Microplastics-Assisted Campylobacter Persistence, Virulence, and Antimicrobial Resistance in the Food Chain: An Overview
Abstract
1. Introduction
2. Microplastic Contamination in the Food Supply Chain
2.1. Sources of Microplastics
2.2. Distribution of Microplastics
3. Interaction Between Microplastics and Campylobacter
3.1. Biofilm Formation and Persistence
Studies on Campylobacter Associated with Microplastics
3.2. Virulence
Impact of Microplastic-Associated Pollutants on Campylobacter Virulence Gene Expression
3.3. Influence of Microplastics on Campylobacter Antimicrobial Resistance
Antibiotic Class | Resistance Mechanism | Reference |
---|---|---|
Aminoglycosides (gentamicin, amikacin, kanamycin, netilmicin, spectinomycin) | aac(3) aac(6′)-Ib aph(2″)-Ig aph(2″)-If aphA-3 sat-4 ant6 ant2 antA antB rpsL | [136] |
β-lactams (penicillin) | Enzymatic inactivation of the antibiotic by blaOXA genes Efflux through multidrug efflux pumps like CmeABC | [137,138,139] |
Chloramphenicol (chloramphenicol) | cat | [140] |
Fluoroquinolones (ciprofloxacin) | Point mutations in GyrA (T86I, T86K, A70T, D90N, P104S) Efflux through multidrug efflux pump CmeABC | [138,141,142] |
Lincosamides (clindamycin) | lnu(AN2) lnu(C) | [139,143] |
Macrolides (erythromycin) | Point mutations in 23S rRNA (A2074C, A2074G, A2075G) and/or ribosomal proteins L4 (V196A, S2R, V121A, I200F, M192I) and L22 (I65V, S109A, A103V, A74G, S109T, E111A, T114A, K15I) erm(B) Efflux through multidrug efflux pump CmeABC | [138,144,145,146] |
Tetracyclines (tetracycline) | tet(O)-like genes Efflux through multidrug efflux pump CmeABC | [138] |
3.4. Co-Aggregation of Campylobacter with Other Bacterial Species
4. Implications for the Food Chain
5. Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATR-FTIR | Attenuated total reflection-fourier transform infrared spectroscopy |
CDT | Cytolethal distending toxin |
DNA | Deoxyribonucleic acid |
eDNA | Extracellular DNA |
EU | European Union |
EVOH | Ethylene-vinyl alcohol |
HGT | Horizontal gene transfer |
MP | Microplastic |
Mt | Metric ton |
NP | Nanoplastic |
PA | Polyamide (nylon) |
PAA | Polyacrylic acid |
PAM | Polyacrylamide |
PAN | Polyacrylonitrile |
PB | Polybutylene |
PBM | Poly-(n-butyl methacrylate) |
PC | Polycarbonate |
PE | Polyethylene |
PEI | Polyetherimide |
PES | Polyethersulfone |
PEST | Polyester + polyethylene terephthalate |
PET | Polyethylene terephthalate |
PP | Polypropylene |
PS | Polystyrene |
PTFE | Polytetrafluoroethylene |
PVC | Polyvinyl chloride |
RNA | Ribonucleic acid |
ROS | Reactive oxygen species |
rRNA | Ribosomal RNA |
SEM | Scanning electron microscopy |
TW | Tap water |
WWTP | Wastewater treatment plant |
References
- Singh, C.K.; Sodhi, K.K.; Saha, K.; Sarma, S.; Shree, P.; Singh, P. Insight into the Environmental Impact of Microplastics: A Perspective on the Sources, Detection, Ecotoxicity, and Remediation. Total Environ. Microbiol. 2025, 1, 100009. [Google Scholar] [CrossRef]
- Kaakoush, N.O.; Castaño-Rodríguez, N.; Mitchell, H.M.; Man, S.M. Global Epidemiology of Campylobacter Infection. Clin. Microbiol. Rev. 2015, 28, 687–720. [Google Scholar] [CrossRef] [PubMed]
- Statista Research Department. Annual Production of Plastics Worldwide from 1950 to 2023. 2024. Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950 (accessed on 14 May 2025).
- Le, V.-G.; Nguyen, M.-K.; Nguyen, H.-L.; Lin, C.; Hadi, M.; Hung, N.T.Q.; Hoang, H.-G.; Nguyen, K.N.; Tran, H.-T.; Hou, D.; et al. A Comprehensive Review of Micro- and Nano-Plastics in the Atmosphere: Occurrence, Fate, Toxicity, and Strategies for Risk Reduction. Sci. Total Environ. 2023, 904, 166649. [Google Scholar] [CrossRef]
- Ziani, K.; Ioniță-Mîndrican, C.-B.; Mititelu, M.; Neacșu, S.M.; Negrei, C.; Moroșan, E.; Drăgănescu, D.; Preda, O.-T. Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. Nutrients 2023, 15, 617. [Google Scholar] [CrossRef]
- Yu, Y.; Kumar, M.; Bolan, S.; Padhye, L.P.; Bolan, N.; Li, S.; Wang, L.; Hou, D.; Li, Y. Various Additive Release from Microplastics and Their Toxicity in Aquatic Environments. Environ. Pollut. 2024, 343, 123219. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, B.; Parandhaman, T.; Das, S.K. Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria Viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces 2016, 8, 4963–4976. [Google Scholar] [CrossRef] [PubMed]
- Hua, T.; Kiran, S.; Li, Y.; Sang, Q.-X.A. Microplastics Exposure Affects Neural Development of Human Pluripotent Stem Cell-Derived Cortical Spheroids. J. Hazard. Mater. 2022, 435, 128884. [Google Scholar] [CrossRef]
- Rubio, L.; Barguilla, I.; Domenech, J.; Marcos, R.; Hernández, A. Biological Effects, Including Oxidative Stress and Genotoxic Damage, of Polystyrene Nanoparticles in Different Human Hematopoietic Cell Lines. J. Hazard. Mater. 2020, 398, 122900. [Google Scholar] [CrossRef]
- Peng, M.; Vercauteren, M.; Grootaert, C.; Rajkovic, A.; Boon, N.; Janssen, C.; Asselman, J. Cellular and Bioenergetic Effects of Polystyrene Microplastic in Function of Cell Type, Differentiation Status and Post-Exposure Time. Environ. Pollut. 2023, 337, 122550. [Google Scholar] [CrossRef]
- Rummel, C.D.; Jahnke, A.; Gorokhova, E.; Kühnel, D.; Schmitt-Jansen, M. Impacts of Biofilm Formation on the Fate and Potential Effects of Microplastic in the Aquatic Environment. Environ. Sci. Technol. Lett. 2017, 4, 258–267. [Google Scholar] [CrossRef]
- Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The Microbial “Protective Clothing” in Extreme Environments. Int. J. Mol. Sci. 2019, 20, 3423. [Google Scholar] [CrossRef]
- Cverenkárová, K.; Valachovičová, M.; Mackuľak, T.; Žemlička, L.; Bírošová, L. Microplastics in the Food Chain. Life 2021, 11, 1349. [Google Scholar] [CrossRef]
