Adsorption Performance and Mechanism of Waste Myriophyllum aquaticum Biochar for Malachite Green in Wastewater: Batch and Column Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar Preparation and Characterization
2.2. Batch Adsorption Test
2.3. Selective and Reusable Adsorption Experiment
2.4. Dynamic Adsorption Experiment of Fixed Bed Column
3. Results
3.1. Characterization of MBC and KMBC
3.2. Batch Adsorption Experiment
3.3. Adsorption Kinetics, Isotherms, and Thermodynamics
3.4. Selective and Reusable Adsorption
3.5. Column Adsorption Experiment
3.6. Adsorption Mechanisms
3.7. Comparison of Adsorption Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Q.; Du, J.; Su, X.; Li, X.; Si, Y.; Fu, Y. Highly porous carbon with rich inherent groups for ultrahigh adsorption of organic dyes from wastewater. Colloids Surf. A Physicochem. Eng. Asp. 2024, 703, 135288. [Google Scholar] [CrossRef]
- Wu, J.; Yang, J.; Feng, P.; Wen, L.; Huang, G.; Xu, C.; Lin, B. Highly efficient and ultra-rapid adsorption of malachite green by recyclable crab shell biochar. J. Ind. Eng. Chem. 2022, 113, 206–214. [Google Scholar] [CrossRef]
- JECFA. Joint FAO/WHO Expert Committee on Food Additives Seventy-Third Meeting. 2010. Available online: https://scholar.google.com/scholar?q=JECFA.%20Joint%20FAO%2FWHO%20Expert%20Committee%20on%20Food%20Additives%2C%20Seventy-third%20meeting%3B%208-17%20June%2020%3B%20Geneva.%202010.%20p.%2012.%20Summary%20and%20Conclusion.%20JECFA%2F73%2FSC%20 (accessed on 19 March 2025).
- Gharavi-Nakhjavani, M.S.; Niazi, A.; Hosseini, H.; Aminzare, M.; Dizaji, R.; Tajdar-Oranj, B.; Mirza Alizadeh, A. Correction to: Malachite green and leucomalachite green in fish: A global systematic review and meta-analysis. Environ. Sci. Pollut. Res. Int. 2023, 30, 48928. [Google Scholar] [CrossRef] [PubMed]
- Le Curieux, F.; Gohlke, J.M.; Pronk, A.; Andersen, W.C.; Chen, G.; Fang, J.-L.; Mitrowska, K.; Sanders, P.J.; Sun, M.; Umbuzeiro, G.A.; et al. Carcinogenicity of gentian violet, leucogentian violet, malachite green, leucomalachite green, and CI Direct Blue 218. Lancet Oncol. 2021, 22, 585–586. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.-J.; Chao, H.-P. Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method. J. Environ. Manag. 2017, 188, 322–336. [Google Scholar] [CrossRef]
- Gnanamoorthy, G.; Yadav, V.K.; Ali, D.; Ramar, K.; Kumar, G.; Narayanan, V. New designing (NH4)2SiP4O13 nanowires and effective photocatalytic degradation of Malachite green and antimicrobial properties. Chem. Phys. Lett. 2022, 803, 139817. [Google Scholar] [CrossRef]
- Haladu, S.A. Highly efficient adsorption of malachite green dye onto a cross-linked pH-responsive cycloterpolymer resin: Kinetic, equilibrium and thermodynamic studies. J. Mol. Liq. 2022, 357, 119115. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Yu, A.; Yu, Z. Removal of malachite green by electrochemical oxidation polymerization and electrochemical reduction precipitation: Its kinetics and intermediates. J. Solid State Electrochem. 2022, 26, 2231–2246. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Deyab, M.A.; Hassan, N.I.; Abu Ahmed, S.E. Bioremediation of malachite green dye using sodium alginate, Sargassum latifolium extract, and their silver nanoparticles. BMC Chem. 2023, 17, 108. [Google Scholar] [CrossRef]
- Korpe, S.; Bethi, B.; Sonawane, S.H.; Jayakumar, K. Tannery wastewater treatment by cavitation combined with advanced oxidation process (AOP). Ultrason. Sonochem. 2019, 59, 104723. [Google Scholar] [CrossRef]
- Ewais, H.A. Adsorption of Malachite Green Cationic Dye from Aqueous Media by Activated Carbon Modified by Nanosilver. Russ. J. Phys. Chem. A 2022, 96, S113–S121. [Google Scholar] [CrossRef]
