Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (302)

Search Parameters:
Keywords = micro-mesoporous

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6549 KiB  
Article
Carbonation Deactivation of Limestone in a Micro-Fluidized Bed Reactor
by P. Asiedu-Boateng, N. Y. Asiedu, G. S. Patience, J. R. McDonough and V. Zivkovic
Catalysts 2025, 15(8), 697; https://doi.org/10.3390/catal15080697 - 22 Jul 2025
Viewed by 318
Abstract
Carbonation–calcination looping using CaO-based natural sorbents such as limestone is a promising technology for the capture of CO2 from fossil fuel-based power plants. In this study, the CO2 capture capacities of Buipe, Oterpkolu, and Nauli limestones from quarries in Ghana were [...] Read more.
Carbonation–calcination looping using CaO-based natural sorbents such as limestone is a promising technology for the capture of CO2 from fossil fuel-based power plants. In this study, the CO2 capture capacities of Buipe, Oterpkolu, and Nauli limestones from quarries in Ghana were measured in a laboratory-scale micro-fluidized bed reactor through multiple carbonation–calcination cycles. The changes in CO2 capture capacity and conversion with the number of cycles mostly correlated with the changes in the physico-chemical properties: Capture capacity dropped from >60% to <15% after 15 cycles and the surface area dropped to below 5 m2 g−1 from as much as 20 m2 g−1 (for the Oterkpolu). The pore volume of the Nauli limestone was essentially invariant with the number of cycles while it increased for the Buipe limestone, and initially increased and then dropped for the Oterpkolu limestone. This decrease was likely due to sintering and a reduction in the number of micropores. The unusual increase in pore volume after multiple cycles was due to the formation of mesopores with smaller pore diameters. Full article
(This article belongs to the Special Issue Fluidizable Catalysts for Novel Chemical Processes)
Show Figures

Figure 1

12 pages, 2721 KiB  
Article
Conjugated Polyaniline–Phytic Acid Polymer Derived 3D N, P-Doped Porous Carbon as a Metal-Free Electrocatalyst for Zn–Air Batteries
by Wanting Xiong, Yifan Kong, Jiangrong Xiao, Tingting Wang and Xiaoli Chen
Catalysts 2025, 15(7), 683; https://doi.org/10.3390/catal15070683 - 14 Jul 2025
Viewed by 383
Abstract
The development of cost-effective and scalable air/oxygen electrode materials is crucial for the advancement of Zn–air batteries (ZABs). Porous carbon materials doped with heteroatoms have attracted considerable attention in energy and environmental fields because of their tunable nanoporosity and high electrical conductivity. In [...] Read more.
The development of cost-effective and scalable air/oxygen electrode materials is crucial for the advancement of Zn–air batteries (ZABs). Porous carbon materials doped with heteroatoms have attracted considerable attention in energy and environmental fields because of their tunable nanoporosity and high electrical conductivity. In this work, we report the synthesis of a three-dimensional (3D) N and P co-doped porous carbon (PA@pDC-1000), derived from a conjugated polyaniline–phytic acid polymer. The cross-linked, rigid conjugated polymeric framework plays a crucial role in maintaining the integrity of micro- and mesoporous structures and promoting graphitization during carbonization. As a result, the material exhibits a hierarchical pore structure, a high specific surface area (1045 m2 g−1), and a large pore volume (1.02 cm3 g−1). The 3D N, P co-doped PA@pDC-1000 catalyst delivers a half-wave potential of 0.80 V (vs. RHE) and demonstrates a higher current density compared to commercial Pt/C. A primary ZAB utilizing this material achieves an open-circuit voltage of 1.51 V and a peak power density of 217 mW cm−2. This metal-free, self-templating presents a scalable route for the generating and producing of high-performance oxygen reduction reaction catalysts for ZABs. Full article
(This article belongs to the Special Issue Electrocatalysis and Photocatalysis in Redox Flow Batteries)
Show Figures