- Chen, X.; Tao, G.; Wang, Y.; Wei, W.; Lian, X.; Shi, Y.; Chen, S.; Sun, Y. Interactive Impacts of Microplastics and Chlorine on Biological Stability and Microbial Community Formation in Stagnant Water. Water Res. 2022, 221, 118734. [Google Scholar] [CrossRef]
- Havelaar, A.H.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; de Silva, N.R.; Gargouri, N.; et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med. 2015, 12, e1001923. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2022 Zoonoses Report. Efsa J. 2023, 21, e8442. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ) Scientific Opinion on Campylobacter in Broiler Meat Production: Control Options and Performance Objectives and/or Targets at Different Stages of the Food Chain. EFSA J. 2011, 9, 2105. [CrossRef]
- Facciolà, A.; Riso, R.; Avventuroso, E.; Visalli, G.; Delia, S.A.; Laganà, P. Campylobacter: From Microbiology to Prevention. J. Prev. Med. Hyg. 2017, 58, E79–E92. [Google Scholar]
- Ortega-Sanz, I.; Bocigas, C.; Melero, B.; Rovira, J. Phase Variation Modulates the Multi-Phenotypes Displayed by Clinical Campylobacter jejuni Strains. Food Microbiol. 2024, 117, 104397. [Google Scholar] [CrossRef]
- McCormick, A.; Hoellein, T.J.; Mason, S.A.; Schluep, J.; Kelly, J.J. Microplastic Is an Abundant and Distinct Microbial Habitat in an Urban River. Environ. Sci. Technol. 2014, 48, 11863–11871. [Google Scholar] [CrossRef]
- Kelly, J.J.; London, M.G.; McCormick, A.R.; Rojas, M.; Scott, J.W.; Hoellein, T.J. Wastewater Treatment Alters Microbial Colonization of Microplastics. PLoS ONE 2021, 16, e0244443. [Google Scholar] [CrossRef]
- Kolenc, Ž.; Kovač Viršek, M.; Klančnik, A.; Janecko, N. Microbial Communities on Microplastics from Seawater and Mussels: Insights from the Northern Adriatic Sea. Sci. Total Environ. 2024, 949, 175130. [Google Scholar] [CrossRef]
- Lo, L.S.H.; Tong, R.M.K.; Chan, W.; Ho, W.; Cheng, J. Bacterial Pathogen Assemblages on Microplastic Biofilms in Coastal Waters. Mar. Pollut. Bull. 2025, 216, 117958. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, C.; Burton, H. Origins and Biological Accumulation of Small Plastic Particles in Fur Seals from Macquarie Island. AMBIO J. Human. Environ. 2003, 32, 380–384. [Google Scholar] [CrossRef]
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in Seafood and the Implications for Human Health. Curr. Envir. Health Rep. 2018, 5, 375–386. [Google Scholar] [CrossRef]
- Milne, M.H.; De Frond, H.; Rochman, C.M.; Mallos, N.J.; Leonard, G.H.; Baechler, B.R. Exposure of U.S. Adults to Microplastics from Commonly-Consumed Proteins. Environ. Pollut. 2024, 343, 123233. [Google Scholar] [CrossRef]
- He, Y.-J.; Qin, Y.; Zhang, T.-L.; Zhu, Y.-Y.; Wang, Z.-J.; Zhou, Z.-S.; Xie, T.-Z.; Luo, X.-D. Migration of (Non-) Intentionally Added Substances and Microplastics from Microwavable Plastic Food Containers. J. Hazard. Mater. 2021, 417, 126074. [Google Scholar] [CrossRef]
- Zhu, J.; Dong, X.; Zhao, N.; Jiang, S.; Jin, H. Microplastics in Polystyrene-Made Food Containers from China: Abundance, Shape, Size, and Human Intake. Environ. Sci. Pollut. Res. 2023, 30, 40084–40093. [Google Scholar] [CrossRef]
- Akbulut, S.; Akman, P.K.; Tornuk, F.; Yetim, H. Microplastic Release from Single-Use Plastic Beverage Cups. Foods 2024, 13, 1564. [Google Scholar] [CrossRef] [PubMed]
- Kaseke, T.; Lujic, T.; Cirkovic Velickovic, T. Nano- and Microplastics Migration from Plastic Food Packaging into Dairy Products: Impact on Nutrient Digestion, Absorption, and Metabolism. Foods 2023, 12, 3043. [Google Scholar] [CrossRef]
- Torres-Agullo, A.; Karanasiou, A.; Moreno, T.; Lacorte, S. Overview on the Occurrence of Microplastics in Air and Implications from the Use of Face Masks during the COVID-19 Pandemic. Sci. Total Environ. 2021, 800, 149555. [Google Scholar] [CrossRef]
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef]
- Li, B.; Liang, W.; Liu, Q.-X.; Fu, S.; Ma, C.; Chen, Q.; Su, L.; Craig, N.J.; Shi, H. Fish Ingest Microplastics Unintentionally. Environ. Sci. Technol. 2021, 55, 10471–10479. [Google Scholar] [CrossRef] [PubMed]
- Mutić, T.; Mutić, J.; Ilić, M.; Jovanović, V.; Aćimović, J.; Andjelković, B.; Stanić-Vucinić, D.; de Guzman, M.K.; Andjelkovic, M.; Turkalj, M.; et al. The Global Spread of Microplastics: Contamination in Mussels, Clams, and Crustaceans from World Markets. Foods 2024, 13, 3793. [Google Scholar] [CrossRef]
- Carbery, M.; O’Connor, W.; Palanisami, T. Trophic Transfer of Microplastics and Mixed Contaminants in the Marine Food Web and Implications for Human Health. Environ. Int. 2018, 115, 400–409. [Google Scholar] [CrossRef]
- Paul-Pont, I.; Lacroix, C.; González Fernández, C.; Hégaret, H.; Lambert, C.; Le Goïc, N.; Frère, L.; Cassone, A.-L.; Sussarellu, R.; Fabioux, C.; et al. Exposure of Marine Mussels Mytilus Spp. to Polystyrene Microplastics: Toxicity and Influence on Fluoranthene Bioaccumulation. Environ. Pollut. 2016, 216, 724–737. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.; Ofori, K.F.; Parsaeimehr, A.; Evrendilek, G.A.; Attarwala, T.; Ozbay, G. Exploring the Complexities of Seafood: From Benefits to Contaminants. Foods 2025, 14, 1461. [Google Scholar] [CrossRef] [PubMed]
- Alberghini, L.; Truant, A.; Santonicola, S.; Colavita, G.; Giaccone, V. Microplastics in Fish and Fishery Products and Risks for Human Health: A Review. Int. J. Environ. Res. Public Health 2022, 20, 789. [Google Scholar] [CrossRef]
- Elias, J.M.; Corbin, C.E. Microplastics and Terrestrial Birds: A Review on Plastic Ingestion in Ecological Linchpins. J. Ornithol. 2025, 166, 1–8. [Google Scholar] [CrossRef]
- Huerta Lwanga, E.; Mendoza Vega, J.; Ku Quej, V.; Chi, J.D.L.A.; Sanchez Del Cid, L.; Chi, C.; Escalona Segura, G.; Gertsen, H.; Salánki, T.; Van Der Ploeg, M.; et al. Field Evidence for Transfer of Plastic Debris along a Terrestrial Food Chain. Sci. Rep. 2017, 7, 14071. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM) Presence of Microplastics and Nanoplastics in Food, with Particular Focus on Seafood. Efsa J. 2016, 14, e04501. [CrossRef]
