Electrochemically Engineered Mesoporous Sn-Oxide Rods for Anode Materials in Lithium-Ion Batteries
Abstract
:1. Introduction
2. Experimental
2.1. Materials Fabrication
2.2. Fabrication and Electrochemical Tests of Electrodes and Cells
3. Results and Discussion
3.1. Sn Rod Formation Using Electrodeposition
3.2. Porous Sn-Oxide Formation Using Anodic Oxidation
3.3. Electrochemical Properties of Core (Sn Rod)-Shell (Mesoporous Sn-Oxide Layer) Anodes
4. Conclusions
- Dendritic Sn, composed of primary and secondary rods, was successfully fabricated via single electrodeposition. Under constant-current conditions, the diameter of the secondary Sn rods increased linearly with rising current density, but at current densities above 4 A/cm2 and a deposition time of 10 s, agglomeration between the secondary rods was observed. In contrast, under constant-voltage conditions, highly uniform secondary rods were formed without agglomeration, even when a larger amount of Sn was deposited than under constant-current conditions, where the aggregated structure appeared.
- The Sn micro rods were anodized to form core-shell structures, where the surface of the Sn rods was covered with mesoporous Sn-oxide. A uniformly distributed porous Sn-oxide layer was successfully formed across the entire surface at anodization above 6 V. As the anodization voltage increased, the pore size increased, while pore wall thickness decreased.
- The core-shell anodes were evaluated for LIB application. During the first cathodic scan (lithiation) of the cyclic voltammetry experiment, Li2O formation was observed at approximately 0.5–0.8 V vs. Li+/Li. This Li2O was partially decomposed in the subsequent anodic scan, contributing to the reversible capacity. At higher anodization voltages, the Li2O-related signal became more pronounced, indicating an increased Li2O contribution to the reversible capacity.
- The initial charge-discharge tests of the core-shell anodes exhibited specific capacities comparable to or exceeding that of the Sn rod anode. Higher anodization voltages resulted in higher specific capacities. The core-shell anodes also demonstrated slower capacity fade than the Sn rod anode, with higher discharge capacity retention at increased anodization voltage. Despite these promising results, significant initial irreversible capacity loss and cycle degradation remain challenges that must be addressed for commercial viability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruiz, V.; Pfrang, A.; Kriston, A.; Omar, N.; Van den Bossche, P.; Boon-Brett, L. A Review of International Abuse Testing Standards and Regulations for Lithium-Ion Batteries in Electric and Hybrid Electric Vehicles. Renew. Sustain. Energy Rev. 2018, 81, 1427–1452. [Google Scholar] [CrossRef]
- Peters, J.F.; Baumann, M.; Zimmermann, B.; Braun, J.; Weil, M. The environmental impact of Li-ion batteries and the role of key parameters–a review. Renew. Sustain. Energy Rev. 2017, 67, 491–506. [Google Scholar] [CrossRef]
- Ding, Y.; Cano, Z.P.; Yu, A.; Lu, J.; Chen, Z. Automotive Li-ion batteries: Current status and future perspectives. Electrochem. Energy Rev. 2019, 2, 1–28. [Google Scholar] [CrossRef]
- Jaguemont, J.; Boulon, L.; Dubé, Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl. Energy 2016, 164, 99–114. [Google Scholar] [CrossRef]
- Diouf, B.; Pode, R. Potential of lithium-ion batteries in renewable energy. Renew. Energy 2015, 76, 375–380. [Google Scholar] [CrossRef]
