Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (132)

Search Parameters:
Keywords = microplastic consumption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 866 KiB  
Review
Counteracting the Harms of Microplastics on Humans: An Overview from the Perspective of Exposure
by Kuok Ho Daniel Tang
Microplastics 2025, 4(3), 47; https://doi.org/10.3390/microplastics4030047 (registering DOI) - 1 Aug 2025
Abstract
Microplastics are pervasive environmental pollutants that pose risks to human health through ingestion and inhalation. This review synthesizes current practices to reduce exposure and toxicity by examining major exposure routes and dietary interventions. More than 130 papers were analyzed to achieve this aim. [...] Read more.
Microplastics are pervasive environmental pollutants that pose risks to human health through ingestion and inhalation. This review synthesizes current practices to reduce exposure and toxicity by examining major exposure routes and dietary interventions. More than 130 papers were analyzed to achieve this aim. The findings show that microplastics contaminate a wide range of food products, with particular concern over seafood, drinking water, plastic-packaged foods, paper cups, and tea filter bags. Inhalation exposure is mainly linked to indoor air quality and smoking, while dermal contact poses minimal risk, though the release of additives from plastics onto the skin remains an area of concern. Recommended strategies to reduce dietary exposure include consuming only muscle parts of seafood, moderating intake of high-risk items like anchovies and mollusks, limiting canned seafood liquids, and purging mussels in clean water before consumption. Avoiding plastic containers, especially for hot food or microwaving, using wooden cutting boards, paper tea bags, and opting for tap or filtered water over bottled water are also advised. To mitigate inhalation exposure, the use of air filters with HyperHEPA systems, improved ventilation, regular vacuuming, and the reduction of smoking are recommended. While antioxidant supplementation shows potential in reducing microplastic toxicity, further research is needed to confirm its effectiveness. This review provides practical, evidence-based recommendations for minimizing daily microplastic exposure. Full article
19 pages, 3672 KiB  
Article
Assessing Microplastic Contamination and Depuration Effectiveness in Farmed Pacific Oysters (Crassostrea gigas)
by Cláudia Moura, Diogo M. Silva, Francisca Espincho, Sabrina M. Rodrigues, Rúben Pereira, C. Marisa R. Almeida, Sandra Ramos and Vânia Freitas
Environments 2025, 12(8), 254; https://doi.org/10.3390/environments12080254 - 25 Jul 2025
Viewed by 325
Abstract
This study assessed the presence, abundance, and characteristics of microplastics (MPs) in farmed Pacific oysters (Crassostrea gigas) and evaluated the efficacy of depuration in reducing MPs under laboratory-controlled and commercial conditions. Oysters cultivated in the Lima estuary (NW Portugal) were sampled [...] Read more.
This study assessed the presence, abundance, and characteristics of microplastics (MPs) in farmed Pacific oysters (Crassostrea gigas) and evaluated the efficacy of depuration in reducing MPs under laboratory-controlled and commercial conditions. Oysters cultivated in the Lima estuary (NW Portugal) were sampled in autumn and winter, along with adjacent surface water and sediment, to investigate potential contamination sources. MP concentrations in oysters varied temporally, with higher levels in October 2023 (0.48 ± 0.34 MPs g−1 ww) than in February 2024 (0.09 ± 0.07 MPs g−1 ww), while the environmental levels remained stable across dates. All MPs were fibres, predominantly transparent, followed by blue and black. Fourier-Transform Infrared Spectroscopy (FTIR) confirmed cellulose and polyethylene terephthalate (PET) as dominant polymers in oysters and environmental samples. No clear correlation was found between MPs in oysters and surrounding compartments. Laboratory depuration reduced MPs by 78% within 48 h, highlighting its potential as a mitigation strategy. However, depuration was less effective under commercial conditions, possibly due to lower initial contamination levels. These findings suggest that oysters may act as a vector for human exposure to MPs via seafood consumption. While depuration shows promise in reducing contamination, further research is needed to optimise commercial protocols and enhance the safety of aquaculture products. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Plastic Contamination)
Show Figures

