Preparation and Characterization of Char Carbon Obtained by Carbonization of Unused Cigarette Filter Rods: The Product Application Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Precursor (Feeding) Material
2.2. Preparation of Raw Material for Experimental Testing and Feedstock Characterization by the Proximate and Ultimate Analysis
2.3. Carbonization Process
2.4. Instrumental Techniques for the Physicochemical Characterization of Synthesized Char Carbon from CFRs
2.4.1. FTIR Analysis
2.4.2. XRD Analysis
2.4.3. GC-MS Analysis
2.4.4. SEM-EDS Analyses
2.4.5. XPS Analysis
2.4.6. BET Analysis
3. Results and Discussion
3.1. FTIR Results of CFR Char Carbon
3.2. XRD Results of CFR Char Carbon
3.3. GC-MS Analysis of CFR Char Carbon
3.4. SEM-EDS: Morphology and Qualitative Elemental Analysis of CFR Char Carbon
3.5. XPS Analysis of CFR Char Carbon
3.6. Surface Area and Porosity Analysis of CFR Char Carbon
3.7. Assessment of Possible Application of CFR Char Carbon
4. Conclusions
- -
- Moderate carbonization process conditions, predominantly a temperature of 550 °C and slow heating, lead to a higher yield of CFR char carbon, ranging between 17.9% and 18.6% (more than the yield of the char, derived from the biomass, ~12%).
- -
- CFR char carbon is rich in oxygen functional groups, such as C=O, C–O, –C(=O)–CH3, C–O–C, C–OH, and O=C–O, with the existence of chemisorbed oxygen.
- -
- The carbonized sample has the properties of typical porous carbon, where the graphitization stage is weakened. The sample is characterized by a well-formed aromatic structure. The presence of the graphene oxide (GO) pattern confirmed the expansion of interlayer spacing due to the introduction of oxygen functionalities. It was established that the diverse presence of oxygen-containing functional groups in CFR char carbon can have a significant effect on its structure and physicochemical properties, which could be used for practical applications.
- -
- It was found that the obtained carbon material reaches the expansion of the interlayer spacing of 1.40 nm, which indicated that the product has a high-quality pore morphology with the possibility of pore replication.
- -
- It was determined that the produced carbon has a fairly high content of mineral inorganic components, mostly alkaline earth metal such as calcium (Ca), that originates from the calcite (CaCO3—acts as the filler to increase the strength properties of the filter paper), then the silicon (Si), which is obtained by reducing SiO2 (where reducing agent represents CFR char carbon). The formed carbon (C) in the char product, due to the effects of elevated temperature, becomes a pertinent reactant in the process of silicon reduction to its pure form. In addition, the existence of TiO2 (titanium dioxide) in the carbonized sample was identified. TiO2 represents the stable phase (it was used as the filler and as a whitening agent in the cigarette filter) that plays a role as the catalyst material in CFR char carbon.
- -
- Additional analysis of the chemical composition of CFR char carbon showed an abundance of long-chain hydrocarbons, and three different n-alkanes, such as dodecane, tetradecane, and octadecane, are of particular importance, acting as the phase change material (PCM) support. In the current study, it was assumed that due to the applied process conditions that form a given carbon material, PCMs infiltrated into the CFR char carbon network, forming a char(C)/n-alkane composite material, further strengthening it in terms of its stability (regarding thermal stability and chemical compatibility, together with high compressive strength improvement).
- -
- The CFR-derived char carbon exhibits a very well-developed pore structure, where the higher hierarchical order morphology has been achieved. This structure yielded the main elements content in the following order: C (62.649%), O (28.660%), Ca (5.955%), and Si (0.969%). It was concluded that the presence of calcium (Ca—from the calcite) and metalloid (silicon—Si) particles in the char may reduce the pore size and specific surface area, which was established using porosity analyses.
- -
- The obtained carbon material (CFR char carbon) showed a fairly large specific surface area (=320.93 m2/g), exhibiting a complex hierarchical structure which is characterized by the composite Type I/IV(a) isotherm attached to the micro-/mesoporous material.