Figure 1

12 pages, 3142 KiB  
Article
The Influence of Drying Time, Application Mode, and Agitation on the Dentin Bond Strength of a Novel Mesoporous Bioactive Glass-Containing Universal Dentin Adhesive
by Jiyoung Kwon, Jungwon Kim, Dongseok Choi and Duck-Su Kim
J. Funct. Biomater. 2025, 16(7), 247; https://doi.org/10.3390/jfb16070247 - 5 Jul 2025
Viewed by 544
Abstract
This study evaluated the influence of drying time, application mode, and agitation on the micro-tensile bond strength (μTBS) of a novel mesoporous bioactive glass-containing universal adhesive (Hi-Bond Universal). Twelve experimental groups were established according to drying time (blot-dry, 10 s dry, or 20 [...] Read more.
This study evaluated the influence of drying time, application mode, and agitation on the micro-tensile bond strength (μTBS) of a novel mesoporous bioactive glass-containing universal adhesive (Hi-Bond Universal). Twelve experimental groups were established according to drying time (blot-dry, 10 s dry, or 20 s dry), application mode (total-etch or self-etch), and agitation (with or without). The μTBS test and failure mode analysis were performed for each experimental group (n = 20), and an adhesive interface was observed using field-emission scanning electron microscopy. The μTBS of all experimental groups was analyzed using a three-way ANOVA and Tukey’s honestly significant difference (HSD) post hoc test (α = 0.05). The total-etch mode yielded higher μTBS than the self-etch mode in the blot-dry and 10 s dry groups (p < 0.05). Agitation also significantly increased the μTBS in the blot-dry and 10 s dry groups for both application modes (p < 0.05). However, application mode and agitation had no effect on the μTBS in the 20 s dry group (p > 0.05). FE-SEM revealed longer and more uniform resin tags after agitation in the blot-dry and 10 s dry groups for both application modes. In conclusion, total-etch mode and agitation effectively increased the bond strength of mesoporous bioactive glass-containing universal adhesives. Full article
(This article belongs to the Special Issue Recent Advancements in Dental Restorative Materials)
Show Figures

Figure 1

27 pages, 6141 KiB  
Article
Pore-Throat Structure, Fractal Characteristics, and Main Controlling Factors in Extremely Low-Permeability Sandstone Reservoirs: The Case of Chang 3 Section in Huachi Area, Ordos Basin
by Huanmeng Zhang, Chenyang Wang, Jinkuo Sui, Yujuan Lv, Ling Guo and Zhiyu Wu
Fractal Fract. 2025, 9(7), 439; https://doi.org/10.3390/fractalfract9070439 - 3 Jul 2025
Viewed by 345
Abstract
The pore-throat structure of the extremely low-permeability sandstone reservoir in the Huachi area of the Ordos Basin is complex and highly heterogeneous. Currently, there are issues such as unclear understanding of the micro-pore-throat structural characteristics, primary controlling factors of reservoir quality, and classification [...] Read more.
The pore-throat structure of the extremely low-permeability sandstone reservoir in the Huachi area of the Ordos Basin is complex and highly heterogeneous. Currently, there are issues such as unclear understanding of the micro-pore-throat structural characteristics, primary controlling factors of reservoir quality, and classification boundaries of the reservoir in the study area, which seriously restricts the exploration and development effectiveness of the reservoir in this region. It is necessary to use a combination of various analytical techniques to comprehensively characterize the pore-throat structure and establish reservoir classification evaluation standards in order to better understand the reservoir. This study employs a suite of analytical and testing techniques, including cast thin sections (CTS), scanning electron microscopy (SEM), cathodoluminescence (CL), X-ray diffraction (XRD), as well as high-pressure mercury injection (HPMI) and constant-rate mercury injection (CRMI), and applies fractal theory for analysis. The research findings indicate that the extremely low-permeability sandstone reservoir of the Chang 3 section primarily consists of arkose and a minor amount of lithic arkose. The types of pore-throat are diverse, with intergranular pores, feldspar dissolution pores, and clay interstitial pores and microcracks being the most prevalent. The throat types are predominantly sheet-type, followed by pore shrinkage-type and tubular throats. The pore-throat network of low-permeability sandstone is primarily composed of nanopores (pore-throat radius r < 0.01 μm), micropores (0.01 < r < 0.1 μm), mesopores (0.1 < r < 1.0 μm), and macropores (r > 1.0 μm). The complexity of the reservoir pore-throat structure was quantitatively characterized by fractal theory. Nanopores do not exhibit ideal fractal characteristics. By splicing high-pressure mercury injection and constant-rate mercury injection at a pore-throat radius of 0.12 μm, a more detailed characterization of the full pore-throat size distribution can be achieved. The average fractal dimensions for micropores (Dh2), mesopores (Dc3), and macropores (Dc4) are 2.43, 2.75, and 2.95, respectively. This indicates that the larger the pore-throat size, the rougher the surface, and the more complex the structure. The degree of development and surface roughness of large pores significantly influence the heterogeneity and permeability of the reservoir in the study area. Dh2, Dc3, and Dc4 are primarily controlled by a combination of pore-throat structural parameters, sedimentary processes, and diagenetic processes. Underwater diversion channels and dissolution are key factors in the formation of effective storage space. Based on sedimentary processes, reservoir space types, pore-throat structural parameters, and the characteristics of mercury injection curves, the study area is divided into three categories. This classification provides a theoretical basis for predicting sweet spots in oil and gas exploration within the study area. Full article
Show Figures