Figure 1

34 pages, 2648 KiB  
Review
Microfluidic Sensors for Micropollutant Detection in Environmental Matrices: Recent Advances and Prospects
by Mohamed A. A. Abdelhamid, Mi-Ran Ki, Hyo Jik Yoon and Seung Pil Pack
Biosensors 2025, 15(8), 474; https://doi.org/10.3390/bios15080474 - 22 Jul 2025
Viewed by 322
Abstract
The widespread and persistent occurrence of micropollutants—such as pesticides, pharmaceuticals, heavy metals, personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS)—has emerged as a critical environmental and public health concern, necessitating the development of highly sensitive, selective, and field-deployable detection technologies. Microfluidic [...] Read more.
The widespread and persistent occurrence of micropollutants—such as pesticides, pharmaceuticals, heavy metals, personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS)—has emerged as a critical environmental and public health concern, necessitating the development of highly sensitive, selective, and field-deployable detection technologies. Microfluidic sensors, including biosensors, have gained prominence as versatile and transformative tools for real-time environmental monitoring, enabling precise and rapid detection of trace-level contaminants in complex environmental matrices. Their miniaturized design, low reagent consumption, and compatibility with portable and smartphone-assisted platforms make them particularly suited for on-site applications. Recent breakthroughs in nanomaterials, synthetic recognition elements (e.g., aptamers and molecularly imprinted polymers), and enzyme-free detection strategies have significantly enhanced the performance of these biosensors in terms of sensitivity, specificity, and multiplexing capabilities. Moreover, the integration of artificial intelligence (AI) and machine learning algorithms into microfluidic platforms has opened new frontiers in data analysis, enabling automated signal processing, anomaly detection, and adaptive calibration for improved diagnostic accuracy and reliability. This review presents a comprehensive overview of cutting-edge microfluidic sensor technologies for micropollutant detection, emphasizing fabrication strategies, sensing mechanisms, and their application across diverse pollutant categories. We also address current challenges, such as device robustness, scalability, and potential signal interference, while highlighting emerging solutions including biodegradable substrates, modular integration, and AI-driven interpretive frameworks. Collectively, these innovations underscore the potential of microfluidic sensors to redefine environmental diagnostics and advance sustainable pollution monitoring and management strategies. Full article
(This article belongs to the Special Issue Biosensors Based on Microfluidic Devices—2nd Edition)
Show Figures

Figure 1

6 pages, 192 KiB  
Proceeding Paper
From Sea to Plate: The Plastic Pollution Problem in the Food Chain
by Carolyne Shealy, Gabriela Fernandez, Domenico Vito and Carol Maione
Med. Sci. Forum 2025, 33(1), 4; https://doi.org/10.3390/msf2025033004 - 15 Jul 2025
Viewed by 257
Abstract
The rising concern over plastic pollution is not only related to pollution in marine and terrestrial habitats but also effects humans. This study analyzes the trophic transfer of microplastics throughout the food chain, with an emphasis on the effects on human health. It [...] Read more.
The rising concern over plastic pollution is not only related to pollution in marine and terrestrial habitats but also effects humans. This study analyzes the trophic transfer of microplastics throughout the food chain, with an emphasis on the effects on human health. It provides a review of 12 articles analyzing the microplastic intake by humans via ingestion of fish and environmental exposure. In particular, the reviewed studies focused on microplastic ingestion by fish and animals intended for human consumption, the distribution of microplastics in human tissues, and human blood. The results of this analysis can extend our understanding of microplastic transfer in the human body, with implications for future research. Full article
24 pages, 792 KiB  
Review
Microplastics-Assisted Campylobacter Persistence, Virulence, and Antimicrobial Resistance in the Food Chain: An Overview
by Irene Ortega-Sanz and Andreja Rajkovic
Foods 2025, 14(14), 2432; https://doi.org/10.3390/foods14142432 - 10 Jul 2025
Viewed by 460
Abstract
Recent studies have detected microplastics (MPs) in seafood and various food products worldwide, including poultry, fish, salt, beverages, fruits, and vegetables. This widespread contamination makes human exposure through consumption unavoidable and raises concerns for food safety and human health. MPs provide physical support [...] Read more.
Recent studies have detected microplastics (MPs) in seafood and various food products worldwide, including poultry, fish, salt, beverages, fruits, and vegetables. This widespread contamination makes human exposure through consumption unavoidable and raises concerns for food safety and human health. MPs provide physical support to microorganisms for biofilm formation, protecting them from extreme conditions and facilitating their persistence in the environment. However, little is known about the impact of MPs in the transmission of foodborne pathogens and subsequent spread of infectious diseases like campylobacteriosis, the most common foodborne illness caused by a bacterium, Campylobacter. This review explores the sources of MP contamination in the food chain and offers a comprehensive overview of MP presence in animals, food products, and beverages. Moreover, we compile the available studies linking MPs and Campylobacter and examine the potential impact of these particles on the transmission of Campylobacter along the food chain with a particular focus on poultry, the main source and reservoir for the pathogen. While the environmental and toxicological effects of MPs are increasingly understood, their influence on the virulence of Campylobacter and the spread of antimicrobial resistance remains underexplored. Further studies are needed to develop standardized methods for isolating and identifying MPs, enabling comprehensive investigations and more effective monitoring and risk mitigation strategies. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