- Borriello, L.; Scivicco, M.; Cacciola, N.A.; Esposito, F.; Severino, L.; Cirillo, T. Microplastics, a Global Issue: Human Exposure through Environmental and Dietary Sources. Foods 2023, 12, 3396. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zhao, H.; Zhao, Y.; Zhu, Q.; Qiao, R.; Ren, H.; Zhang, Y. An Efficient Method for Extracting Microplastics from Feces of Different Species. J. Hazard. Mater. 2020, 384, 121489. [Google Scholar] [CrossRef]
- Karami, A.; Golieskardi, A.; Choo, C.K.; Romano, N.; Ho, Y.B.; Salamatinia, B. A High-Performance Protocol for Extraction of Microplastics in Fish. Sci. Total Environ. 2017, 578, 485–494. [Google Scholar] [CrossRef]
- Susanti, R.; Yuniastuti, A.; Fibriana, F. The Evidence of Microplastic Contamination in Central Javanese Local Ducks from Intensive Animal Husbandry. Water Air Soil. Pollut. 2021, 232, 178. [Google Scholar] [CrossRef]
- Karbalaei, S.; Golieskardi, A.; Hamzah, H.B.; Abdulwahid, S.; Hanachi, P.; Walker, T.R.; Karami, A. Abundance and Characteristics of Microplastics in Commercial Marine Fish from Malaysia. Mar. Pollut. Bull. 2019, 148, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Bessa, F.; Barría, P.; Neto, J.M.; Frias, J.P.G.L.; Otero, V.; Sobral, P.; Marques, J.C. Occurrence of Microplastics in Commercial Fish from a Natural Estuarine Environment. Mar. Pollut. Bull. 2018, 128, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Wootton, N.; Silva, V.; Giuretis, D.; Reis-Santos, P.; Gillanders, B.M. Microplastic Presence in Dried and Fresh Fish from Seafood Markets in Sri Lanka. Mar. Freshw. Res. 2025, 76, MF24270. [Google Scholar] [CrossRef]
- My, T.T.A.; Dat, N.D.; Hung, N.Q.; Thuy, T.T.T.; Hang, P.T.T.; Luu, N.D. Microplastic Abundance and Characteristics in Bivalves from Tam Giang-Cau Hai and O Loan Lagoons, Coastal Regions in Central Vietnam: Implication on Human Health. Mar. Pollut. Bull. 2025, 216, 117937. [Google Scholar] [CrossRef]
- Munno, K.; Helm, P.A.; Jackson, D.A.; Rochman, C.; Sims, A. Impacts of Temperature and Selected Chemical Digestion Methods on Microplastic Particles. Environ. Toxicol. Chem. 2017, 37, 91–98. [Google Scholar] [CrossRef]
- Wakkaf, T.; El Zrelli, R.; Kedzierski, M.; Balti, R.; Shaiek, M.; Mansour, L.; Tlig-Zouari, S.; Bruzaud, S.; Rabaoui, L. Microplastics in Edible Mussels from a Southern Mediterranean Lagoon: Preliminary Results on Seawater-Mussel Transfer and Implications for Environmental Protection and Seafood Safety. Mar. Pollut. Bull. 2020, 158, 111355. [Google Scholar] [CrossRef]
- Li, J.; Qu, X.; Su, L.; Zhang, W.; Yang, D.; Kolandhasamy, P.; Li, D.; Shi, H. Microplastics in Mussels along the Coastal Waters of China. Environ. Pollut. 2016, 214, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Green, C.; Reynolds, A.; Shi, H.; Rotchell, J.M. Microplastics in Mussels Sampled from Coastal Waters and Supermarkets in the United Kingdom. Environ. Pollut. 2018, 241, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Teng, J.; Wang, Q.; Ran, W.; Wu, D.; Liu, Y.; Sun, S.; Liu, H.; Cao, R.; Zhao, J. Microplastic in Cultured Oysters from Different Coastal Areas of China. Sci. Total Environ. 2019, 653, 1282–1292. [Google Scholar] [CrossRef]
- Do, V.M.; Dang, T.T.; Le, X.T.T.; Nguyen, D.T.; Phung, T.V.; Vu, D.N.; Pham, H.V. Abundance of Microplastics in Cultured Oysters (Crassostrea Gigas) from Danang Bay of Vietnam. Mar. Pollut. Bull. 2022, 180, 113800. [Google Scholar] [CrossRef]
- Li, J.; Yang, D.; Li, L.; Jabeen, K.; Shi, H. Microplastics in Commercial Bivalves from China. Environ. Pollut. 2015, 207, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, J.C.; Phan, S.; Luscombe, C.K.; Padilla-Gamiño, J.L. Low Incidence of Microplastic Contaminants in Pacific Oysters (Crassostrea Gigas Thunberg) from the Salish Sea, USA. Sci. Total Environ. 2020, 715, 136826. [Google Scholar] [CrossRef]
- Expósito, N.; Rovira, J.; Sierra, J.; Gimenez, G.; Domingo, J.L.; Schuhmacher, M. Levels of Microplastics and Their Characteristics in Molluscs from North-West Mediterranean Sea: Human Intake. Mar. Pollut. Bull. 2022, 181, 113843. [Google Scholar] [CrossRef]
- Oliveri Conti, G.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P. Micro- and Nano-Plastics in Edible Fruit and Vegetables. The First Diet Risks Assessment for the General Population. Environ. Res. 2020, 187, 109677. [Google Scholar] [CrossRef]
- Diaz-Basantes, M.F.; Conesa, J.A.; Fullana, A. Microplastics in Honey, Beer, Milk and Refreshments in Ecuador as Emerging Contaminants. Sustainability 2020, 12, 5514. [Google Scholar] [CrossRef]
- Kosuth, M.; Mason, S.A.; Wattenberg, E.V. Anthropogenic Contamination of Tap Water, Beer, and Sea Salt. PLoS ONE 2018, 13, e0194970. [Google Scholar] [CrossRef]
- Mason, S.A.; Welch, V.G.; Neratko, J. Synthetic Polymer Contamination in Bottled Water. Front. Chem. 2018, 6, 407. [Google Scholar] [CrossRef]
- Yang, D.; Shi, H.; Li, L.; Li, J.; Jabeen, K.; Kolandhasamy, P. Microplastic Pollution in Table Salts from China. Environ. Sci. Technol. 2015, 49, 13622–13627. [Google Scholar] [CrossRef]
- Iñiguez, M.E.; Conesa, J.A.; Fullana, A. Microplastics in Spanish Table Salt. Sci. Rep. 2017, 7, 8620. [Google Scholar] [CrossRef]
- Gündoğdu, S. Contamination of Table Salts from Turkey with Microplastics. Food Addit. Contam. Part. A 2018, 35, 1006–1014. [Google Scholar] [CrossRef]
- Azizi, N.; Khoshnamvand, N.; Nasseri, S. The Quantity and Quality Assessment of Microplastics in the Freshwater Fishes: A Systematic Review and Meta-Analysis. Reg. Stud. Mar. Sci. 2021, 47, 101955. [Google Scholar] [CrossRef]
- Kim, J.-S.; Lee, H.-J.; Kim, S.-K.; Kim, H.-J. Global Pattern of Microplastics (MPs) in Commercial Food-Grade Salts: Sea Salt as an Indicator of Seawater MP Pollution. Environ. Sci. Technol. 2018, 52, 12819–12828. [Google Scholar] [CrossRef]