Figure 1

17 pages, 4654 KiB  
Article
Pore Structure and Fractal Characteristics of the Permian Shales in Northeastern Sichuan Basin, China
by Guanping Wang, Qian Zhang, Baojian Shen, Pengwei Wang, Wei Du, Lu Wang, Min Li and Chengxiang Wan
Minerals 2025, 15(7), 684; https://doi.org/10.3390/min15070684 - 27 Jun 2025
Viewed by 317
Abstract
The complexity of the pore system hindered our understanding of the storage and transport properties of organic-rich shales, which in turn brought challenges to the efficient exploration and development of shale oil and gas. This study, based on elemental, mineralogical, petrographic, and petrophysical [...] Read more.
The complexity of the pore system hindered our understanding of the storage and transport properties of organic-rich shales, which in turn brought challenges to the efficient exploration and development of shale oil and gas. This study, based on elemental, mineralogical, petrographic, and petrophysical approaches, attempts to reveal the pore structure and fractal characteristics of a suite of Permian shales collected from the northeastern Sichuan Basin, China. The results showed that meso-pores make up the main proportion of the total pore volume in the Permian shale in this study; most of the pore size distribution patterns for micro pores and meso-macropores are bimodal. Pores related to clay minerals, organic matter pores, and intragranular dissolution pores are the main storage spaces in these shales. In these samples, ink-bottle pores dominate, with some slit and wedge-shaped ones developed. The morphology of the pores in the studied shales is mainly ink-bottle pores, with some slit-shaped and wedge-shaped pores. The fractal dimension D2 is greater than D1, indicating that the homogeneity of pore space is stronger than that of the specific surface area. Quartz in Permian shales inhibits the development of macro- and mesopore spaces and enhances pore heterogeneity, while clay minerals facilitate the development of macro- and mesopore spaces and attenuate pore heterogeneity. The organic matter content shows a negative impact on the macropore volume due to the stripped occurrence and matrix filling. This study has a vital significance for current exploration and development of shale gas in Permian strata in the Sichuan Basin and offers insights for Permian shales in other basins all over the world. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Graphical abstract

23 pages, 4126 KiB  
Article
Enhanced Hydrothermal Stability and Propylene Selectivity of Electron Beam Irradiation-Induced Hierarchical Fluid Catalytic Cracking Additives
by Nguyen Xuan Phuong Vo, Thuy Phuong Ngo, Van Tri Tran, Ngoc Thuy Luong, Phuc Nguyen Le and Van Chung Cao
Catalysts 2025, 15(7), 620; https://doi.org/10.3390/catal15070620 - 24 Jun 2025
Viewed by 1631
Abstract
A cheap, environmentally friendly, easily scalable post-treatment of Na-ZSM-5 (Si/Al molar ratio = 20 or 30) via electron-beam irradiation to produce hierarchical H-ZSM-5 as a propylene-increasing fluid catalytic cracking additive was performed. Higher specific surface areas and highly accessible porous systems were obtained [...] Read more.
A cheap, environmentally friendly, easily scalable post-treatment of Na-ZSM-5 (Si/Al molar ratio = 20 or 30) via electron-beam irradiation to produce hierarchical H-ZSM-5 as a propylene-increasing fluid catalytic cracking additive was performed. Higher specific surface areas and highly accessible porous systems were obtained among the irradiated samples. A combination of 27Al, 1H magic angle spinning nuclear magnetic resonance and NH3-temperature-programmed desorption methods showed that upon irradiation, some of the framework’s tetrahedral Al atoms were removed as non-framework Al atoms via flexible coordination with Si-OH groups (either framework or non-framework defects), thus increasing the H-ZSM-5 acidity and stability during hydrothermal dealumination. The enhanced selectivity and stability toward propylene production over the irradiated H-ZSM-5 samples were attributed to the integration of the reserved population of medium acid sites into the highly accessible hierarchical network. N2 adsorption–desorption isotherm data showed that the Si-rich H-ZSM-5 samples possessed an obvious ink-bottle-shaped micro-mesopore network and a greater degree of disordered orientation of the straight pore systems toward the exterior surfaces. Micro-activity test data suggested that with an increasing Si/Al ratio, the H-ZSM-5 additives lost some extent of their cracking activity due to the constricted hierarchical pore network toward the exterior surface but gained more stability and selectivity for propylene due to the reserved medium acid sites. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Graphical abstract