18 pages, 1896 KiB  
Review
Fashion to Dysfunction: The Role of Plastic Pollution in Interconnected Systems of the Environment and Human Health
by Adelaide Parks Lovett, Leslie Browning-Samoni and Charles Freeman
Textiles 2025, 5(2), 21; https://doi.org/10.3390/textiles5020021 - 10 Jun 2025
Viewed by 1212
Abstract
The rapid production and disposal of synthetic textiles, driven by fast fashion and overconsumption, contribute significantly to environmental pollution and human health risks. Functional finishes often contain toxic substances that leach into aquatic systems. Laundering and abrasion release microplastic fibers (MPFs), commonly called [...] Read more.
The rapid production and disposal of synthetic textiles, driven by fast fashion and overconsumption, contribute significantly to environmental pollution and human health risks. Functional finishes often contain toxic substances that leach into aquatic systems. Laundering and abrasion release microplastic fibers (MPFs), commonly called microplastics, and anthropogenic microfibers (MFs) which degrade into nanoplastics (NPs) through mechanical stress, heat, and UV radiation. These particles bypass wastewater treatment and accumulate in human organs, including the liver, lungs, and brain. This review highlights the limitations of current waste management systems, the role of textile design in particle release, and the need for further research on airborne emissions and environmental interactions. Mitigating textile-derived plastic pollution will require biodegradable finishes, pre-consumer filtration systems, and circular consumption models supported by interdisciplinary collaboration. Full article
Show Figures

Figure 1

19 pages, 1839 KiB  
Review
The Presence of Microplastics in the Genus Oreochromis: A Review
by Dalia G. Mendoza-López, María del Refugio Castañeda-Chávez, Leonardo Martinez-Cardenas, Edna F. Castillo-Marquez and Fabiola Lango-Reynoso
Microplastics 2025, 4(2), 29; https://doi.org/10.3390/microplastics4020029 - 3 Jun 2025
Viewed by 520
Abstract
The increase in the human population has created pressure, due to the high consumption of natural resources, to meet basic needs. Poor waste management resulting from human activities has caused plastics to become pollutants that are present around the planet, including aquatic environments. [...] Read more.
The increase in the human population has created pressure, due to the high consumption of natural resources, to meet basic needs. Poor waste management resulting from human activities has caused plastics to become pollutants that are present around the planet, including aquatic environments. The degradation of plastics through physicochemical processes has resulted in the presence of microplastics (particles < 5 mm), which have been found in species for human consumption and economic importance, including tilapia. In the last decade, research has shown the presence of microplastics in tilapia collected from different water bodies and aquaculture ponds, as well as in fish markets. In addition to this, there are studies that demonstrate that exposure to microplastics can have negative effects on the health of tilapia. The aim of this review is to compile and analyze the available information on microplastic contamination in Oreochromis spp., as well as in their environment, due to their importance as a species for human consumption. Full article
Show Figures

