G.A. Oxidative degradation of Bisphenol A in aqueous solution using cobalt ion-activated peroxymonosulfate. J. Mol. Liq. 2020, 313, 113569. [Google Scholar] [CrossRef]
- Li, X.; Huang, X.; Xi, S.; Miao, S.; Ding, J.; Cai, W.; Liu, S.; Yang, X.; Yang, H.; Gao, J.; et al. Single Cobalt Atoms Anchored on Porous N-Doped Graphene with Dual Reaction Sites for Efficient Fenton-like Catalysis. J. Am. Chem. Soc. 2018, 140, 12469–12475. [Google Scholar] [CrossRef] [PubMed]
- Ahamad, T.; Naushad, M.; Alzaharani, Y.; Alshehri, S.M. Photocatalytic degradation of bisphenol-A with g-C3N4/MoS2-PANI nanocomposite: Kinetics, main active species, intermediates and pathways. J. Mol. Liq. 2020, 311, 113339. [Google Scholar] [CrossRef]
- Tang, C.; Xu, H.; Li, Y.; Liang, Z.; Zhang, Y.; Xue, J.; Zheng, N. H-TiO2-NTs/CoMn-LDO/MoSe2-Ce electrodes for selective extraction of lead ions via capacitive deionization. Sep. Purif. Technol. 2025, 367, 132895. [Google Scholar] [CrossRef]
- Adim, S.; Eddahmi, M.; Boussetta, A.; Mansori, M.; Essoumhi, A.; Bouissane, L. Green four-component reaction and dye adsorption studies of new ZnCoAl-LDH and ZnCoCr-LDH materials. J. Organomet. Chem. 2025, 1036, 123719. [Google Scholar] [CrossRef]
- Jung, S.-Y.; Kim, B.-K.; Kim, H.-J.; Oh, J.-M. Development of Mesopore Structure of Mixed Metal Oxide through Albumin-Templated Coprecipitation and Reconstruction of Layered Double Hydroxide. Nanomaterials 2021, 11, 620. [Google Scholar] [CrossRef]
- Sharifi-Bonab, M.; Aber, S.; Salari, D.; Khodam, F. Water treatment with CoZnAl-LDH and its mixed metal oxide. Water Pract. Technol. 2021, 16, 1386–1396. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, X.; Zhou, B.; Meng, F.; Wang, Y.; Wen, G. Recent advance of layered double hydroxides materials: Structure, properties, synthesis, modification and applications of wastewater treatment. J. Environ. Chem. Eng. 2023, 11, 111191. [Google Scholar] [CrossRef]
- Gumus, Z.P.; Erbas, Z.; Soylak, M. Layered Double Hydroxides (LDHs) for the Treatment and Determination of Pollutants in Water and Wastewater. Anal. Lett. 2023, 57, 1646–1665. [Google Scholar] [CrossRef]
- Jin, M.; Xu, B.; Zhang, J.; Wang, Z.; Xing, B.; Yi, G.; Chen, L.; Wu, Y.; Li, Z. Peroxymonosulfate activation by cobalt–manganese layered double hydroxide for bisphenol A degradation. Cryst. Eng. Comm. 2024, 26, 1756–1766. [Google Scholar] [CrossRef]
- Sarkar, S.; Upadhyay, C. Layered double hydroxides for industrial wastewater remediation: A review. Catal. Today 2025, 445, 115101. [Google Scholar] [CrossRef]
- Sun, T.; Wang, X.; Zhang, J.; Wang, L.; Song, X.; Huo, P.; Liu, X. A Short Review of Layered Double Oxide-Based Catalysts for NH3-SCR: Synthesis and NOx Removal. Catalysts 2024, 14, 755. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, J.; Ma, Y.; Song, Y.; Li, T.; Dong, S. Tetracycline hydrochloride degradation over manganese cobaltate (MnCo2O4) modified ultrathin graphitic carbon nitride (g-C3N4) nanosheet through the highly efficient activation of peroxymonosulfate under visible light irradiation. J. Colloid Interface Sci. 2021, 600, 449–462. [Google Scholar]
- Liu, W.; Wu, Y.; Yi, G.; Guo, X.; Yin, Y.; Xu, B.; Zhang, J.; Sun, L.; Zeng, H.; Xing, B.; et al. Carbonized nitrogen doped carbon dots functionalized PbO2 electrode for efficient degradation of organic pollutants. J. Mol. Struct. 2025, 1319, 139453. [Google Scholar]