14 pages, 1297 KiB  
Article
Insights into Ball Milling for the Production of Highly Active Zeolites for Catalytic Cracking of VGO
by Petr Kuznetsov, Vladislav Malyavin and Konstantin Dement’ev
Catalysts 2025, 15(6), 596; https://doi.org/10.3390/catal15060596 - 16 Jun 2025
Viewed by 480
Abstract
This research systematically investigates the influence of high-energy ball-milling (BM) parameters on the acidic and textural properties of zeolite Y. Among the BM parameters, the milling time (MT) exerted a more significant influence on the zeolite degradation than milling speed (MS), primarily affecting [...] Read more.
This research systematically investigates the influence of high-energy ball-milling (BM) parameters on the acidic and textural properties of zeolite Y. Among the BM parameters, the milling time (MT) exerted a more significant influence on the zeolite degradation than milling speed (MS), primarily affecting particle size and crystallinity. Milling produced nanozeolites with particle sizes ranging from 210 to 430 nm, and their activity was tested in the catalytic cracking of vacuum gas oil (VGO). The highest catalytic activity was observed for the zeolite with a particle size of 397 nm and a crystallinity of 75.9%: the VGO conversion was 69.0%, and the gasoline fraction yield was 33.9%, compared to the parent zeolite’s 62.7% and 22.1%, respectively. It was found that the activity of milled zeolites in catalytic cracking is determined by the accessibility of acid sites, which can be controlled by forming an optimal micro-mesoporous structure. Full article
(This article belongs to the Collection Nanotechnology in Catalysis)
Show Figures

Graphical abstract

21 pages, 4061 KiB  
Article
Pore Engineering in Carbon Monoliths Through Soft Templating, In Situ Grown Graphene, and Post-Activation for CO2 Capture, H2 Storage, and Electrochemical Capacitor
by Madhav P. Chavhan, Moomen Marzouki, Mouna Jaouadi, Ouassim Ghodbane, Gabriela Zelenková, Miroslav Almasi, Monika Maříková, Petr Bezdicka, Jakub Tolasz and Natalija Murafa
Nanomaterials 2025, 15(12), 900; https://doi.org/10.3390/nano15120900 - 10 Jun 2025
Viewed by 520
Abstract
Controlled porosity with precise pore sizes in carbon monoliths (CMs) is crucial for optimizing performance in electrochemical energy storage and adsorption applications. This study explores the influence of porosity in CMs, developed from polymer precursors via the sol–gel route, employing soft templating, in [...] Read more.
Controlled porosity with precise pore sizes in carbon monoliths (CMs) is crucial for optimizing performance in electrochemical energy storage and adsorption applications. This study explores the influence of porosity in CMs, developed from polymer precursors via the sol–gel route, employing soft templating, in situ graphene growth, and post-activation. The effects on CO2 and H2 sorption and electrochemical capacitor (EC) performance are analyzed. Graphene is successfully grown in situ from graphene oxide (GO), as confirmed by several characterization analyses. The amount of GO incorporated influences the crosslink density of the polymer gel, generating various pore structures at both micro- and mesoscales, which impacts performance. For instance, CO2 capture peaks at 5.01 mmol g−1 (0 °C, 101 kPa) with 10 wt % GO, due to the presence of wider micropores that allow access to ultramicropores. For H2 storage, the best performance is achieved with 5 wt % GO, reaching 12.8 mmol g−1 (−196 °C, 101 kPa); this is attributed to the enlarged micropore volumes between 0.75 and 2 nm that are accessible by mesopores of 2 to 3 nm. In contrast, for the ECs, lower GO loadings (0.5 to 2 wt %) improve ion accessibility via mesopores (4 to 6 nm), enhancing rate capability through better conduction. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