Figure 1

19 pages, 3776 KiB  
Article
Public Perception of Drinking Water Quality in an Arsenic-Affected Region: Implications for Sustainable Water Management
by Malcolm Watson, Jasmina Nikić, Jovana Pešić Bajić, Maja Vujić, Tamara Apostolović, Jasna Atanasijević and Jasmina Agbaba
Water 2025, 17(11), 1613; https://doi.org/10.3390/w17111613 - 26 May 2025
Viewed by 603
Abstract
This work explores the relationship between water quality and public trust in their water supply, in an arsenic-affected region of Serbia. The results from an online public survey are presented and subjected to Pearson’s correlation, cluster analysis, and principal component analysis. In general, [...] Read more.
This work explores the relationship between water quality and public trust in their water supply, in an arsenic-affected region of Serbia. The results from an online public survey are presented and subjected to Pearson’s correlation, cluster analysis, and principal component analysis. In general, survey respondents in settlements with known arsenic issues had a poor opinion on the quality of their tap water. This poor opinion was underlined by their consumption of bottled water, with more than 43% of responders purchasing at least 5 L of bottled water a week. In addition to the great economic cost, the relatively low plastic recycling rate in Serbia means that this also has a very negative effect on the environment, as most of the plastic bottles are sent to landfill, to degrade slowly into microplastics, whilst leaching a variety of chemical contaminants into the surroundings. In the area studied, the poor public opinion of the water quality is a realistic reflection of water at the tap. Although significant, the additional environmental pollution from bottled water consumption should nonetheless be of secondary consideration in comparison to the health risks associated with chemical contaminants in the study area, with local waterworks requiring significant financial assistance if they are to meaningfully improve tap water quality. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Graphical abstract

19 pages, 1425 KiB  
Review
The Hidden Threat of Microplastics in Traditional Cigarettes: A Narrative Review of Health and Environmental Risks
by Justyna Śniadach, Aleksandra Kicman, Sylwia Szymkowiak and Napoleon Waszkiewicz
J. Clin. Med. 2025, 14(11), 3721; https://doi.org/10.3390/jcm14113721 - 26 May 2025
Viewed by 1120
Abstract
Exposure to microplastics (MPs) in biological systems can lead to particle toxicity, oxidative stress, and inflammatory changes, potentially contributing to cancer development, digestive disorders, respiratory issues, and fertility problems. Traditional cigarette users are particularly vulnerable, as MPs have been detected in 99% of [...] Read more.
Exposure to microplastics (MPs) in biological systems can lead to particle toxicity, oxidative stress, and inflammatory changes, potentially contributing to cancer development, digestive disorders, respiratory issues, and fertility problems. Traditional cigarette users are particularly vulnerable, as MPs have been detected in 99% of cigarette filters, exposing smokers to these particles through inhalation and ingestion. This narrative review aims to analyze the sources, health implications, and biochemical impact of MPs derived from cigarette consumption. A literature search was conducted using databases such as PubMed, Scopus, and Google Scholar, applying strict inclusion criteria: peer-reviewed studies published between 2010 and 2025 and keywords such as “microplastics”, “smoking”, “tobacco”, “oxidative stress”, “pro-inflammatory cytokines”, “cell viability”, “regulatory policies”, and “health effects”. Findings indicate that MPs are present in biological samples such as blood (77% of cases), placenta (75%), lung tissue (88%), and feces (100%), demonstrating systemic human exposure. The environmental implications of improper cigarette disposal further exacerbate the global microplastic crisis. This review highlights potential mitigation strategies to reduce the health and environmental impact of cigarette-derived microplastics. Full article
(This article belongs to the Section Mental Health)
Show Figures