- Lu, H.; Sui, M.; Yuan, B.; Wang, J.; Lv, Y. Efficient degradation of nitrobenzene by Cu-Co-Fe-LDH catalyzed peroxymonosulfate to produce hydroxyl radicals. Chem. Eng. J. 2019, 357, 140–149. [Google Scholar] [CrossRef]
- Lu, H.; Zhu, Z.; Zhang, H.; Zhu, J.; Qiu, Y. Simultaneous removal of arsenate and antimonate in simulated and practical water samples by adsorption onto Zn/Fe layered double hydroxide. Chem. Eng. J. 2015, 276, 365–375. [Google Scholar] [CrossRef]
- Pahalagedara, M.N.; Samaraweera, M.; Dharmarathna, S.; Kuo, C.-H.; Pahalagedara, L.R.; Gascón, J.A.; Suib, S.L. Removal of Azo Dyes: Intercalation into Sonochemically Synthesized NiAl Layered Double Hydroxide. J. Phys. Chem. C 2014, 118, 17801–17809. [Google Scholar] [CrossRef]
- Gong, C.; Chen, F.; Yang, Q.; Luo, K.; Yao, F.; Wang, S.; Wang, X.; Wu, J.; Li, X.; Wang, D.; et al. Heterogeneous activation of peroxymonosulfate by Fe-Co layered doubled hydroxide for efficient catalytic degradation of Rhoadmine B. Chem. Eng. J. 2017, 321, 222–232. [Google Scholar] [CrossRef]
- Li, Z.; Luo, M.; Li, B.; Lin, Q.; Liao, X.; Yu, H.; Yu, C. 3-D hierarchical micro/nano-structures of porous Bi2WO6: Controlled hydrothermal synthesis and enhanced photocatalytic performances. Microporous Mesoporous Mater. 2021, 313, 110830. [Google Scholar] [CrossRef]
- Arunpandian, M.; Oh, T.H. Nitrogen-Doped Hollow Carbon Spheres-Decorated Co2SnO4/WS2 Heterostructures with Improved Visible-Light Photocatalytic Degradation of Organic Dye. Molecules 2025, 30, 2081. [Google Scholar] [CrossRef]
- Wang, H.; You, H.; Wu, G.; Huang, L.; Yan, J.; Liu, X.; Ma, Y.; Wu, M.; Zeng, Y.; Yu, J.; et al. Co/Fe co-doped ZIF-8 derived hierarchically porous composites as high-performance electrode materials for Cu2+ ions capacitive deionization. Chem. Eng. J. 2023, 460, 141621. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, J.; Xu, S.; Shao, M.; Yan, D.; Wei, M.; Evans, D.G.; Duan, X. CoMn-layered double hydroxide nanowalls supported on carbon fibers for high-performance flexible energy storage devices. J. Mater. Chem. A 2013, 1, 8836. [Google Scholar] [CrossRef]
- Ye, Q.; Wu, J.; Wu, P.; Wang, J.; Niu, W.; Yang, S.; Chen, M.; Rehman, S.; Zhu, N. Enhancing peroxymonosulfate activation of Fe-Al layered double hydroxide by dissolved organic matter: Performance and mechanism. Water Res. 2020, 185, 116246. [Google Scholar] [CrossRef]
- Wu, L.; Sun, Z.; Zhen, Y.; Zhu, S.; Yang, C.; Lu, J.; Tian, Y.; Zhong, D.; Ma, J. Oxygen Vacancy-Induced Nonradical Degradation of Organics: Critical Trigger of Oxygen (O2) in the Fe–Co LDH/Peroxymonosulfate System. Environ. Sci. Technol. 2021, 55, 15400–15411. [Google Scholar] [CrossRef]
- Liu, X.; Shao, P.; Gao, S.; Bai, Z.; Tian, J. Benzoquinone-assisted heterogeneous activation of PMS on Fe3S4 via formation of active complexes to mediate electron transfer towards enhanced bisphenol A degradation. Water Res. 2022, 226, 119218. [Google Scholar] [CrossRef]
- Zhu, M.; Kong, L.; Xie, M.; Lu, W.; Liu, H.; Li, N.; Feng, Z.; Zhan, J. Carbon aerogel from forestry biomass as a peroxymonosulfate activator for organic contaminants degradation. J. Hazard. Mater. 2021, 413, 125438. [Google Scholar] [CrossRef]
- Zhong, X.; Liu, J.; Jie, H.; Wu, W.; Jiang, F. Highly Efficient Copper Doping LaFeO3 Perovskite for Bisphenol A Removal by Activating Peroxymonosulfate. Catalysts 2023, 13, 575. [Google Scholar] [CrossRef]