23 pages, 5181 KiB  
Article
Fractal Characterization and NMR Analysis of Curing-Dependent Pore Structures in Cemented Tailings Waste RockBackfill
by Jianhui Qiu, Xin Xiong and Keping Zhou
Fractal Fract. 2025, 9(6), 367; https://doi.org/10.3390/fractalfract9060367 - 4 Jun 2025
Cited by 1 | Viewed by 537
Abstract
This study investigates the coupled effects of waste rock-to-tailings ratio (WTR) and curing temperature on the pore structure and mechanical performance of cemented tailings waste rock backfill (CTRB). Four WTRs (6:4, 7:3, 8:2, 9:1) and curing temperatures (20–50 °C) were tested. Low-field nuclear [...] Read more.
This study investigates the coupled effects of waste rock-to-tailings ratio (WTR) and curing temperature on the pore structure and mechanical performance of cemented tailings waste rock backfill (CTRB). Four WTRs (6:4, 7:3, 8:2, 9:1) and curing temperatures (20–50 °C) were tested. Low-field nuclear magnetic resonance (NMR) was used to characterize pore size distributions and derive fractal dimensions (Da, Db, Dc) at micropore, mesopore, and macropore scales. Uniaxial compressive strength (UCS) and elastic modulus (E) were also measured. The results reveal that (1) the micropore structure complexity was found to be a key indicator of structural refinement, while excessive temperature led to pore coarsening and strength reduction. Da = 2.01 reaches its peak at WTR = 7:3 and curing temperature = 40 °C; (2) at this condition, the UCS and E achieved 20.5 MPa and 1260 MPa, increasing by 45% and 38% over the baseline (WTR = 6:4, 20 °C); (3) when the temperature exceeded 40 °C, Da dropped significantly (e.g., to 1.51 at 50 °C for WTR = 7:3), indicating thermal over-curing and micropore coarsening; (4) correlation analysis showed strong negative relationships between total pore volume and mechanical strength (R = −0.87 for δavs.UCS), and a positive correlation between Da and UCS (R = 0.43). (5) multivariate regression models incorporating pore volume fractions, T2 relaxation times, and fractal dimensions predicted UCS and E with R2 > 0.98; (6) the hierarchical sensitivity of fractal dimensions follows the order micro-, meso-, macropores. This study provides new insights into the microstructure–mechanical performance relationship in CTRB and offers a theoretical and practical basis for the design of high-performance backfill materials in deep mining environments. Full article
Show Figures

Figure 1

15 pages, 3599 KiB  
Article
Electrochemically Engineered Mesoporous Sn-Oxide Rods for Anode Materials in Lithium-Ion Batteries
by Woo-Jin Lee, Yu-Jeong Min and Heon-Cheol Shin
Appl. Sci. 2025, 15(11), 6026; https://doi.org/10.3390/app15116026 - 27 May 2025
Viewed by 455
Abstract
Sn-based anodes for lithium-ion batteries (LIBs) offer high capacity and low cost; however, significant volume changes during lithiation/delithiation cause mechanical degradation, limiting their practical applications. Microstructural control is a key approach to mitigating these volume changes. This study reports the fabrication of core [...] Read more.
Sn-based anodes for lithium-ion batteries (LIBs) offer high capacity and low cost; however, significant volume changes during lithiation/delithiation cause mechanical degradation, limiting their practical applications. Microstructural control is a key approach to mitigating these volume changes. This study reports the fabrication of core (Sn rod)-shell (mesoporous Sn-oxide layer) structures through electrodeposition followed by anodization, and their applications to anode active materials for LIBs. First, micro-Sn rods with controlled lengths and diameters were fabricated under various electrodeposition conditions. The electrodeposited Sn exhibited a dendritic structure with short secondary rods branching from a long primary rod. While the primary Sn rod diameters remained constant, the secondary rod diameters varied depending on electrodeposition parameters. Notably, rod coarsening due to secondary rod agglomeration occurred at higher currents and longer deposition durations during galvanostatic electrodeposition. In contrast, potentiostatic electrodeposition prevented agglomeration and increased the quantity of Sn rods with voltage. Subsequently, the core-shell structures were fabricated by anodizing Sn rods, forming mesoporous Sn-oxide layers with different pore sizes and pore wall thicknesses. Electrochemical characterization revealed that the core-shell anode performance for LIBs varied with the Sn-oxide shell’s microstructure. These findings provide insights into optimal core-shell structures to improve anode performance for LIBs. Full article
Show Figures