Figure 1

29 pages, 1366 KiB  
Article
A Comprehensive Identification, Distribution and Health Risk Assessment of Microplastics in Natural Mussels from the Shoreline of the Sea of Marmara, Türkiye
by Esra Billur Balcıoğlu İlhan
Sustainability 2025, 17(10), 4731; https://doi.org/10.3390/su17104731 - 21 May 2025
Viewed by 794
Abstract
Microplastics (MPs) have become a global issue due to their potential adverse effects on sustainable marine resources and human health. In this study, MP pollution was investigated using natural mussels from all shelf regions of the SoM (Sea of Marmara), which is under [...] Read more.
Microplastics (MPs) have become a global issue due to their potential adverse effects on sustainable marine resources and human health. In this study, MP pollution was investigated using natural mussels from all shelf regions of the SoM (Sea of Marmara), which is under the influence of many pollutant sources. A total of 322 mussels were collected along the entire coastline, and MP analyses were performed on these mussels. Mussel tissues were digested using a KOH solution to separate the MPs. Following extraction, the samples were filtered and the particles remaining on top were examined physically and chemically. In the study, the highest values were detected in samples taken both from locations under anthropogenic influence, especially from points close to where rivers flow. Across all the samples, the most predominant shape was fiber (61.08%), color was blue (57.87%) and size was (<0.5 mm) (62.55%). FTIR analysis shows that PE is the most common polymer type (44%). Calculated on the basis of 100 g of daily consumption, the annual ingestive exposures to MPs were found to be 1940, 342, 41 and 39 items for children, adolescents, female adults and male adults, respectively. As a result of a detailed risk assessment related to chronic daily intake (CDI) and microplastic carcinogenic risk (MPCR), it was determined that children are the most vulnerable group exposed to MPs and that these seafood products should be consumed with caution by children to prevent potential hazards. Additionally, it has been determined that the southern shelf and the Çanakkale Strait are the areas under the most intense pollution pressure according to the calculated MPCf and MPLI values. These findings are very relevant in terms of taking practical steps to take plans and actions to prevent contamination in the SoM and ensure the sustainability of food safety in the consumption of products obtained from the sea. Full article
Show Figures

Graphical abstract

14 pages, 4753 KiB  
Article
Effect of Acrylonitrile Butadiene Styrene (ABS) Secondary Microplastics on the Demography of Moina macrocopa (Cladocera)
by Diana Laura Manríquez-Guzmán, Diego de Jesús Chaparro-Herrera, Pedro Ramírez-García and Cesar Alejandro Zamora-Barrios
Biology 2025, 14(5), 555; https://doi.org/10.3390/biology14050555 - 16 May 2025
Cited by 1 | Viewed by 590
Abstract
Microplastics (MPs) are emerging pollutants that are ubiquitous in aquatic ecosystems and can affect the stability of aquatic food webs. They are intentionally produced in a size of less than 5 mm for specific purposes or are the result of the fragmentation of [...] Read more.
Microplastics (MPs) are emerging pollutants that are ubiquitous in aquatic ecosystems and can affect the stability of aquatic food webs. They are intentionally produced in a size of less than 5 mm for specific purposes or are the result of the fragmentation of larger plastic debris. Zooplankton can be affected directly by the ingestion of MPs or indirectly by interference caused by suspended plastic particles. Various environmental agencies recommend the genus Moina for assessing risk from water pollutants. However, this genus has received less attention in research compared to non-indigenous cladocerans commonly used as test organisms. We evaluated the effects of artificially fragmented acrylonitrile butadiene styrene microplastics (ABS-MPs) on key demographic parameters such as survival, mortality, life expectancy, fecundity, and feeding rates of Moina macrocopa americana. We exposed M. macrocopa neonates to a diet consisting of the green microalgae Chlorella vulgaris and ABS-MP particles. Four treatments were set with different concentrations of ABS-MP particles (5, 10, and 20 mg L−1). Survivorship, mortality, and reproduction were recorded daily until the last individual from the original cohort died. ABS-MPs significantly reduced M. macrocopa consumption rates of C. vulgaris, with an 85% decrease compared to the control. Although no statistically significant differences were found in life expectancy, net reproduction, or generation time among the toxic treatments, these parameters were drastically reduced compared to the control, even at the lowest concentration (5 mg L−1); this resulted in a 34% reduction in average lifespan. The ABS-MPs interfere with the long-term population dynamics of M. macrocopa and change their consumption rates, potentially decreasing their fitness. Full article
(This article belongs to the Special Issue Metabolic and Stress Responses in Aquatic Animals)
Show Figures