- -
- In comparison with similar starting (feeding) material for the synthesis of char carbon (cigarette butt (CB)-derived carbon was taken as an example), it was shown that the carbonization temperature as well as the heating rate and the type of the feedstock, have a key role for the production of carbon material with mesoporous properties (CBs-derived char) and carbon material with the complex hierarchical pores structure, including both, micropores and mesopores (CFR-derived char).
- -
- It was concluded that additional electrochemical tests should be performed on the produced CFR char carbon and/or its activated successor to confirm the guidelines for its use in electrochemical energy storage applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CA | Cellulose acetate |
CBs | Cigarette butts |
FRs | Filter rods |
CFRs | Cigarette filter rods |
CFR char carbon | Cigarette filter rod char carbon |
M | Moisture |
VM | Volatile matter |
FC | Fixed carbon |
ATR-FTIR | Attenuated total reflectance—Fourier-transform infrared spectroscopy |
XRD | X-ray diffraction |
XRPD | X-ray powder diffraction |
GC-MS | Gas Chromatography–Mass Spectrometry |
SEM-EDS | Scanning electron microscopy and Energy-Dispersive X-ray spectroscopy |
XPS | X-ray photoelectron spectroscopy |
FESEM | Field-emission scanning electron microscope |
EDS | Energy-dispersive X-ray spectroscopy |
BSEI | The backscattered electron imaging |
BET | Brunauer–Emmett–Teller |
BJH | Barrett–Joyner–Halenda |
CI | Cranston–Inkley |
DH | Dollimore–Heal |
HK | Horvath–Kawazoe |
PCC | Precipitated calcium carbonate |
GCC | Ground calcium carbonate |
GO | Graphene oxide |
RT | Retention time (min) |
PCMs | Phase change materials |
EDLCs | Electrochemical double-layer capacitors |
Appendix A
References
- World Health Organization. Tobacco and Its Environmental Impact: An Overview; World Health Organization: Geneva, Switzerland, 2017; pp. 18–19. ISBN 978-92-4-151249-7. Available online: https://iris.who.int/bitstream/handle/10665/255574/9789241512497-eng.pdf (accessed on 8 January 2025).
- Harris, B. The intractable cigarette ‘filter problem’. Tobacco Control 2011, 20 (Suppl. S1), i10–i16. [Google Scholar] [CrossRef]
- Arat, S.A. A review on cigarette butts: Environmental abundance, characterization, and toxic pollutants released into water from cigarette butts. Sci. Total Environ. 2024, 928, 172327. [Google Scholar] [CrossRef]
- Premchand, P.; Mead, S.; Fino, D.; Demichelis, F.; Bensaid, S.; Chiaramonti, D.; Antunes, E. Sustainable valorisation of cigarette butts waste through pyrolysis: An insight into the pyrolytic products and subsequent aqueous heavy metals removal by pyrolytic char. Chem. Eng. Sci. 2025, 302, 120906. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, M.; Li, Y.; Cheng, F.; Liu, Y.; Gao, M.; Liu, G.; Hu, L.; Liang, Y. Effectiveness of discarded cigarette butts derived carbonaceous adsorbent for heavy metals removal from water. Microchem. J. 2021, 168, 106474. [Google Scholar] [CrossRef]
- Soltani, S.M.; Yazdi, S.K.; Hosseini, S. Effects of pyrolysis conditions on the porous structure construction of mesoporous charred carbon from used cigarette filters. Appl. Nanosci. 2014, 4, 551–569. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Hameed, B.H.; Khan, M.A. Recent progress on carbonaceous materials-based adsorbents derived from cigarette wastes for sustainable remediation of aquatic pollutants: A review. J. Anal. Appl. Pyrol. 2024, 183, 106779. [Google Scholar] [CrossRef]