- Rhodes, C.J. Plastic Pollution and Potential Solutions. Sci. Prog. 2018, 101, 207–260. [Google Scholar] [CrossRef] [PubMed]
- Gambino, I.; Bagordo, F.; Grassi, T.; Panico, A.; De Donno, A. Occurrence of Microplastics in Tap and Bottled Water: Current Knowledge. Int. J. Environ. Res. Public Health 2022, 19, 5283. [Google Scholar] [CrossRef]
- Tirkey, A.; Upadhyay, L.S.B. Microplastics: An Overview on Separation, Identification and Characterization of Microplastics. Mar. Pollut. Bull. 2021, 170, 112604. [Google Scholar] [CrossRef]
- Santos-Ferreira, N.; Alves, Â.; Cardoso, M.J.; Langsrud, S.; Malheiro, A.R.; Fernandes, R.; Maia, R.; Truninger, M.; Junqueira, L.; Nicolau, A.I.; et al. Cross-Contamination of Lettuce with Campylobacter spp. via Cooking Salt during Handling Raw Poultry. PLoS ONE 2021, 16, e0250980. [Google Scholar] [CrossRef]
- Hyllestad, S.; Iversen, A.; MacDonald, E.; Amato, E.; Borge, B.Å.S.; Bøe, A.; Sandvin, A.; Brandal, L.T.; Lyngstad, T.M.; Naseer, U.; et al. Large Waterborne Campylobacter Outbreak: Use of Multiple Approaches to Investigate Contamination of the Drinking Water Supply System, Norway, June 2019. Eurosurveillance 2020, 25, 2000011. [Google Scholar] [CrossRef] [PubMed]
- Kedzierski, M.; Lechat, B.; Sire, O.; Le Maguer, G.; Le Tilly, V.; Bruzaud, S. Microplastic Contamination of Packaged Meat: Occurrence and Associated Risks. Food Packag. Shelf Life 2020, 24, 100489. [Google Scholar] [CrossRef]
- Habib, R.Z.; Kindi, R.A.; Salem, F.A.; Kittaneh, W.F.; Poulose, V.; Iftikhar, S.H.; Mourad, A.-H.I.; Thiemann, T. Microplastic Contamination of Chicken Meat and Fish through Plastic Cutting Boards. Int. J. Environ. Res. Public Health 2022, 19, 13442. [Google Scholar] [CrossRef]
- Jadhav, E.B.; Sankhla, M.S.; Bhat, R.A.; Bhagat, D.S. Microplastics from Food Packaging: An Overview of Human Consumption, Health Threats, and Alternative Solutions. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100608. [Google Scholar] [CrossRef]
- Moyal, J.; Dave, P.H.; Wu, M.; Karimpour, S.; Brar, S.K.; Zhong, H.; Kwong, R.W.M. Impacts of Biofilm Formation on the Physicochemical Properties and Toxicity of Microplastics: A Concise Review. Rev. Environ. Contam. Toxicol. 2023, 261, 8. [Google Scholar] [CrossRef]
- Ica, T.; Caner, V.; Istanbullu, O.; Nguyen, H.D.; Ahmed, B.; Call, D.R.; Beyenal, H. Characterization of Mono- and Mixed-Culture Campylobacter jejuni Biofilms. Appl. Environ. Microbiol. 2012, 78, 1033–1038. [Google Scholar] [CrossRef]
- Joshua, G.W.P.; Guthrie-Irons, C.; Karlyshev, A.V.; Wren, B.W. Biofilm Formation in Campylobacter jejuni. Microbiology 2006, 152, 387–396. [Google Scholar] [CrossRef]
- Reeser, R.J.; Medler, R.T.; Billington, S.J.; Jost, B.H.; Joens, L.A. Characterization of Campylobacter jejuni Biofilms under Defined Growth Conditions. Appl. Environ. Microbiol. 2007, 73, 1908–1913. [Google Scholar] [CrossRef]
- Gross, N.; Muhvich, J.; Ching, C.; Gomez, B.; Horvath, E.; Nahum, Y.; Zaman, M.H. Effects of Microplastic Concentration, Composition, and Size on Escherichia coli Biofilm-Associated Antimicrobial Resistance. Appl. Environ. Microbiol. 2025, 91, e02282-24. [Google Scholar] [CrossRef]
- Purevdorj-Gage, B.; Costerton, W.J.; Stoodley, P. Phenotypic Differentiation and Seeding Dispersal in Non-Mucoid and Mucoid Pseudomonas Aeruginosa Biofilms. Microbiology 2005, 151, 1569–1576. [Google Scholar] [CrossRef]
- Metcalf, R.; Messer, L.F.; White, H.L.; Ormsby, M.J.; Matallana-Surget, S.; Quilliam, R.S. Evidence of Interspecific Plasmid Uptake by Pathogenic Strains of Klebsiella Isolated from Microplastic Pollution on Public Beaches. J. Hazard. Mater. 2024, 461, 132567. [Google Scholar] [CrossRef] [PubMed]
- Chibwe, M.; Odume, O.N.; Nnadozie, C.F. Campylobacter—An Emerging Pollutant of Aquatic Environments. In Emerging Pollutants; Zandaryaa, S., Fares, A., Eckstein, G., Eds.; Advances in Water Security; Springer Nature: Cham, Switzerland, 2025; pp. 35–65. ISBN 978-3-031-71757-4. [Google Scholar]
- Ortega-Sanz, I.; Callaert, T.; Rajkovic, A. Role of Microplastics in Campylobacter jejuni Contamination. (Manuscript in Preparation; To be Submitted); Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University: Ghent, Belgium, 2025. [Google Scholar]
- Sacristán, C.; Rodríguez, A.; Iglesias, I.; De La Torre, A. Campylobacter Assessment along the Spanish Food Chain: Identification of Key Points. Zoonoses Public Health 2024, 71, 755–762. [Google Scholar] [CrossRef]
- Brennecke, D.; Duarte, B.; Paiva, F.; Caçador, I.; Canning-Clode, J. Microplastics as Vector for Heavy Metal Contamination from the Marine Environment. Estuar. Coast. Shelf Sci. 2016, 178, 189–195. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, H.; Allgeier, A.; Zhou, Q.; Ouellet, J.D.; Crawford, S.E.; Luo, Y.; Yang, Y.; Shi, H.; Hollert, H. Marine Microplastics Bound Dioxin-like Chemicals: Model Explanation and Risk Assessment. J. Hazard. Mater. 2019, 364, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Koelmans, A.A.; Bakir, A.; Burton, G.A.; Janssen, C.R. Microplastic as a Vector for Chemicals in the Aquatic Environment: Critical Review and Model-Supported Reinterpretation of Empirical Studies. Environ. Sci. Technol. 2016, 50, 3315–3326. [Google Scholar] [CrossRef]
- Kim, J.-C.; Oh, E.; Kim, J.; Jeon, B. Regulation of Oxidative Stress Resistance in Campylobacter jejuni, a Microaerophilic Foodborne Pathogen. Front. Microbiol. 2015, 6, 751. [Google Scholar] [CrossRef]
- Mouftah, S.F.; Cobo-Díaz, J.F.; Álvarez-Ordóñez, A.; Mousa, A.; Calland, J.K.; Pascoe, B.; Sheppard, S.K.; Elhadidy, M. Stress Resistance Associated with Multi-Host Transmission and Enhanced Biofilm Formation at 42 °C among Hyper-Aerotolerant Generalist Campylobacter jejuni. Food Microbiol. 2021, 95, 103706. [Google Scholar] [CrossRef]