Figure 1

19 pages, 10657 KiB  
Article
Microplastic Identification in Domestic Wastewater-Treating Constructed Wetlands and Its Potential Usage in a Circular Economy
by Flor Idalia Tirado Aguilar, Carolina Peña Montes, Yodaira Borroto Pentón, María Cristina López Méndez, Jesús Castellanos Rivera, Gustavo Martínez Castellanos, Humberto Raymundo González Moreno and Brenda Lizeth Monzón Reyes
Processes 2025, 13(5), 1499; https://doi.org/10.3390/pr13051499 - 14 May 2025
Viewed by 656
Abstract
Mentions of microplastics (MPs) are increasingly frequent, for they are present in all environments, including wastewater. Knowing their possible harmful effects on the food chain, the fact that they appear in crops is concerning. The ways by which they are transported and stored, [...] Read more.
Mentions of microplastics (MPs) are increasingly frequent, for they are present in all environments, including wastewater. Knowing their possible harmful effects on the food chain, the fact that they appear in crops is concerning. The ways by which they are transported and stored, as well as their final destination, are still unclear. The issue of MPs in wastewater and how they are carried into agricultural crops are little-known facts. This study aims to evaluate whether horizontal subsurface flow wetlands with ornamental plants (Hippeastrum hybridum hort and Heliconia bihai marginata) can retain microplastics present in domestic wastewater while at the same time recirculating water for irrigation of the Phaseolus vulgaris crop. On average, the ornamental plants Hippeastrum hybridum hort and Heliconia bihai marginata removed contaminants such as COD, NH4+, TN, NO2, TP, PO43−, and TSS, with an efficiency of 84% and 98%, respectively. The presence of MPs was identified via FTIR analysis and visual characterization in domestic wastewater, treated wastewater, and well water; the quality of the fruit for human consumption was determined using safety tests for Escherichia coli and Salmonella. Full article
Show Figures

Figure 1

29 pages, 4371 KiB  
Article
Regional Insights on the Usage of Single-Use Plastics and Their Disposal in Five Asian Cities
by Chen Liu, Qiannan Zhuo, Yujiro Ishimura, Yasuhiko Hotta, Chika Aoki-Suzuki and Atsushi Watabe
Sustainability 2025, 17(10), 4276; https://doi.org/10.3390/su17104276 - 8 May 2025
Cited by 1 | Viewed by 734
Abstract
Single-use plastics (SUPs) are deeply embedded in everyday consumption in rapidly developing Asian cities, yet their widespread use contributes to marine debris, microplastic pollution, and health risks. This study aimed to inform evidence-based policymaking to mitigate marine plastic pollution in the ASEAN+3 region. [...] Read more.
Single-use plastics (SUPs) are deeply embedded in everyday consumption in rapidly developing Asian cities, yet their widespread use contributes to marine debris, microplastic pollution, and health risks. This study aimed to inform evidence-based policymaking to mitigate marine plastic pollution in the ASEAN+3 region. Stratified random sampling surveys (n = 1492) were conducted both face to face and online across five representative cities between September 2022 and February 2023. We quantified and compared the consumption and disposal patterns across nine SUP categories, assessed demographic influences, evaluated the impact of COVID-19, and derived insights for targeted policy interventions. Non-parametric tests were used to evaluate the differences. The results reveal significant inter-city variation: Shanghai and Harbin reported high overall SUP use despite a lower consumption of plastic shopping bags; Hanoi and Depok showed lower overall use but distinct preferences for plastic shopping bags and party cups; and Phnom Penh had the highest consumption of plastic shopping bags, bottles, and straws. Plastic shopping bags were the most used item in all cities (18–34 bags per week), with no significant differences between urban and rural areas, ages, or genders. In contrast, urban residents reported a higher use of plastic takeout containers, cutlery, coffee cups, and party cups. The COVID-19 pandemic notably reshaped SUP consumption patterns. Additionally, over half of SUPs were disposed of without proper separation. These findings underscore the need for flexible, phased, and context-specific interventions to support a resilient circular economy. Full article
Show Figures