- Tong, X.; Hou, J.; Li, Y.; Li, H.; Wu, W.; Guo, Y.; Liu, Y.; Fu, D.; Huang, X.; Xiong, Z.; et al. Application of biochar derived from used cigarette filters in direct carbon solid oxide fuel cell. Int. J. Hydrogen Energy 2022, 47, 22972–22980. [Google Scholar] [CrossRef]
- Bi, R.; Pang, S.-K.; Yung, K.-C.; Yin, L.-K. Comprehensive study of used cigarette filters-derived porous activated carbon for Supercapacitors: From biomass waste to sustainable energy source. J. Electroanal. Chem. 2022, 925, 116915. [Google Scholar] [CrossRef]
- Wang, W.; Wang, M.; Huang, J.; Li, X.; Cai, L.; Shi, S.Q.; Cui, Y.; Chen, L.; Ni, Y. High efficiency pyrolysis of used cigarette filters for ester-rich bio-oil through microwave-assisted heating. J. Clean. Prod. 2020, 257, 120596. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, B.; Wang, Z.; Hu, Y.; Du, M. Pore engineering in biomass-derived carbon materials for enhanced energy, catalysis, and environmental applications. Molecules 2024, 29, 5172. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, H.; Zhou, Q.; Liu, K.; Ma, W.; Fan, S. Biomass-derived carbon for supercapacitors electrodes—A review of recent advances. Inorg. Chem. Commun. 2023, 153, 110768. [Google Scholar] [CrossRef]
- Manasa, P.; Sambasivam, S.; Ran, F. Recent progress on biomass waste derived activated carbon electrode materials for supercapacitors applications—A review. J. Energy Storage 2022, 54, 105290. [Google Scholar] [CrossRef]
- Janković, B.; Kojić, M.; Milošević, M.; Rosić, M.; Waisi, H.; Božilović, B.; Manić, N.; Dodevski, V. Upcycling of the used cigarette butt filters through pyrolysis process: Detailed kinetic mechanism with bio-char characterization. Polymers 2023, 15, 3054. [Google Scholar] [CrossRef]
- Wang, L.; Chang, Y.; Li, A. Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review. Renew. Sustain. Energy Rev. 2019, 108, 423–440. [Google Scholar] [CrossRef]
- Altıkat, A.; Alma, M.H.; Altıkat, A.; Bilgili, M.E.; Altıkat, S. A comprehensive study of biochar yield and quality concerning pyrolysis conditions: A multifaceted approach. Sustainability 2024, 16, 937. [Google Scholar] [CrossRef]
- Safarian, S. Performance analysis of sustainable technologies for biochar production: A comprehensive review. Energy Rep. 2023, 9, 4574–4593. [Google Scholar] [CrossRef]
- Kraus, W.; Nolze, G. POWDER CELL-a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Cryst. 1996, 29, 301–303. [Google Scholar] [CrossRef]
- Choma, J.; Jaroniec, M.; Burakiewicz-Mortka, W.; Kloske, M. Critical appraisal of classical methods for determination of mesopore size distributions of MCM-41 materials. Appl. Surf. Sci. 2002, 196, 216–223. [Google Scholar] [CrossRef]
- Yano, H.; Yoshizaki, S.; Inagaki, S.; Fukushima, Y.; Wada, N. Observation of superfluid 4He adsorbed in one-dimensional mesopores. J. Low Temp. Phys. 1998, 110, 573–578. [Google Scholar] [CrossRef]
- Dudnikova, Y.N.; Zykov, I.Y.; Sozinov, S.A.; Ismagilov, Z.R. Determination of the parameters of the porous structure of carbon sorbents based on Kuzbass fossil coals by the method of low-temperature nitrogen adsorption. J. Phys. Conf. Ser. 2021, 1749, 012020. [Google Scholar] [CrossRef]