- Deng, J.; Bae, C.; Denlinger, A.; Miller, T. Electric vehicles batteries: Requirements and challenges. Joule 2020, 4, 511–515. [Google Scholar] [CrossRef]
- Brunklaus, G.; Lennarts, P.; Winter, M. Metal electrodes for next-generation rechargeable batteries. Nat. Rev. Electr. Eng. 2024, 1, 79–92. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, X.Q.; Ding, F.; Huang, J.Q.; Xu, R.; Chen, X.; Zhang, Q. Advanced electrode materials in lithium batteries: Retrospect and prospect. Energy Mater. Adv. 2021, 4, 1–15. [Google Scholar] [CrossRef]
- Mou, H.; Xiao, W.; Miao, C.; Li, R.; Yu, L. Tin and tin compound materials as anodes in lithium-ion and sodium-ion batteries: A review. Front. Chem. 2020, 8, 141. [Google Scholar] [CrossRef]
- Liang, S.; Cheng, Y.J.; Zhu, J.; Xia, Y.; Müller-Buschbaum, P. A chronicle review of nonsilicon (Sn, Sb, Ge)-based lithium/sodium-ion battery alloying anodes. Small Methods 2020, 4, 2000218. [Google Scholar] [CrossRef]
- Wang, R.; Sun, S.; Xu, C.; Cai, J.; Gou, H.; Zhang, X.; Wang, G. The interface engineering and structure design of an alloying-type metal foil anode for lithium ion batteries: A review. Mater. Horiz. 2024, 11, 903–922. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhi, H.; Yu, X. Recent progress in phosphorus-based anode materials for lithium/sodium ion batteries. Energy Storage Mater. 2019, 16, 290–322. [Google Scholar] [CrossRef]
- Jin, Y.; Zhu, B.; Lu, Z.; Liu, N.; Zhu, J. Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv. Energy Mater. 2017, 7, 1700715. [Google Scholar] [CrossRef]
- Ma, D.; Cao, Z.; Hu, A. Si-based anode materials for Li-ion batteries: A mini review. Nano-Micro Lett. 2014, 6, 347–358. [Google Scholar] [CrossRef]
- Wang, G.; Aubin, M.; Mehta, A.; Tian, H.; Chang, J.; Kushima, A.; Yang, Y. Stabilization of Sn anode through structural reconstruction of a Cu–Sn intermetallic coating layer. Adv. Mater. 2020, 32, 2003684. [Google Scholar] [CrossRef]
- Tang, Y.; Bi, C.; Zhang, D.; Hou, G.; Cao, H.; Wu, L.; Wu, Q. Three-dimensional ordered macroporous Cu/Sn anode for high rate and long cycle life lithium-ion batteries. Microporous Mesoporous Mater. 2019, 274, 76–82. [Google Scholar] [CrossRef]
- Beaulieu, L.Y.; Dahn, J.R. The reaction of lithium with Sn-Mn-C intermetallics prepared by mechanical alloying. J. Electrochem. Soc. 2000, 147, 3237. [Google Scholar] [CrossRef]
- Mao, O.; Dunlap, R.A.; Dahn, J.R. Mechanically alloyed Sn-Fe (-C) powders as anode materials for Li-ion batteries: I. The Sn2Fe-C system. J. Electrochem. Soc. 1999, 146, 405. [Google Scholar] [CrossRef]
- Wang, B.; Luo, B.; Li, X.; Zhi, L. The dimensionality of Sn anodes in Li-ion batteries. Mater. Today 2012, 15, 544–552. [Google Scholar] [CrossRef]
- Chao, S.C.; Yen, Y.C.; Song, Y.F.; Chen, Y.M.; Wu, H.C.; Wu, N.L. A study on the interior microstructures of working Sn particle electrode of Li-ion batteries by in situ X-ray transmission microscopy. Electrochem. Commun. 2010, 12, 234–237. [Google Scholar] [CrossRef]
- Park, J.; Eom, J.; Kwon, H. Fabrication of Sn–C composite electrodes by electrodeposition and their cycle performance for Li-ion batteries. Electrochem. Commun. 2009, 11, 596–598. [Google Scholar] [CrossRef]
- Pourfarzad, H.; Shabani-Nooshabadi, M.; Ganjali, M.R. High lithium anodic performance of reduced Sn particles on Co metal-organic frameworks for lithium-ion batteries with a long-cycle life. Compos. Part B Eng. 2020, 193, 108008. [Google Scholar] [CrossRef]