- Oh, E.; Andrews, K.J.; Jeon, B. Enhanced Biofilm Formation by Ferrous and Ferric Iron Through Oxidative Stress in Campylobacter jejuni. Front. Microbiol. 2018, 9, 1204. [Google Scholar] [CrossRef]
- Teh, A.H.T.; Lee, S.M.; Dykes, G.A. Growth in the Presence of Specific Antibiotics Induces Biofilm Formation by a Campylobacter jejuni Strain Sensitive to Them but Not in Resistant Strains. J. Glob. Antimicrob. Resist. 2019, 18, 55–58. [Google Scholar] [CrossRef]
- Petrova, O.E.; Sauer, K. Escaping the Biofilm in More than One Way: Desorption, Detachment or Dispersion. Curr. Opin. Microbiol. 2016, 30, 67–78. [Google Scholar] [CrossRef]
- Tram, G.; Klare, W.P.; Cain, J.A.; Mourad, B.; Cordwell, S.J.; Day, C.J.; Korolik, V. Assigning a Role for Chemosensory Signal Transduction in Campylobacter jejuni Biofilms Using a Combined Omics Approach. Sci. Rep. 2020, 10, 6829. [Google Scholar] [CrossRef]
- Püning, C.; Su, Y.; Lu, X.; Gölz, G. Molecular Mechanisms of Campylobacter Biofilm Formation and Quorum Sensing. In Fighting Campylobacter Infections: Towards a One Health Approach; Backert, S., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 293–319. ISBN 978-3-030-65481-8. [Google Scholar]
- Pascoe, B.; Méric, G.; Murray, S.; Yahara, K.; Mageiros, L.; Bowen, R.; Jones, N.H.; Jeeves, R.E.; Lappin-Scott, H.M.; Asakura, H.; et al. Enhanced Biofilm Formation and Multi-host Transmission Evolve from Divergent Genetic Backgrounds in Campylobacter jejuni. Environ. Microbiol. 2015, 17, 4779–4789. [Google Scholar] [CrossRef] [PubMed]
- Atack, J.M.; Kelly, D.J. Oxidative Stress in Campylobacter jejuni: Responses, Resistance and Regulation. Future Microbiol. 2009, 4, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Hwang, S.; Ryu, S.; Jeon, B. CosR Regulation of perR Transcription for the Control of Oxidative Stress Defense in Campylobacter jejuni. Microorganisms 2021, 9, 1281. [Google Scholar] [CrossRef]
- Seixas, A.F.; Quendera, A.P.; Sousa, J.P.; Silva, A.F.Q.; Arraiano, C.M.; Andrade, J.M. Bacterial Response to Oxidative Stress and RNA Oxidation. Front. Genet. 2022, 12, 821535. [Google Scholar] [CrossRef]
- Koolman, L.; Whyte, P.; Burgess, C.; Bolton, D. Virulence Gene Expression, Adhesion and Invasion of Campylobacter jejuni Exposed to Oxidative Stress (H2O2). Int. J. Food Microbiol. 2016, 220, 33–38. [Google Scholar] [CrossRef]
- Sabotič, J.; Janež, N.; Volk, M.; Klančnik, A. Molecular Structures Mediating Adhesion of Campylobacter jejuni to Abiotic and Biotic Surfaces. Vet. Microbiol. 2023, 287, 109918. [Google Scholar] [CrossRef]
- Wagle, B.R.; Shrestha, S.; Arsi, K.; Upadhyaya, I.; Donoghue, A.M.; Donoghue, D.J. Pectin or Chitosan Coating Fortified with Eugenol Reduces Campylobacter jejuni on Chicken Wingettes and Modulates Expression of Critical Survival Genes. Poult. Sci. 2019, 98, 1461–1471. [Google Scholar] [CrossRef]
- Konkel, M.E.; Kim, B.J.; Rivera-Amill, V.; Garvis, S.G. Bacterial Secreted Proteins Are Required for the Internalization of Campylobacter jejuni into Cultured Mammalian Cells. Mol. Microbiol. 1999, 32, 691–701. [Google Scholar] [CrossRef]
- Hermans, D.; Van Deun, K.; Martel, A.; Van Immerseel, F.; Messens, W.; Heyndrickx, M.; Haesebrouck, F.; Pasmans, F. Colonization Factors of Campylobacter jejuni in the Chicken Gut. Vet. Res. 2011, 42, 82. [Google Scholar] [CrossRef]
- Kalmokoff, M.; Lanthier, P.; Tremblay, T.-L.; Foss, M.; Lau, P.C.; Sanders, G.; Austin, J.; Kelly, J.; Szymanski, C.M. Proteomic Analysis of Campylobacter jejuni 11168 Biofilms Reveals a Role for the Motility Complex in Biofilm Formation. J. Bacteriol. 2006, 188, 4312–4320. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Wagle, B.R.; Upadhyay, A.; Arsi, K.; Upadhyaya, I.; Donoghue, D.J.; Donoghue, A.M. Edible Coatings Fortified With Carvacrol Reduce Campylobacter jejuni on Chicken Wingettes and Modulate Expression of Select Virulence Genes. Front. Microbiol. 2019, 10, 583. [Google Scholar] [CrossRef]
- He, Y.; Frye, J.G.; Strobaugh, T.P.; Chen, C.-Y. Analysis of AI-2/LuxS–Dependent Transcription in Campylobacter jejuni Strain 81-176. Foodborne Pathog. Dis. 2008, 5, 399–415. [Google Scholar] [CrossRef] [PubMed]
- Teren, M.; Shagieva, E.; Vondrakova, L.; Viktorova, J.; Svarcova, V.; Demnerova, K.; Michova, H.T. Mutagenic Strategies against luxS Gene Affect the Early Stage of Biofilm Formation of Campylobacter jejuni. J. Appl. Genet. 2022, 63, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Jeon, B.; Itoh, K.; Misawa, N.; Ryu, S. Effects of Quorum Sensing on flaA Transcription and Autoagglutination in Campylobacter jejuni. Microbiol. Immunol. 2003, 47, 833–839. [Google Scholar] [CrossRef]
- Carvalho, A.F.D.; Silva, D.M.D.; Azevedo, S.S.; Piatti, R.M.; Genovez, M.E.; Scarcelli, E. Detection of CDT Toxin Genes in Campylobacter spp. Strains Isolated from Broiler Carcasses and Vegetables in São Paulo, Brazil. Braz. J. Microbiol. 2013, 44, 693–699. [Google Scholar] [CrossRef]
- Dasti, J.I.; Tareen, A.M.; Lugert, R.; Zautner, A.E.; Groß, U. Campylobacter jejuni: A Brief Overview on Pathogenicity-Associated Factors and Disease-Mediating Mechanisms. Int. J. Med. Microbiol. 2010, 300, 205–211. [Google Scholar] [CrossRef]
- Ortega-Sanz, I.; Grootaert, C.; Jacobs, B.; Rajkovic, A. Role of Microplastics in the Contamination and Virulence of Listeria monocytogenes. In Proceedings of the 3rd Annual Cell Day Symposium, Abstracts, Ghent, Belgium, 19 September 2024; p. 9. [Google Scholar]
- Islam, M.; Bose, P.; Rahman, M.; Muktaruzzaman, M.; Sultana, P.; Ahamed, T.; Khatun, M. A Review of Antimicrobial Usage Practice in Livestock and Poultry Production and Its Consequences on Human and Animal Health. J. Adv. Vet. Anim. Res. 2024, 11, 675. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N.G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R. Global Trends in Antimicrobial Resistance in Animals in Low- and Middle-Income Countries. Science 2019, 365, eaaw1944. [Google Scholar] [CrossRef]