- Galarneau, A.; Villemot, F.; Rodriguez, J.; Fajula, F.; Coasne, B. Validity of the t-plot method to assess microporosity in hierarchical micro/mesoporous materials. Langmuir 2014, 30, 13266–13274. [Google Scholar] [CrossRef] [PubMed]
- Dombrowski, R.J.; Lastoskie, C.M.; Hyduke, D.R. The Horvath-Kawazoe method revisited. Coll. Surf. A Physicochem. Eng. Aspects 2001, 187–188, 23–39. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, T.; Dang, B.; Wang, H.; Xiong, Y.; Yao, Q.; Wang, C.; Sun, Q.; Jin, C. The properties of fibreboard based on nanolignocelluloses/CaCO3/PMMA composite synthesized through mechano-chemical method. Sci. Rep. 2018, 8, 5121. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Gill, R.A. Fillers for papermaking: A review of their properties, usage practices, and their mechanistic role. BioRes. 2016, 11, 2886–2963. [Google Scholar] [CrossRef]
- Völkel, L.; Ahn, K.; Hähner, U.; Gindl-Altmutter, W.; Potthast, A. Nano meets the sheet: Adhesive-free application of nanocellulosic suspensions in paper conservation. Herit. Sci. 2017, 5, 23. [Google Scholar] [CrossRef]
- Ţucureanu, V.; Matei, A.; Avram, A.M. FTIR spectroscopy for carbon family study. Crit. Rev. Anal. Chem. 2016, 46, 502–520. [Google Scholar] [CrossRef]
- Titanium Dioxide, Report, EU Tobacco Directive 2014/40/EU, Article 6, Priority Additive, Priority Additives Tobacco Consortium, KT&G Corporation, 71, Beotkkot-gil, Daedeok-gu, Daejeon, Republic of Korea, p. 3. Available online: https://www.ingredientiprodottideltabacco.it/home/wp-content/uploads/ReportPriorityAdditives/4D6774FA-29BE-46FB-B618-B4FD5695332D.pdf (accessed on 12 January 2025).
- Emtec ACA Ash Content Analyzer, Measurement of the Mineral Filler Content in Paper and Board. p. 3. Available online: https://www.emtec-electronic.de/images/stories/infomaterial/02_ACA/02_Booklet/emtec_ACA_Ash_Content_Analyzer_booklet_en.pdf (accessed on 12 January 2025).
- Shen, J.; Li, J.; Qian, X.; Ren, W.; Fatehi, P. A review on engineering of cellulosic cigarette paper to reduce carbon monoxide delivery of cigarettes. Carbohyd. Polym. 2014, 101, 769–775. [Google Scholar] [CrossRef]
- Lauterbach, J. Chemical and Physical Properties of FSC Cigarette Papers and Physical Properties of the Cigarettes They Were Taken from: Results from a Small Product Survey of Cigarette Brand-Styles Sold in the USA. CORESTA Meeting, Smoke Science/Product Technology, 2017, Kitzbühel, STPOST 36, Pages 6. Available online: https://chemrxiv.org/engage/chemrxiv/article-details/60c73d77702a9b1f99189bad (accessed on 12 January 2025).
- Wang, J.; Wen, J.; Zeng, J. Effect of CaCO3 addition on base-sheet of paper-making process reconstituted tobacco. IOP Conf. Ser. Mater. Sci. Eng. 2019, 490, 022062. [Google Scholar] [CrossRef]
- Wu, D.; Liu, J.; Yang, Y.; Zheng, Y.; Zhang, J. Experimental and theoretical study of arsenic removal by porous carbon from MSW incineration flue gas. Fuel 2022, 312, 123000. [Google Scholar] [CrossRef]
- Das, D.; Hussain, S.; Ghosh, A.K.; Pal, A.K. Studies on cellulose nanocrystals extracted from Musa sapientum: Structural and bonding aspects. Cellulose Chem. Technol. 2018, 52, 729–739. [Google Scholar]