- Zhong, X.; Wu, W.; Jie, H.; Jiang, F. La2CoO4+δ perovskite-mediated peroxymonosulfate activation for the efficient degradation of bisphenol A. RSC Adv. 2023, 13, 3193–3203. [Google Scholar] [CrossRef]
- Ding, Y.; Hu, Y.; Peng, X.; Xiao, Y.; Huang, J. Micro-nano structured CoS: An efficient catalyst for peroxymonosulfate activation for removal of bisphenol A. Sep. Purif. Technol. 2020, 233, 116022. [Google Scholar] [CrossRef]
- Xue, W.; Cao, S.; Liu, R.; Tang, R.; Chen, H.; Jiang, F. Preparation of nitrogen-containing carbon using a one-step thermal polymerization method for activation of peroxymonosulfate to degrade bisphenol A. Chemosphere 2020, 248, 126053. [Google Scholar] [CrossRef]
- Hu, F.; Meng, L.; Wang, M.; Zhang, Y.; Xu, Z. Roles of naturally occurring biogenic iron-manganese oxides (BFMO) in PMS-based environmental remediation: A complete electron transfer pathway. J. Environ. Sci. 2025, 155, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xu, Y.; Zhu, K.; Zhang, H. Understanding oxygen-deficient La2CuO4-δ perovskite activated peroxymonosulfate for bisphenol A degradation: The role of localized electron within oxygen vacancy. Appl. Catal. B 2021, 284, 119732. [Google Scholar] [CrossRef]
- Chen, H.; Deng, B.; Lin, H.; Zhang, H. Synthesis of bimetallic crednerite nanosheet as an efficient heterogeneous catalyst in Fenton-like degradation of bisphenol A. Front. Chem. Sci. Eng. 2025, 19, 44. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, X.; Shi, C.; Yang, S. Decolorization of Acid Orange 7 with peroxymonosulfate oxidation catalyzed by granular activated carbon. Chem. Eng. J. 2013, 232, 259–265. [Google Scholar] [CrossRef]
- Zhao, X.; Niu, C.; Zhang, L.; Guo, H.; Wen, X.; Liang, C.; Zeng, G. Co-Mn layered double hydroxide as an effective heterogeneous catalyst for degradation of organic dyes by activation of peroxymonosulfate. Chemosphere 2018, 204, 11–21. [Google Scholar] [CrossRef] [PubMed]












| Catalyst | Reaction Time | Pollutant | Degradation Efficiency | Ref. |
|---|---|---|---|---|
| CoMn-LDO/PMS | 90 min | BPA, 50 mg/L | 96.75% | This work |
| Fe3S4/PMS | 30 min | BPA, 10 mg/L | 56.9% | [35] |
| CA/PMS | 60 min | BPA, 10 mg/L | 96% | [36] |
| LCFO-4/PMS | 30 min | BPA, 0.05 mM | 92.7% | [37] |
| La2CoO4+δ/PMS | 25 min | BPA, 0.05 mM | 91.1% | [38] |
| CoS/PMS | 10 min | BPA, 20 mg/L | 90.3% | [39] |
| NCC-2/PMS | 20 min | BPA, 20 mg/L | 95% | [40] |
| BFMO/PMS | 60min | BPA, 0.1 mmol/L | 85% | [41] |
| LCO/PMS | 60 min | BPA, 0.05 mM | 96.7% | [42] |
| CuMnO2/PMS | 60 min | BPA, 0.1 mmol/L | 95.5% | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Jin, M. Preparation of CoMn Layered Double Metal Oxide and Its Performance in Activating Peroxymonosulfate to Degrade Bisphenol A. Catalysts 2025, 15, 973. https://doi.org/10.3390/catal15100973
Wang G, Jin M. Preparation of CoMn Layered Double Metal Oxide and Its Performance in Activating Peroxymonosulfate to Degrade Bisphenol A. Catalysts. 2025; 15(10):973. https://doi.org/10.3390/catal15100973
Chicago/Turabian StyleWang, Guanyu, and Mengmeng Jin. 2025. "Preparation of CoMn Layered Double Metal Oxide and Its Performance in Activating Peroxymonosulfate to Degrade Bisphenol A" Catalysts 15, no. 10: 973. https://doi.org/10.3390/catal15100973
APA StyleWang, G., & Jin, M. (2025). Preparation of CoMn Layered Double Metal Oxide and Its Performance in Activating Peroxymonosulfate to Degrade Bisphenol A. Catalysts, 15(10), 973. https://doi.org/10.3390/catal15100973