Figure 1

18 pages, 6196 KiB  
Article
Heterogeneity and Controlling Factors of Pore and Fracture Structure Collected from Coal Seam 10 in Xinjiang
by Benfeng Fan, Minghu Chai, Yunbing Hu, Xiao Liu, Zhengyuan Qin, Zhengguang Zhang and Yuqiang Guo
Processes 2025, 13(5), 1571; https://doi.org/10.3390/pr13051571 - 19 May 2025
Viewed by 343
Abstract
Heterogeneity of pore and fracture structures has become an important factor affecting the migration of methane and water in coal reservoirs. However, controlling factors of pore and fracture structure collected from coal seam 10 in Taliqike Formation, Kubai Coalfield, Xinjiang need to be [...] Read more.
Heterogeneity of pore and fracture structures has become an important factor affecting the migration of methane and water in coal reservoirs. However, controlling factors of pore and fracture structure collected from coal seam 10 in Taliqike Formation, Kubai Coalfield, Xinjiang need to be studied. In this paper, carbon dioxide adsorption, cryogenic liquid nitrogen, and high-pressure mercury intrusion, as well as coal microscopic components, were used to study pore volumes and characterize pore diameter distribution heterogeneity. By the theory of single weight and multiple fractal formations, the heterogeneity of the pore fracture structure of coal reservoir is expressed, and the influencing factors of the heterogeneity of the pore fracture structure and the pore volume are also discussed. The results are as follows. (1) Micro-pore distribution presents a distinct bidirectional state, with the main peak at approximately 0.6 nm and 0.85 nm. Ro,max has an obvious influence on micro-pore volume. The single-fractal dimension of micro-pore is not affected by a micro-pore volume but is influenced by other factors such as Ro,max and microscopic composition. The heterogeneity of the low-value area controls the heterogeneity of micro-pore diameter distribution. (2) For lower Ro,max samples, mesopores of these samples are ink bottle-shaped pores, and the pore connectivity is poor. In contrast, meso-pore of higher thermal evolution coal samples are mostly simple pores, such as parallel plates. The main mesopores are 10–100 nm pores, accounting for 75% of the total meso-pore volume. For the single fractal dimension, D1 is greater than D2, which also shows that the heterogeneity of a pore structure greater than 4 nm is much stronger than that of a pore structure less than 4 nm in these samples. (3) For lower Ro,max samples, double S-shaped curves with distinct hysteresis loop are obtained, while samples of higher Ro,max samples show parallel curves, suggesting that macro-pore of this type of sample develops parallel plate-like pore. There is a positive relationship between D−10–D0 and D−10–D10, while D0–D10 and D−10–D0 have a weak correlation. With the increase of 2–10 nm pore volume, pore distribution heterogeneity of lower value area (D−10–D0) weakens. This indicates that pore volume is an important factor affecting the multifractal variation. Full article
Show Figures