- Nindiyasari, F.; Griesshaber, E.; Zimmermann, T.; Manian, A.P.; Randow, C.; Zehbe, R.; Fernandez-Diaz, L.; Ziegler, A.; Fleck, C.; Schmahl, W.W. Characterization and mechanical properties investigation of the cellulose/gypsum composite. J. Comp. Mater. 2015, 50, 657–672. [Google Scholar] [CrossRef]
- Gong, J.; Li, J.; Xu, J.; Xiang, Z.; Mo, L. Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Adv. 2017, 7, 33486–33493. [Google Scholar] [CrossRef]
- Hossain, M.S.; Ahmed, S. Crystallographic characterization of naturally occurring aragonite and calcite phase: Rietveld refinement. J. Saudi Chem. Soc. 2023, 27, 101649. [Google Scholar] [CrossRef]
- Al-Jaroudi, S.S.; Ul-Hamid, A.; Mohammed, A.-R.I.; Saner, S. Use of X-ray powder diffraction for quantitative analysis of carbonate rock reservoir samples. Powder Technol. 2007, 175, 115–121. [Google Scholar] [CrossRef]
- Wang, W.; Huang, J.; Zhang, X.; Song, W.; Tan, R. Effect of rapid thermal annealing condition on the structure and conductivity properties of polycrystalline silicon films on glass. Mater. Sci. Forum 2011, 687, 634–640. [Google Scholar] [CrossRef]
- Luo, X.; Song, X.; Cao, Y.; Song, L.; Bu, X. Investigation of calcium carbonate synthesized by steamed ammonia liquid waste without use of additives. RSC Adv. 2020, 10, 7976–7986. [Google Scholar] [CrossRef]
- Rahman, M.A.; Oomori, T. Structure, crystallization and mineral composition of sclerites in the alcyonarian coral. J. Cryst. Growth 2008, 310, 3528–3534. [Google Scholar] [CrossRef]
- Zhao, T.; Xu, C.; Ma, Y.; Zeng, Y.; Wang, N. Study on preparation and structure of chrysanthemum-shaped micron calcium carbonate based on inverse microemulsion. Micro Nano Lett. 2020, 15, 1151–1155. [Google Scholar] [CrossRef]
- Goh, S.C.K. Low Cost Miniaturized Spectrometer for Mid Infrared Sensing. Ph.D. Thesis, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore, 2019; pp. 2–177. [Google Scholar]
- Smirnov, A.D.; Kalaev, V.V. Analysis of impurity transport and deposition processes on the furnace elements during Cz silicon growth. J. Cryst. Growth 2009, 311, 829–832. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.; Han, Z.; Huang, Y.; Yuan, H.; Ni, C. Catalytic degradation of “trinitrogen” by Fe-Ce-SiO2/TiO2 aerogel. Environ. Sci. Pollut. Res. 2023, 30, 49577–49590. [Google Scholar] [CrossRef]
- Kang, D.S.; Han, J.S.; Choi, J.S.; Seo, Y.B. Development of deformable calcium carbonate for high filler paper. ACS Omega 2020, 5, 15202–15209. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 2010, 3, 10. [Google Scholar] [CrossRef]
- Nu, D.T.T.; Hung, N.P.; Hoang, C.V.; Van der Bruggen, B. Preparation of an asymmetric membrane from sugarcane bagasse using DMSO as green solvent. Appl. Sci. 2019, 9, 3347. [Google Scholar] [CrossRef]
- Podgorbunskikh, E.; Kuskov, T.; Bukhtoyarov, V.; Lomovsky, O.; Bychkov, A. Recrystallization of cellulose, chitin and starch in their individual and native forms. Polymers 2024, 16, 980. [Google Scholar] [CrossRef]
- Márton, P.; Nagy, Ö.T.; Kovács, D.; Szolnoki, B.; Madarász, J.; Nagy, N.; Szabó, G.S.; Hórvölgyi, Z. Barrier behaviour of partially N-acetylated chitosan layers in aqueous media. Int. J. Biol. Macromol. 2023, 232, 123336. [Google Scholar] [CrossRef]