- Mehdi, Y.; Létourneau-Montminy, M.-P.; Gaucher, M.-L.; Chorfi, Y.; Suresh, G.; Rouissi, T.; Brar, S.K.; Côté, C.; Ramirez, A.A.; Godbout, S. Use of Antibiotics in Broiler Production: Global Impacts and Alternatives. Anim. Nutr. 2018, 4, 170–178. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Wang, Y.; Su, F.; Qian, J.; Liu, S. Adsorption of Levofloxacin by Ultraviolet Aging Microplastics. Chemosphere 2023, 343, 140196. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Dong, Y.; Shi, Y.; Yin, T.; He, W.; An, T.; Tang, Y.; Hou, X.; Chong, S.; Chen, D.; et al. Groundwater Antibiotics and Microplastics in a Drinking-Water Source Area, Northern China: Occurrence, Spatial Distribution, Risk Assessment, and Correlation. Environ. Res. 2022, 210, 112855. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zou, H.; Zheng, Y.; Zhang, G.; Xiang, Y.; Zhi, D.; Zhou, Y. Microplastics in Aquatic Environments: Detection, Abundance, Characteristics, and Toxicological Studies. Environ. Monit. Assess. 2025, 197, 150. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.; Guo, M.; Wang, Z.; Zheng, X. Adsorption of Antibiotics on Different Microplastics (MPs): Behavior and Mechanism. Sci. Total Environ. 2023, 863, 161022. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2022–2023. Efsa J. 2025, 23. [Google Scholar] [CrossRef]
- Li, Z.; Meng, X.; Shi, X.; Li, C.; Zhang, C. Adsorption–Desorption Behaviors of Enrofloxacin and Trimethoprim and Their Interactions with Typical Microplastics in Aqueous Systems. Sustainability 2025, 17, 516. [Google Scholar] [CrossRef]
- Ramić, D.; Bucar, F.; Kunej, U.; Dogša, I.; Klančnik, A.; Smole Možina, S. Antibiofilm Potential of Lavandula Preparations against Campylobacter jejuni. Appl. Environ. Microbiol. 2021, 87, e01099-21. [Google Scholar] [CrossRef]
- Wagle, B.R.; Upadhyay, A.; Upadhyaya, I.; Shrestha, S.; Arsi, K.; Liyanage, R.; Venkitanarayanan, K.; Donoghue, D.J.; Donoghue, A.M. Trans-Cinnamaldehyde, Eugenol and Carvacrol Reduce Campylobacter jejuni Biofilms and Modulate Expression of Select Genes and Proteins. Front. Microbiol. 2019, 10, 1837. [Google Scholar] [CrossRef]
- Malik, H.; Rajagunalan, S.; Kumar, M.S.; Kataria, J.L.; Anjay, P.; Sachan, S.; Upadhyay, A.K.; Kumar, A. Assessment of Antibiotics Effect on Planktonic and Biofilm Forms of Campylobacter Isolates. Isr. J. Vet. Med. 2017, 72, 3–13. [Google Scholar]
- Andersson, D.I.; Hughes, D. Microbiological Effects of Sublethal Levels of Antibiotics. Nat. Rev. Microbiol. 2014, 12, 465–478. [Google Scholar] [CrossRef]
- Luangtongkum, T.; Jeon, B.; Han, J.; Plummer, P.; Logue, C.M.; Zhang, Q. Antibiotic Resistance in Campylobacter: Emergence, Transmission and Persistence. Future Microbiol. 2009, 4, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Konkel, M.E.; Lu, X. Antimicrobial Resistance Gene Transfer from Campylobacter jejuni in Mono- and Dual-Species Biofilms. Appl. Environ. Microbiol. 2021, 87, e00659-21. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Oh, E.; Jeon, B. Enhanced Transmission of Antibiotic Resistance in Campylobacter jejuni Biofilms by Natural Transformation. Antimicrob. Agents Chemother. 2014, 58, 7573–7575. [Google Scholar] [CrossRef] [PubMed]
- Dasti, J.I.; Groß, U.; Pohl, S.; Lugert, R.; Weig, M.; Schmidt-Ott, R. Role of the Plasmid-Encoded Tet(O) Gene in Tetracycline-Resistant Clinical Isolates of Campylobacter jejuni and Campylobacter coli. J. Med. Microbiol. 2007, 56, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, E.M.; Buckling, A.; Cole, M.; Lindeque, P.K.; Murray, A.K. Culturing the Plastisphere: Comparing Methods to Isolate Culturable Bacteria Colonising Microplastics. Front. Microbiol. 2023, 14, 1259287. [Google Scholar] [CrossRef]
- Ko, E.; Bai, J. Effective Control of Antibiotic Resistance Using a Sonication-Based Combinational Treatment and Its Application to Fresh Food. Ultrason. Sonochem 2022, 90, 106198. [Google Scholar] [CrossRef]
- Hausner, M.; Wuertz, S. High Rates of Conjugation in Bacterial Biofilms as Determined by Quantitative In Situ Analysis. Appl. Environ. Microbiol. 1999, 65, 3710–3713. [Google Scholar] [CrossRef]
- Li, Y.-H.; Lau, P.C.Y.; Lee, J.H.; Ellen, R.P.; Cvitkovitch, D.G. Natural Genetic Transformation of Streptococcus Mutans Growing in Biofilms. J. Bacteriol. 2001, 183, 897–908. [Google Scholar] [CrossRef]
- Molin, S.; Tolker-Nielsen, T. Gene Transfer Occurs with Enhanced Efficiency in Biofilms and Induces Enhanced Stabilisation of the Biofilm Structure. Curr. Opin. Biotechnol. 2003, 14, 255–261. [Google Scholar] [CrossRef]
- Svensson, S.L.; Pryjma, M.; Gaynor, E.C. Flagella-Mediated Adhesion and Extracellular DNA Release Contribute to Biofilm Formation and Stress Tolerance of Campylobacter jejuni. PLoS ONE 2014, 9, e106063. [Google Scholar] [CrossRef]
- Bukari, Z.; Emmanuel, T.; Woodward, J.; Ferguson, R.; Ezughara, M.; Darga, N.; Lopes, B.S. The Global Challenge of Campylobacter: Antimicrobial Resistance and Emerging Intervention Strategies. TropicalMed 2025, 10, 25. [Google Scholar] [CrossRef]
- Alfredson, D.A.; Korolik, V. Isolation and Expression of a Novel Molecular Class D β-Lactamase, OXA-61, from Campylobacter jejuni. Antimicrob. Agents Chemother. 2005, 49, 2515–2518. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Michel, L.O.; Zhang, Q. CmeABC Functions as a Multidrug Efflux System in Campylobacter jejuni. Antimicrob. Agents Chemother. 2002, 46, 2124–2131. [Google Scholar] [CrossRef]
- Rivera-Mendoza, D.; Martínez-Flores, I.; Santamaría, R.I.; Lozano, L.; Bustamante, V.H.; Pérez-Morales, D. Genomic Analysis Reveals the Genetic Determinants Associated With Antibiotic Resistance in the Zoonotic Pathogen Campylobacter spp. Distributed Globally. Front. Microbiol. 2020, 11, 513070. [Google Scholar] [CrossRef]