- Shi, H.; Fang, Z.; Zhang, X.; Li, F.; Tang, Y.; Zhou, Y.; Yu, G. Double-network nanostructured hydrogel-derived ultrafine Sn–Fe alloy in three-dimensional carbon framework for enhanced lithium storage. Nano Lett. 2018, 18, 3193–3198. [Google Scholar] [CrossRef]
- Polat, D.B.; Lu, J.; Abouimrane, A.; Keles, O.; Amine, K. Nanocolumnar structured porous Cu-Sn thin film as anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 10877–10885. [Google Scholar] [CrossRef]
- Lan, X.; Xiong, X.; Liu, J.; Yuan, B.; Hu, R.; Zhu, M. Insight into reversible conversion reactions in SnO2-based anodes for lithium storage: A Review. Small 2022, 18, 2201110. [Google Scholar] [CrossRef]
- Ma, G.; Yang, W.; Xu, C.; Che, S.; Li, Y.; Liu, H.; Chen, N.; Zhang, G.; Liu, H.; Wu, N.; et al. Nitrogen-doped porous carbon embedded Sn/SnO nanoparticles as high-performance lithium-ion battery anode. Electrochim. Acta 2022, 428, 140898. [Google Scholar] [CrossRef]
- Hameed, M.U.; Dar, S.U.; Ali, S.; Liu, S.; Akram, R.; Wu, Z.; Butler, I.S. Facile synthesis of low-dimensional SnO2 nanostructures: An investigation of their performance and mechanism of action as anode materials for lithium-ion batteries. Phys. E Low-Dimens. Syst. Nanostruct. 2017, 91, 119–127. [Google Scholar] [CrossRef]
- Das, B.; Reddy, M.V.; Chowdari, B.V.R. SnO and SnO·CoO nanocomposite as high capacity anode materials for lithium ion batteries. Mater. Res. Bull. 2016, 74, 291–298. [Google Scholar] [CrossRef]
- Shin, J.H.; Song, J.Y. Electrochemical properties of Sn-decorated SnO nanobranches as an anode of Li-ion battery. Nano Converg. 2016, 3, 9. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, F.; Tian, Q.; Zhang, W. Facile preparation of one-dimensional hollow tin dioxide@carbon nanocomposite for lithium-ion battery anode. J. Electroanal. Chem. 2020, 861, 113943. [Google Scholar] [CrossRef]
- Cheong, J.Y.; Chang, J.H.; Kim, C.; Lee, J.; Shim, Y.S.; Yoo, S.J.; Kim, I.D. Unveiling the origin of superior electrochemical performance in polycrystalline dense SnO2 nanospheres as anodes for lithium-ion batteries. ACS Appl. Energy Mater. 2019, 2, 2004–2012. [Google Scholar] [CrossRef]
- Zhu, Y.; Guo, H.; Zhai, H.; Cao, C. Microwave-assisted and gram-scale synthesis of ultrathin SnO2 nanosheets with enhanced lithium storage properties. ACS Appl. Mater. Interfaces 2015, 7, 2745–2753. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, Y.; Chui, Y.S.; Wu, Q.H.; Chen, X.; Zhang, W. Three-dimensional Sn–graphene anode for high-performance lithium-ion batteries. Nanoscale 2013, 5, 10599–10604. [Google Scholar] [CrossRef]
- Cao, L.; Liu, J.; Xu, S.; Xia, Y.; Huang, W.; Li, Z. Inherent superhydrophobicity of Sn/SnOX films prepared by surface self-passivation of electrodeposited porous dendritic Sn. Mater. Res. Bull. 2013, 48, 4804–4810. [Google Scholar] [CrossRef]
- Jeun, J.-H.; Kin, W.-S.; Hong, S.-H. Electrophoretic deposition of carbon nanoparticles on dendritic Sn foams fabricated by electrodeposition. Mater. Lett. 2013, 112, 109–112. [Google Scholar] [CrossRef]
- Lee, J.W.; Park, S.J.; Choi, W.S.; Shin, H.C. Well-defined meso- to macro-porous film of tin oxides formed by an anodization process. Electrochim. Acta 2011, 56, 5919–5925. [Google Scholar] [CrossRef]
- Gurgul, M.; Gawlak, K.; Knapik, A.; Kozieł, M.; Zaraska, L. The effect of electrolyte temperature on the growth morphology and properties of porous anodic tin oxide films. J. Electroanal. Chem. 2023, 932, 117246. [Google Scholar] [CrossRef]
- Lu, C.; Wang, J.; Meng, D.; Wang, D.; Wang, Y.; Zhu, Z. Tunable synthesis of nanoporous tin oxide structures on metallic tin by one-step electrochemical anodization. J. Alloys Compd. 2016, 685, 670–679. [Google Scholar] [CrossRef]