- Pereira, A.G.B.; Fajardo, A.R.; Gerola, A.P.; Rodrigues, J.H.S.; Nakamura, C.V.; Muniz, E.C.; Hsieh, Y.-L. First report of electrospun cellulose acetate nanofibers mats with chitin and chitosan nanowhiskers: Fabrication, characterization, and antibacterial activity. Carbohyd. Polym. 2020, 250, 116954. [Google Scholar] [CrossRef]
- Galkina, O. Functional Hybrid Bionanomaterials Based on Titanium Dioxide and Cellulose, Possessing Antibacterial and Drug Delivery Properties. Licentiate Thesis, Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2015; pp. 36–37, ISBN: 978-91-576-8338-0, eISBN: 978-91-576-8339-7. [Google Scholar]
- Jiang, X.; Chen, Y.; Yuan, Y.; Zheng, L. Thermal response in cellulose Iβ based on molecular dynamics. Comput. Math. Biophys. 2019, 7, 85–97. [Google Scholar] [CrossRef]
- Boonyoung, P.; Kasukabe, T.; Hoshikawa, Y.; Berenguer-Murcia, Á.; Cazorla-Amorós, D.; Boekfa, B.; Nishihara, H.; Kyotani, T.; Nueangnoraj, K. A simple “nano-templating” method using zeolite Y toward the formation of carbon Schwarzites. Front. Mater. 2019, 6, 104. [Google Scholar] [CrossRef]
- Atinafu, D.G.; Chang, S.J.; Kim, S. Infiltration properties of n-alkanes in mesoporous biochar: The capacity of smokeless support for stability and energy storage. J. Hazard. Mater. 2020, 399, 123041. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mohanty, K. A review of the next-generation biochar production from waste biomass for material applications. Sci. Total Environ. 2023, 904, 167171. [Google Scholar] [CrossRef]
- Jeon, J.; Park, J.H.; Wi, S.; Kim, K.-H.; Kim, S. Thermal performance enhancement of a phase change material with expanded graphite via ultrasonication. J. Ind. Eng. Chem. 2019, 79, 437–442. [Google Scholar] [CrossRef]
- Du, X.; Fang, Y.; Cheng, X.; Du, Z.; Zhou, M.; Wang, H. Fabrication and characterization of flame-retardant nanoencapsulated n-octadecane with melamine-formaldehyde shell for thermal energy storage. ACS Sustain. Chem. Eng. 2018, 6, 15541–15549. [Google Scholar] [CrossRef]
- Guo, X.; Liu, L.; Wang, W.; Zhang, J.; Wang, Y.; Yu, S.-H. Controlled crystallization of hierarchical and porous calcium carbonate crystals using polypeptide type block copolymer as crystal growth modifier in a mixed solution. CrystEngComm. 2011, 13, 2054–2061. [Google Scholar] [CrossRef]
- Cheah, S.; Malone, S.C.; Feik, C.J. Speciation of sulfur in biochar produced from pyrolysis and gasification of oak and corn stover. Environ. Sci. Technol. 2014, 48, 8474–8480. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, G.; Li, X.; Zhang, X.; Hang, W.; Tang, M.; Gao, Y. Effects of biochar on the transformation of cadmium fractions in alkaline soil. Heliyon 2023, 9, e12949. [Google Scholar] [CrossRef] [PubMed]
- Blankenship, L.S.; Balahmar, N.; Mokaya, R. Oxygen-rich microporous carbons with exceptional hydrogen storage capacity. Nat. Commun. 2017, 8, 1545. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Scudiero, L.; Espinal, J.; McEwen, J.-S.; Garcia-Perez, M. Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations. Carbon 2016, 110, 155–171. [Google Scholar] [CrossRef]