Figure 1

23 pages, 8658 KiB  
Article
Characterization of Pore Heterogeneity in Lacustrine Shale Based on MIP, LTNA, NMR, and Multifractal Characteristics: A Case Study of the Jurassic Dongyuemiao Member, China
by Xu Wu, Yifan Gu, Yuqiang Jiang, Zhanlei Wang and Yonghong Fu
Fractal Fract. 2025, 9(4), 265; https://doi.org/10.3390/fractalfract9040265 - 21 Apr 2025
Viewed by 479
Abstract
Pore structure plays a critical role in evaluating shale “sweet spots”. Compared to marine shale, lacustrine shale has more diverse lithofacies types and greater heterogeneity in pore structure due to frequently changing environmental conditions. Using methods such as mercury intrusion porosimetry (MIP), field [...] Read more.
Pore structure plays a critical role in evaluating shale “sweet spots”. Compared to marine shale, lacustrine shale has more diverse lithofacies types and greater heterogeneity in pore structure due to frequently changing environmental conditions. Using methods such as mercury intrusion porosimetry (MIP), field emission scanning electron microscopy (FE-SEM), nuclear magnetic resonance (NMR), and X-ray diffraction (XRD), this study investigates the micropore structures and heterogeneity of different lithofacies in the Jurassic Dongyuemiao Member lacustrine shale. Image processing and multifractal theory were employed to identify the controlling factors of pore structure heterogeneity. The key findings are as follows. (1) Based on mineral content and laminae types, the lithofacies types of Dongyuemiao lacustrine shale are classified into four types: shell–laminae mixed shale (SLMS), silty–laminae clay shale (SLCS), clast–laminae clay shale (CLCS), and clay shale (CS). (2) Based on genesis, shale reservoirs’ pore and permeability space are categorized into inorganic pores, organic pores, and micro-fractures. Inorganic pores consist of inter-particle pores and intra-particle pores. Pore size distribution curves for all four lithofacies exhibit two main peaks, with pore sizes concentrated in the ranges of 2–10 nm and 50–80 nm. Mesopores and macropores dominate, accounting for over 80% of the total pore volume. Mesopores are most developed in CLCS, representing 56.3%. (3) Quartz content is positively correlated with the multifractal dimension, while clay content shows a negative correlation. Higher quartz content, coupled with lower clay content, weakens pore structure heterogeneity. A negative correlation exists between total organic carbon (TOC) and the multifractal dimension, indicating that higher organic matter content enhances organic pore development and increases microscopic heterogeneity. (4) Porosity heterogeneity in SLMS is effectively characterized by D0-Dmax, while in the other three lithofacies, it is characterized by Dmin-D0. Permeability across all lithofacies correlates with D0-Dmax. In CS, SLMS, and SLCS, permeability is positively correlated with D0-Dmax, with higher values indicating greater permeability heterogeneity. In CLCS, permeability is negatively correlated with D0-Dmax, such that lower values reflect stronger heterogeneity. Full article
Show Figures

Figure 1

32 pages, 11378 KiB  
Article
Preparation and Characterization of Char Carbon Obtained by Carbonization of Unused Cigarette Filter Rods: The Product Application Assessment
by Bojan Janković, Dejan Cvetinović, Milena Milošević, Filip Veljković, Vladimir Rajić, Marija Janković and Vladimir Dodevski
Materials 2025, 18(7), 1661; https://doi.org/10.3390/ma18071661 - 4 Apr 2025
Viewed by 733
Abstract
The development of carbonaceous materials such as biochar has triggered a hot spot in materials application. In this study, a new type of char carbon was developed from raw cigarette filter rods (CFRs) via a carbonization process under moderate conditions (T = [...] Read more.
The development of carbonaceous materials such as biochar has triggered a hot spot in materials application. In this study, a new type of char carbon was developed from raw cigarette filter rods (CFRs) via a carbonization process under moderate conditions (T = 550 °C; tres = 1 h) (CFR char carbon). The produced char was characterized by ATR-FTIR (Attenuated total reflectance—Fourier-transform infrared) spectroscopy, XRD (X-ray diffraction) analysis, GC-MS (Gas Chromatography–Mass Spectrometry), FESEM-EDS (Field-Emission Scanning Electron Microscopy—Energy-dispersive X-ray spectroscopy) technique, XPS (X-ray photoelectron spectroscopy), and N2 adsorption/desorption (BET) measurements. The obtained carbon material is rich in oxygen-containing functional groups (i.e., C=O, C–O, –C(=O)–CH3, C–O–C, C–OH, and O=C–O, with chemisorbed oxygen), containing significant amounts of calcium (that originates from CaCO3) and silicon (Si), generated by reduction of SiO2. It was found that the formation of char(C)/n-alkane composite material makes that CFR char have a high compressive strength improvement. Moderate carbonization has contributed to the creation of such material that has a fairly high specific surface area (320.93 m2/g), exhibiting a complex hierarchical structure that was characterized by composite Type I/IV(a) isotherm, associated with micro-/mesoporous carbon material. In addition, more directional extensions of this research for future work were proposed, including the implementation of electrochemical research. Full article
Show Figures