- Zaraska, L.; Gawlak, K.; Gurgul, M.; Chlebda, D.K.; Socha, R.P.; Sulka, G.D. Controlled synthesis of nanoporous tin oxide layers with various pore diameters and their photoelectrochemical properties. Electrochim. Acta 2017, 254, 238–245. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Wang, Z.; Huang, X.; Chen, L. The interaction between SnO anode and electrolytes. J. Power Sources 1999, 81, 346–351. [Google Scholar] [CrossRef]
- Das, B.; Reddy, M.V.; Subba Rao, G.V.; Chowdari, B.V.R. Nano-composites SnO (VOX) as anodes for lithium ion batteries. J. Solid State Electrochem. 2011, 15, 259–268. [Google Scholar] [CrossRef]
- Yin, L.; Chai, S.; Wang, F.; Huang, J.; Li, J.; Liu, C.; Kong, X. Ultrafine SnO2 nanoparticles as a high performance anode material for lithium ion battery. Ceram. Int. 2016, 42, 9433–9437. [Google Scholar] [CrossRef]
- Lin, J.; Peng, Z.; Xiang, C.; Ruan, G.; Yan, Z.; Natelson, D.; Tour, J.M. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 2013, 7, 6001–6006. [Google Scholar] [CrossRef]
- Mohamedi, M.; Lee, S.J.; Takahashi, D.; Nishizawa, M.; Itoh, T.; Uchida, I. Amorphous tin oxide films: Preparation and characterization as an anode active material for lithium ion batteries. Electrochim. Acta 2001, 46, 1161–1168. [Google Scholar] [CrossRef]
- Deng, J.; Yan, C.; Yang, L.; Baunack, S.; Oswald, S.; Wendrock, H.; Schmidt, O.G. Sandwich-stacked SnO2/Cu hybrid nanosheets as multichannel anodes for lithium ion batteries. ACS Nano 2013, 7, 6948–6954. [Google Scholar] [CrossRef]
- Winter, M.; Besenhard, J.O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 1999, 45, 31–50. [Google Scholar] [CrossRef]
Control Type | Current Density (A/cm2) | Voltage (V) | Deposition Time (s) | Charge Amount 1 (C/cm2) | Deposition Amount 2 (mg/cm2) |
---|---|---|---|---|---|
Current density | 1 | - | 10 | 10 | 6.16 |
4 | 10 | 6.83 | 4.20 | ||
5 | 10 | 13.67 | 8.41 | ||
Voltage | - | 6 | 10 | 21.72 | 13.36 |
7 | 10 | 28.17 | 17.33 | ||
8 | 10 | 33.92 | 20.86 |
Cycle Number | Specific Capacity (mAh/g) | Coulombic Efficiency (%) | |
---|---|---|---|
Charge | Discharge | ||
(a) Core-shell anode anodized at 6 V | |||
1 | 1395 | 796 | 57 |
2 | 836 | 725 | 87 |
3 | 734 | 662 | 90 |
(b) Core-shell anode anodized at 8 V | |||
1 | 1479 | 803 | 54 |
2 | 834 | 744 | 89 |
3 | 763 | 695 | 91 |
(c) Core-shell anode anodized at 10 V | |||
1 | 1566 | 808 | 52 |
2 | 865 | 765 | 88 |
3 | 800 | 726 | 91 |
(d) Sn rod anode | |||
1 | 907 | 645 | 71 |
2 | 632 | 526 | 83 |
3 | 514 | 441 | 86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.-J.; Min, Y.-J.; Shin, H.-C. Electrochemically Engineered Mesoporous Sn-Oxide Rods for Anode Materials in Lithium-Ion Batteries. Appl. Sci. 2025, 15, 6026. https://doi.org/10.3390/app15116026
Lee W-J, Min Y-J, Shin H-C. Electrochemically Engineered Mesoporous Sn-Oxide Rods for Anode Materials in Lithium-Ion Batteries. Applied Sciences. 2025; 15(11):6026. https://doi.org/10.3390/app15116026
Chicago/Turabian StyleLee, Woo-Jin, Yu-Jeong Min, and Heon-Cheol Shin. 2025. "Electrochemically Engineered Mesoporous Sn-Oxide Rods for Anode Materials in Lithium-Ion Batteries" Applied Sciences 15, no. 11: 6026. https://doi.org/10.3390/app15116026
APA StyleLee, W.-J., Min, Y.-J., & Shin, H.-C. (2025). Electrochemically Engineered Mesoporous Sn-Oxide Rods for Anode Materials in Lithium-Ion Batteries. Applied Sciences, 15(11), 6026. https://doi.org/10.3390/app15116026