- Kuzmenko, V.; Wang, N.; Haque, M.; Olga Naboka, O.; Flygare, M.; Svensson, K.; Gatenholm, P.; Liu, J.; Enoksson, P. Cellulose-derived carbon nanofibers/graphene composite electrodes for powerful compact supercapacitors. RSC Adv. 2017, 7, 45968–45977. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.; Dong, Y.; Wu, Y.; Yu, L.; Bai, Y. Interfacial modulation of polydopamine-reduced graphene oxide for achieving highly conductive and strong graphene/cotton composite yarn toward smart wearable devices. Adv. Fiber Mater. 2024, 6, 1798–1812. [Google Scholar] [CrossRef]
- Chen, H.; Chen, S.; Zhang, Y.; Ren, H.; Hu, X.; Bai, Y. Sand-milling fabrication of screen-printable graphene composite inks for high-performance planar micro-supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 56319–56329. [Google Scholar] [CrossRef]
- Cao, J.; Liu, H.; Chen, Q.; Bai, Y. Enhancing the interfacial properties of polyethylene-based carbon fiber composites through low-temperature thermally reduced graphene. Fibers Polym. 2024, 25, 4823–4830. [Google Scholar] [CrossRef]
- Grams, J. Surface analysis of solid products of thermal treatment of lignocellulosic biomass. J. Anal. Appl. Pyrol. 2022, 161, 105429. [Google Scholar] [CrossRef]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An overview on engineering the surface area and porosity of biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef] [PubMed]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Sotomayor, F.J.; Cychosz, K.A.; Thommes, M. Characterization of micro/mesoporous materials by physisorption: Concepts and case studies. Acc. Mater. Surf. Res. 2018, 3, 34–50. [Google Scholar]
- Schneider, P. Adsorption isotherms of microporous-mesoporous solids revisited. Appl. Catal. A General 1995, 129, 157–165. [Google Scholar] [CrossRef]
- Kwarciany, R.; Fiedur, M.; Saletnik, B. Opportunities and threats for supercapacitor technology based on biochar—A review. Energies 2024, 17, 4617. [Google Scholar] [CrossRef]
- Hryniewicka, A.; Siemiaszko, G.; Plonska-Brzezinska, M.E. Mesoporous carbon composites containing carbon nanostructures: Recent advances in synthesis and applications in electrochemistry. Materials 2024, 17, 6195. [Google Scholar] [CrossRef]
- Zan, G.; Li, S.; Chen, P.; Dong, K.; Wu, Q.; Wu, T. Mesoporous cubic nanocages assembled by coupled monolayers with 100% theoretical capacity and robust cycling. ACS Cent. Sci. 2024, 10, 1283–1294. [Google Scholar] [CrossRef]
- Wu, D.-Y.; Zhou, W.-H.; He, L.-Y.; Tang, H.-Y.; Xu, X.-H.; Ouyang, Q.-S.; Shao, J.-J. Micro-corrugated graphene sheet enabled high-performance all-solid-state film supercapacitor. Carbon 2020, 160, 156–163. [Google Scholar] [CrossRef]
Proximate Analysis (%, ar. a) | Ultimate Analysis (%, daf Basis b) c | ||
---|---|---|---|
Moisture, M | 4.26 | C | 49.43 |
Volatile matter, VM | 87.89 | H | 5.80 |
Fixed carbon, FC | 7.56 | O | 44.44 |
Ash | 0.29 | S | 0.03 |
No. | Retention Time, RT (min) | Compound | Class of Organic Compounds | Main m/z |
---|---|---|---|---|
1 | 5.442 | 3-Ethyl-4-methylheptan-1-ol | Fatty alcohols | 69, 84, 41 |
2 | 5.7 | Cyclopentanone, 2-(1-methylpropyl) | Terpenoids | 84, 55, 83 |
3 | 5.854 | Hexane, 3-ethyl-2-methyl | Alkanes | 43, 57, 84 |
4 | 6.484 | 1-Hexane, 4,5-dimethyl | Alkanes | 43, 71, 41 |
5 | 6.924 | 2,4,4-trimethyl-1-hexene | Alkenes | 43, 71, 70 |
6 | 9.94 | Decane, 2,4,6-trimethyl | Alkanes | 43, 57, 71 |
7 | 12.864 | Silane, cyclohexyldimethoxymethyl | Organometallic | 105, 75, 91 |