Figure 1

19 pages, 2869 KiB  
Article
Low-Cost Chestnut-Based Biocarbons Physically Activated via CO2 or Steam: Evaluation of the Structural and Adsorption Properties
by Barbara Charmas, Barbara Wawrzaszek, Katarzyna Jedynak and Agata Jawtoszuk
Materials 2025, 18(7), 1497; https://doi.org/10.3390/ma18071497 - 27 Mar 2025
Cited by 1 | Viewed by 510
Abstract
The aim of this paper was to obtain activated biocarbons from the natural biomass of horse chestnut seeds (Aesculus hippocastanum) by physical activation with two different activating agents, carbon dioxide and water vapor, and to evaluate their structural and adsorption properties. [...] Read more.
The aim of this paper was to obtain activated biocarbons from the natural biomass of horse chestnut seeds (Aesculus hippocastanum) by physical activation with two different activating agents, carbon dioxide and water vapor, and to evaluate their structural and adsorption properties. The effect of the pyrolysis atmosphere on the surface development and porosity as well as the structure and adsorption properties of the materials in relation to the selected organic adsorbates (tetracycline (TC), naproxen (NPX), and methyl orange (MO)), which may constitute a potential contamination of the aquatic environment, was evaluated. Activated biocarbons were characterized using N2 low-temperature adsorption/desorption, Raman and FT-IR spectroscopy, and thermogravimetric analysis (TGA). The nature of the surface (pHpzc and Boehm titration) was also studied. Micro/mesoporous biocarbons were obtained with an SBET area in the range of ~534 to 646 m2/g, in which micropores constituted ~70%. It was proved that the obtained materials are characterized by high adsorption values (~120 mg/g, ~150 mg/g, and ~252 mg/g) and removal rates %R (~80%, ~95%, and ~75%) for TC, NPX, and MO, respectively. The results indicate that chestnut-derived activated biocarbons are a promising, cost-effective and environmentally friendly alternative for removing organic contaminants from aqueous solutions. Future research should focus on optimizing activation parameters and assessing the long-term performance of adsorbents. Full article
Show Figures

Graphical abstract

22 pages, 9718 KiB  
Article
Adsorption Performance and Mechanism of Waste Myriophyllum aquaticum Biochar for Malachite Green in Wastewater: Batch and Column Studies
by Xin Zhang, Xiaoping Zhang and Wei Xu
Sustainability 2025, 17(7), 2868; https://doi.org/10.3390/su17072868 - 24 Mar 2025
Viewed by 654
Abstract
The indiscriminate discharge of common dyes, such as malachite green (MG), poses significant risks to water quality and human health. To address this issue, a biochar (MBC) was synthesized from waste Myriophyllum aquaticum biomass (MAB) and further activated with KOH to produce micro-mesoporous [...] Read more.
The indiscriminate discharge of common dyes, such as malachite green (MG), poses significant risks to water quality and human health. To address this issue, a biochar (MBC) was synthesized from waste Myriophyllum aquaticum biomass (MAB) and further activated with KOH to produce micro-mesoporous biochar (KMBC) with enhanced adsorption efficiency. Characterization results demonstrated that KMBC exhibits a higher specific surface area (1632.7 m2/g) and a larger pore volume (0.759 cm3/g) compared to MBC. Batch adsorption experiments revealed that the adsorption process follows pseudo-second-order kinetics and the Langmuir isotherm model, with the theoretical maximum adsorption capacities of MBC and KMBC reaching 1772.3 mg/g and 2570.7 mg/g, respectively and the adsorption is a spontaneous, endothermic, and entropy-driven process. Key mechanisms involved in the adsorption process include hydrogen bonding, hydrophobic interactions, and surface complexation. Due to electrostatic attraction, selective adsorption experiments confirmed that MBC can effectively separate cationic dyes such as MG from mixed anionic-cationic systems. Dynamic experiments showed that the breakthrough curve data fit well with the Thomas model. In summary, MAB-derived biochar demonstrates significant potential for practical applications in the treatment of MG-contaminated wastewater. Full article
Show Figures

Figure 1

Back to TopTop