- Wang, Y.; Taylor, D.E. Chloramphenicol Resistance in Campylobacter coli: Nucleotide Sequence, Expression, and Cloning Vector Construction. Gene 1990, 94, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Mehla, K.; Ramana, J. Molecular Dynamics Simulations of Quinolone Resistance-Associated T86I and P104S Mutations in Campylobacter jejuni gyrA: Unraveling Structural Repercussions. Microb. Drug Resist. 2018, 24, 232–243. [Google Scholar] [CrossRef]
- Wieczorek, K.; Osek, J. Antimicrobial Resistance Mechanisms among Campylobacter. BioMed Res. Int. 2013, 2013, 1–12. [Google Scholar] [CrossRef]
- Li, W.; Jiao, D.; Kang, J.; Yu, R.; Zhao, W.; Xu, C.; Li, R.; Du, X.-D.; Yao, H. Emergence of Lnu(C) Variant Conferring Lincomycin Resistance in Campylobacter coli of Chicken Origin. Int. J. Food Microbiol. 2023, 388, 110098. [Google Scholar] [CrossRef]
- Qin, S.; Wang, Y.; Zhang, Q.; Zhang, M.; Deng, F.; Shen, Z.; Wu, C.; Wang, S.; Zhang, J.; Shen, J. Report of Ribosomal RNA Methylase Gene Erm(B) in Multidrug-Resistant Campylobacter coli. J. Antimicrob. Chemother. 2014, 69, 964–968. [Google Scholar] [CrossRef]
- Corcoran, D.; Quinn, T.; Cotter, L.; Fanning, S. An Investigation of the Molecular Mechanisms Contributing to High-Level Erythromycin Resistance in Campylobacter. Int. J. Antimicrob. Agents 2006, 27, 40–45. [Google Scholar] [CrossRef]
- Ohno, H.; Wachino, J.; Saito, R.; Jin, W.; Yamada, K.; Kimura, K.; Arakawa, Y. A Highly Macrolide-Resistant Campylobacter jejuni Strain with Rare A2074T Mutations in 23S rRNA Genes. Antimicrob. Agents Chemother. 2016, 60, 2580–2581. [Google Scholar] [CrossRef]
- Guernier-Cambert, V.; Trachsel, J.; Maki, J.; Qi, J.; Sylte, M.J.; Hanafy, Z.; Kathariou, S.; Looft, T. Natural Horizontal Gene Transfer of Antimicrobial Resistance Genes in Campylobacter spp. From Turkeys and Swine. Front. Microbiol. 2021, 12, 732969. [Google Scholar] [CrossRef]
- Scheik, L.K.; Volcan Maia, D.S.; Würfel, S.D.F.R.; Ramires, T.; Kleinubing, N.R.; Haubert, L.; Lopes, G.V.; Da Silva, W.P. Biofilm-Forming Ability of Poultry Campylobacter jejuni Strains in the Presence and Absence of Pseudomonas Aeruginosa. Can. J. Microbiol. 2021, 67, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Teh, K.H.; Flint, S.; French, N. Biofilm Formation by Campylobacter jejuni in Controlled Mixed-Microbial Populations. Int. J. Food Microbiol. 2010, 143, 118–124. [Google Scholar] [CrossRef]
- Zhong, X.; Wu, Q.; Zhang, J.; Ma, Z.; Wang, J.; Nie, X.; Ding, Y.; Xue, L.; Chen, M.; Wu, S.; et al. Campylobacter jejuni Biofilm Formation Under Aerobic Conditions and Inhibition by ZnO Nanoparticles. Front. Microbiol. 2020, 11, 207. [Google Scholar] [CrossRef]
- Hanning, I.; Jarquin, R.; Slavik, M. Campylobacter jejuni as a Secondary Colonizer of Poultry Biofilms. J. Appl. Microbiol. 2008, 105, 1199–1208. [Google Scholar] [CrossRef]
- Ayush, P.T.; Ko, J.-H.; Oh, H.-S. Characteristics of Initial Attachment and Biofilm Formation of Pseudomonas Aeruginosa on Microplastic Surfaces. Appl. Sci. 2022, 12, 5245. [Google Scholar] [CrossRef]
- Ballesté, E.; Liang, H.; Migliorato, L.; Sala-Comorera, L.; Méndez, J.; Garcia-Aljaro, C. Exploring Plastic Biofilm Formation and Escherichia coli Colonisation in Marine Environments. Environ. Microbiol. Rep. 2024, 16, e13308. [Google Scholar] [CrossRef]
- Metcalf, R.; White, H.L.; Ormsby, M.J.; Oliver, D.M.; Quilliam, R.S. From Wastewater Discharge to the Beach: Survival of Human Pathogens Bound to Microplastics during Transfer through the Freshwater-Marine Continuum. Environ. Pollut. 2023, 319, 120955. [Google Scholar] [CrossRef]
- Hur, J.I.; Kim, J.; Kang, M.S.; Kim, H.J.; Ryu, S.; Jeon, B. Cold Tolerance in Campylobacter jejuni and Its Impact on Food Safety. Food Res. Int. 2024, 175, 113683. [Google Scholar] [CrossRef]
- Bai, Y.; Lin, X.-H.; Zhu, J.-H.; Cui, S.-H.; Guo, L.-X.; Yan, S.-F.; Wang, W.; Xu, J.; Li, F.-Q. Quantification of Cross-Contamination of Campylobacter jejuni during Food Preparation in a Model Kitchen in China. J. Food Prot. 2021, 84, 850–856. [Google Scholar] [CrossRef] [PubMed]
Sample | Country | Extraction Method | Quantification Method | MP Concentration | Identification Method 1 | MP Type 2 | Reference |
---|---|---|---|---|---|---|---|
Poultry | Mexico (home garden) | After flotation in demineralized water | Stereo microscope | 129.8 ± 82.3 particles/g chicken faeces | Not determined | NA | [40] |
Mexico (home garden) | After flotation in demineralized water | Stereo microscope | 10.2 ± 13.8 particles/g chicken gizzards | Not determined | NA | [40] | |
China | Lyophilization, followed by digestion with 30% H2O2 and iron catalyst solution prepared with 20 g iron (II) sulfate heptahydrate in 1 L ultrapure water | Not determined | Identified in chicken faeces | Raman | PA and PET | [43] | |
Indonesia | Digestion solution (10 N KOH) [44] | Stereo microscope | 27 to 49 particles/duck | Unknown | PE, PET, PVC, PBM, and PA | [45] | |
Commercial fish | Malaysia | Digestion solution (10% KOH) [44] | Stereo microscope | 0 to 10 particles/individual | µ-Raman | PE | [46] |
Portugal | Visual inspection, followed by digestion solution (10% KOH) | Stereo microscope | 1.67 ± 0.27 particles/individual | µ-FTIR | PES and PP | [47] | |
Commercial dried fish | Sri Lanka | Digestion solution (10% KOH) | Stereo microscope | 0.96 ± 0.17 particles/individual | µ-FTIR | PE, PS, and PVC | [48] |
Mussels | Vietnam (green mussels) | Digestion solution (10% KOH) and saturated NaI solution | Stereo microscope | 3.3 ± 2.4 particles/individual | ATR-FTIR | PA, PAA, PET, PS, PE, and PP | [49] |
Northern Tunisia (Mediterranean mussels) | Digestion solution (10% KOH) [50] | Stereo microscope | 2.6 ± 1.7 to 12.0 ± 1.4 particles/individual | ATR-FTIR | PE and PP | [51] | |