8 | 13.939 | Decane | Alkanes | 57, 43, 41 |
9 | 15.69 | Undecane | Alkanes | 57, 43, 41 |
10 | 16.131 | Undecane, 2-methyl | Alkanes | 43, 57, 41 |
11 | 16.137 | Pentadecane | Alkanes | 57, 43, 71 |
12 | 17.367 | Dodecane | Alkanes | 57, 43, 41 |
13 | 19.272 | Tetradecane | Alkanes | 57, 43, 41 |
14 | 19.822 | Hexadecane | Alkanes | 57, 43, 41 |
15 | 21.641 | Nonadecane | Alkanes | 57, 43, 41 |
16 | 22.717 | Eicosane | Alkanes | 57, 43, 41 |
17 | 26.534 | Octadecane | Alkanes | 57, 43, 41 |
Element | Intensity | Net Counts | Weight (%) | Atom (%) |
---|---|---|---|---|
C | 511.012 | 79,406 | 62.649 | 71.932 |
O | 53.665 | 8339 | 28.660 | 24.703 |
Na | 1.287 | 200 | 0.244 | 0.147 |
Mg | 2.671 | 415 | 0.454 | 0.257 |
Si | 5.380 | 836 | 0.969 | 0.476 |
S | 2.413 | 375 | 0.498 | 0.214 |
Cl | 2.079 | 323 | 0.571 | 0.222 |
Ca | 12.311 | 1913 | 5.955 | 2.049 |
Total | 100.000 | 100.000 |
Sample | SBET (m2/g) | Vp(H-K) (cm3/g) | rm(H-K) (nm) | rmax(H-K) (nm) | Vmicro (cm3/g) | Vp(B.J.H.) (cm3/g) | rm(B.J.H.) (nm) | rmax(B.J.H.) (nm) | Vp(C-I) (cm3/g) | rm(C-I) (nm) | rmax(C-I) (nm) | Vp(D-H) (nm) | rm(D-H) (nm) | rmax(D-H) (nm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CFR char carbon (550 °C and 1 h) | 320.93 | 0.1793 | 0.362 | 0.982 | 0.0871 | 0.1069 | 1.867 | 1.8468 | 0.1069 | 1.867 | 1.8421 | 0.1062 | 1.8679 | 1.8422 |
CFR Char Carbon | ||
---|---|---|
Pore Classes [from (nm) to (nm)] | Vp (cm3/g) | Vpore (%) a |
1–1.5 | 0.0196 | 18.37 |
1.5–2 | 0.0792 | 74.1 |
2–2.5 | 0.0125 | 11.72 |
2.5–3 | 0.0029 | 2.696 |
3–3.5 | 0.0012 | 1.077 |
3.5–4 | 0.00069 | 0.649 |
Sample | Carbonization Conditions | Porosity Category of the Material | SBET (m2/g) | Median Pore Radius (nm) | Reference |
---|---|---|---|---|---|
CAc800 (1 h) | Furnace, Heating rate = 4 °C/min, T = 800 °C, tres = 1 h | Mesoporous | 55.65 | 3.17 | [14] |
CFR char carbon | Furnace, Heating rate = 3 °C/min, T = 550 °C, tres = 1 h | Microporous/ Mesoporous | 320.93 | 1.867 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janković, B.; Cvetinović, D.; Milošević, M.; Veljković, F.; Rajić, V.; Janković, M.; Dodevski, V. Preparation and Characterization of Char Carbon Obtained by Carbonization of Unused Cigarette Filter Rods: The Product Application Assessment. Materials 2025, 18, 1661. https://doi.org/10.3390/ma18071661
Janković B, Cvetinović D, Milošević M, Veljković F, Rajić V, Janković M, Dodevski V. Preparation and Characterization of Char Carbon Obtained by Carbonization of Unused Cigarette Filter Rods: The Product Application Assessment. Materials. 2025; 18(7):1661. https://doi.org/10.3390/ma18071661
Chicago/Turabian StyleJanković, Bojan, Dejan Cvetinović, Milena Milošević, Filip Veljković, Vladimir Rajić, Marija Janković, and Vladimir Dodevski. 2025. "Preparation and Characterization of Char Carbon Obtained by Carbonization of Unused Cigarette Filter Rods: The Product Application Assessment" Materials 18, no. 7: 1661. https://doi.org/10.3390/ma18071661
APA StyleJanković, B., Cvetinović, D., Milošević, M., Veljković, F., Rajić, V., Janković, M., & Dodevski, V. (2025). Preparation and Characterization of Char Carbon Obtained by Carbonization of Unused Cigarette Filter Rods: The Product Application Assessment. Materials, 18(7), 1661. https://doi.org/10.3390/ma18071661