Figure 1

47 pages, 1941 KiB  
Review
Exploring the Complexities of Seafood: From Benefits to Contaminants
by Bettina Taylor, Kelvin Fynn Ofori, Ali Parsaeimehr, Gulsun Akdemir Evrendilek, Tahera Attarwala and Gulnihal Ozbay
Foods 2025, 14(9), 1461; https://doi.org/10.3390/foods14091461 - 23 Apr 2025
Cited by 1 | Viewed by 2244
Abstract
Seafood plays a vital role in human diets worldwide, serving as an important source of high-quality protein, omega-3 fatty acids, and essential vitamins and minerals that promote health and prevent various chronic conditions. The health benefits of seafood consumption are well documented, including [...] Read more.
Seafood plays a vital role in human diets worldwide, serving as an important source of high-quality protein, omega-3 fatty acids, and essential vitamins and minerals that promote health and prevent various chronic conditions. The health benefits of seafood consumption are well documented, including a reduced risk of cardiovascular diseases, improved cognitive function, and anti-inflammatory effects. However, the safety of seafood is compromised by multiple hazards that can pose significant health risks. Pathogenic microorganisms, including bacteria, viruses, and parasites, in addition to microbial metabolites, are prominent causes of the foodborne diseases linked to seafood consumption, necessitating reliable detection and monitoring systems. Molecular biology and digital techniques have emerged as essential tools for the rapid and accurate identification of these foodborne pathogens, enhancing seafood safety protocols. Additionally, the presence of chemical contaminants such as heavy metals (e.g., mercury and lead), microplastics, and per- and polyfluoroalkyl substances (PFASs) in seafood is of increasing concern due to their potential to accumulate in the food chain and adversely affect human health. The biogenic amines formed during the microbial degradation of the proteins and allergens present in certain seafood species also contribute to food safety challenges. This review aims to address the nutritional value and health-promoting effects of seafood while exploring the multifaceted risks associated with microbial contamination, chemical pollutants, and naturally occurring substances. Emphasis is placed on enhanced surveillance, seafood traceability, sustainable aquaculture practices, and regulatory harmonization as effective strategies for controlling the risks associated with seafood consumption and thereby contributing to a safer seafood supply chain. Full article
Show Figures

Figure 1

12 pages, 3930 KiB  
Article
Microplastic Contamination of the Turkish Worm Lizard (Blanus strauchi Bedriaga, 1884) in Muğla Province (Türkiye)
by Cantekin Dursun, Nagihan Demirci, Kamil Candan, Elif Yıldırım Caynak, Yusuf Kumlutaş, Çetin Ilgaz and Serkan Gül
Biology 2025, 14(4), 441; https://doi.org/10.3390/biology14040441 - 19 Apr 2025
Cited by 1 | Viewed by 651
Abstract
Because of their diversity, microplastics (MPs), which are synthetic particles smaller than 5 mm, are highly bioavailable and widely distributed. The prevalence of microplastics in aquatic habitats has been extensively studied but less is known about their presence in terrestrial environments and biota. [...] Read more.
Because of their diversity, microplastics (MPs), which are synthetic particles smaller than 5 mm, are highly bioavailable and widely distributed. The prevalence of microplastics in aquatic habitats has been extensively studied but less is known about their presence in terrestrial environments and biota. This study examined MP intake in terrestrial environments utilizing gastrointestinal tracts (GITs), with a particular focus on the Turkish worm lizard (Blanus strauchi). Suspected particles discovered in the GITs were removed, measured, and characterized based on size, shape, color, and polymer type in order to evaluate MP ingestion. Out of 118 samples analyzed, 29 specimens (or 24.57%) had microplastic particlesMP length did not significantly correlate with snout–vent length (SVL) and weight. These correlations were tested to determine whether the size or weight of Blanus strauchi influenced the amount or size of MPs found within the GITs. Also, MP consumption by the worm lizard did not correlate with the year of sampling. All particles identified as fibers through FT-IR spectroscopy analysis. The most common type of microplastic was polyethylene terephthalate (PET). The most often detected color was blue, with mean MP lengths ranging from 133 µm to 2929 µm. It has been demonstrated that worm lizards inhabiting soil or sheltering under stones in bushy areas with sparse vegetation consume MPs. Predation is regarded to be the most likely way through which MPs infiltrate terrestrial food webs. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

Back to TopTop