UK (blue mussel) | Digestion solution (30% H2O2) [52] | Stereo microscope | 1.1 to 6.4 particles/individual | µ-FTIR | PET and PES | [53] | |
Oysters (Crassostrea gigas) | Vietnam | Digestion solution (10% KOH and 30% H2O2) [50,54] | Unknown | 18.54 ± 10.08 particles/individual | µ-FTIR | PA, EVOH, PF, PTFE, and PEI | [55] |
USA | Digestion solution (30% H2O2) [56] | Stereo microscope | 0.69 to 3 particles/individual | µ-FTIR | PS, PE, PP, PC, and polyacrylate | [57] | |
Spain | Digestion solution (2 M KOH + 10% SDS), followed by enzymatic hydrolysis (protease, lipases, and celluloses), oxidation with 33–35% H2O2, peroxide oxidation (Fenton processes), and enzymatic hydrolysis with chitinase | Stereo microscope | 22.8 ± 14.4 particles/individual | ATR-FTIR and μFTIR | PE and PES | [58] | |
Carrots | Italy | Blended, dried, followed by digestion (65% nitric acid) | SEM | 101,950 ± 44,368 particles/g | Not determined | NA | [59] |
Lettuce | Italy | Blended, dried, followed by digestion (65% nitric acid) | SEM | 50,550 ± 25,011 particles/g | Not determined | NA | [59] |
Broccoli | Italy | Blended, dried, followed by digestion (65% nitric acid) | SEM | 126,150 ± 80,715 particles/g | Not determined | NA | [59] |
Apple | Italy | Blended, dried, followed by digestion (65% nitric acid) | SEM | 195,500 ± 128,687 particles/g | Not determined | NA | [59] |
Pear | Italy | Blended, dried, followed by digestion (65% nitric acid) | SEM | 189,550 ± 105,558 particles/g | Not determined | NA | [59] |
Industrial beer | Ecuador | Digestion solution (30% H2O2) | Inverted microscope (10x) | 47 particles/L | FTIR | PP, PE, and PAM | [60] |
USA | 11 µm membrane filtration | Stereo microscope | 4.05 particles/L (0 to 14.3 particles/L) | Not determined | NA | [61] | |
Bottled water | USA | 2.5 µm membrane filtration | Stereo microscope | 3.57 ± 1.79 particles/L (1.78 to 5.37 particles/L) | Not determined | NA | [61] |
Bottled water (PET) | Mexico | 1.5 µm glass fiber filtration | Fluorescence microscope | 686 particles/L (11 to 2267 particles/L) | FTIR | PP, PA, PS, PE, and PEST | [62] |
India | 1.5 µm glass fiber filtration | Fluorescence microscope | 213 particles/L (2 to 1810 particles/L) | FTIR | PP, PA, PS, PE, and PEST | [62] | |
Tap water | USA | 2.5 µm membrane filtration | Stereo microscope | 9.24 ± 11.8 particles/L (0 to 60.9 particles/L) | Not determined | NA | [61] |
Ecuador | 2.5 µm membrane filtration | Stereo microscope | 4.02 ± 3.20 particles/L (0 to 9.04 particles/L) | Not determined | NA | [61] | |
Germany | 2.5 µm membrane filtration | Stereo microscope | 0.91 ± 1.29 particles/L (0 to 1.82 particles/L) | Not determined | NA | [61] | |
Worldwide | 2.5 µm membrane filtration | Stereo microscope | 5.45 particles/L (0 to 60.9 particles/L) | Not determined | NA | [61] | |
Table sea salt | China | Digestion solution (30% H2O2) | Stereo microscope | 550 to 681 particles/kg | µ-FTIR | PET, PE, PES, PB, PP, and PAN | [63] |
Spain | 5 µm membrane filtration | Stereo microscope | 50–280 particles/kg | FTIR | PET, PP, and PE | [64] | |
Turkey | Digestion solution (30% H2O2), followed by 0.2 µm membrane filtration, and digestion with 4 M NaI solution | Stereo microscope | 16–84 particles/kg | µ-Raman | PE and PP | [65] |
Country | Sample Type | MP Detection Method | MP Quantification Method | Bacterial Detection Method | Class/Family/Genus/Strain | Abundance | Reference |
---|---|---|---|---|---|---|---|
USA | Wastewater effluents | 0.33–2 mm membrane filtration, followed by peroxide oxidation (0.05 M Fe (II) and 30% hydrogen peroxide) and a salinity-based density separation | Stereo microscope | 16S rRNA gene sequencing | Campylobacteraceae | 7.4% | [20] |
USA | Wastewater treatment plants (WWTPs) | 0.3 mm membrane filtration, followed by peroxide oxidation (0.05 M Fe (II) and 30% hydrogen peroxide) and a salinity-based density separation | Stereo microscope | 16S rRNA gene sequencing | Campylobacteraceae (94% assigned to Arcobacter) | ~11% sewage <1% effluent ~1% sludge | [21] |
Slovenia | Seawater in the northern Adriatic Sea | Digestion solution (10% KOH), followed by 20 μm membrane filtration | Stereo microscope | 16S rRNA gene sequencing | Campylobacter | >30% | [22] |
China | Seawater in four coastal sites of Hong Kong, namely the Ma Wan fish farm (FF), Ma Wan Beach (Beach), the Hong Kong University of Science and Technology Pier (Pier), and Yau Ma Tei typhoon shelter (TS) after 21 days incubation | Manually collected from nylon pouches where they had been deliberately placed | NA (10 MP pellets per nylon pouch) | 16S rRNA gene sequencing | Campylobacteria | FF: < 0.5% Beach: < 0.5% Pier: < 0.5% TS: 3.9% | [23] |
Belgium | 5 mm PET discs (in vitro) | Self-prepared | NA | Colony counting | C. jejuni NCTC 11168 | 5.4 to 6.5 log CFU/cm2 | [84] (in preparation) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega-Sanz, I.; Rajkovic, A. Microplastics-Assisted Campylobacter Persistence, Virulence, and Antimicrobial Resistance in the Food Chain: An Overview. Foods 2025, 14, 2432. https://doi.org/10.3390/foods14142432
Ortega-Sanz I, Rajkovic A. Microplastics-Assisted Campylobacter Persistence, Virulence, and Antimicrobial Resistance in the Food Chain: An Overview. Foods. 2025; 14(14):2432. https://doi.org/10.3390/foods14142432
Chicago/Turabian StyleOrtega-Sanz, Irene, and Andreja Rajkovic. 2025. "Microplastics-Assisted Campylobacter Persistence, Virulence, and Antimicrobial Resistance in the Food Chain: An Overview" Foods 14, no. 14: 2432. https://doi.org/10.3390/foods14142432
APA StyleOrtega-Sanz, I., & Rajkovic, A. (2025). Microplastics-Assisted Campylobacter Persistence, Virulence, and Antimicrobial Resistance in the Food Chain: An Overview. Foods, 14(14), 2432. https://doi.org/10.3390/foods14142432