- Altun, T.; Ecevit, H. Adsorption of malachite green and methyl violet 2B by halloysite nanotube: Batch adsorption experiments and Box-Behnken experimental design. Mater. Chem. Phys. 2022, 291, 126612. [Google Scholar] [CrossRef]
- Imessaoudene, A.; Mechraoui, O.; Aberkane, B.; Benabbas, A.; Manseri, A.; Moussaoui, Y.; Bollinger, J.-C.; Amrane, A.; Zoukel, A.; Mouni, L. Synthesis of a TiO2/zeolite composite: Evaluation of adsorption-photodegradation synergy for the removal of Malachite Green. Nano-Struct. Nano-Objects 2024, 38, 101191. [Google Scholar] [CrossRef]
- Prakash, A.; Sharma, A.; Yadav, A.; Sharma, R.K. Zirconium-based mixed ligand metal–organic framework for efficient adsorption of organic dyes. J. Nanoparticle Res. 2024, 26, 220. [Google Scholar] [CrossRef]
- Abdo, A.I.; Li, Y.; Shi, Z.; El-Saadony, M.T.; Alkahtani, A.M.; Chen, Y.; Wang, X.; Zhang, J.; Wei, H. Biochar of invasive plants alleviated impact of acid rain on soil microbial community structure and functionality better than liming. Ecotoxicol. Environ. Saf. 2024, 282, 116726. [Google Scholar] [CrossRef]
- Hanafi, M.; Bordoloi, S.; Rinta-Hiiro, V.; Oey, T.; Korkiala-Tanttu, L. Feasibility of biochar for low-emission soft clay stabilization using CO2 curing. Transp. Geotech. 2024, 49, 101370. [Google Scholar] [CrossRef]
- Hou, L.; Liang, S.; Wang, L.; Luo, D.; Guo, J. Effect of biochar-based nano-nickel catalyst on heavy crude oil upgrading and oil shale pyrolysis. Appl. Catal. O Open 2024, 195, 207011. [Google Scholar] [CrossRef]
- You, J.; Farghali, M.; Osman, A.I.; Yoshida, G.; Ihara, I. Mechanisms of biochar-mediated reduction of antibiotic-resistant bacteria and biogas production enhancement in anaerobic digesters. Biochem. Eng. J. 2024, 211, 109465. [Google Scholar] [CrossRef]
- Li, W.; Zhou, J.; Ding, H.; Fu, H.; Liu, J.; Chen, Y.; Dai, T.; Lou, Q.; Zhong, X.; Fan, H.; et al. Low-dose biochar added to sediment improves water quality and promotes the growth of submerged macrophytes. Sci. Total Environ. 2020, 742, 140602. [Google Scholar] [CrossRef]
- Abdu, M.; Babaee, S.; Worku, A.; Msagati, T.A.M.; Nure, J.F. The development of Giant reed biochar for adsorption of Basic Blue 41 and Eriochrome Black T. azo dyes from wastewater. Sci. Rep. 2024, 14, 18320. [Google Scholar] [CrossRef]
- Wang, F.-P.; Kang, L.-L.; Wang, Y.-J.; Wang, Y.-R.; Wang, Y.-T.; Li, J.-G.; Jiang, L.-Q.; Ji, R.; Chao, S.; Zhang, J.-B.; et al. Magnetic biochar catalyst from reed straw and electric furnace dust for biodiesel production and life cycle assessment. Renew. Energy 2024, 227, 120570. [Google Scholar] [CrossRef]
- Moradi, N.; Karimi, A. Fe-Modified Common Reed Biochar Reduced Cadmium (Cd) Mobility and Enhanced Microbial Activity in a Contaminated Calcareous Soil. J. Soil Sci. Plant Nutr. 2021, 21, 329–340. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Y.; Wang, J.; Wang, J.; Yu, F.; Ma, Q.; Cheng, Z.; Yan, B.; Song, Y.; Cui, X. Production of potassium-enriched biochar from Canna indica: Transformation and release of potassium. Waste Manag. 2023, 164, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Muduli, M.; Swain, B.; Choudhary, M.; Verma, P.; Ray, S. Environmental Contaminants Remediation from Real Domestic Wastewater through a Canna-Based Bioretention Engineered System. Water Conserv. Sci. Eng. 2024, 9, 43. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, C.; Chen, S.; Ma, L.; Li, Y.; Lu, Y. Phosphate adsorption characteristics of La(OH)3-modified, canna-derived biochar. Chemosphere 2022, 286, 131773. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, N.; Zhou, Y.; Wang, F.; Zhang, Y.; Wu, Z. Growth and Physiological Responses in Myriophyllum spicatum L. Exposed to Linear Alkylbenzene Sulfonate. Environ. Toxicol. Chem. 2019, 38, 2073–2081. [Google Scholar] [CrossRef]
- Fakhry, H.; Hassan, H.M.A.; El-Aassar, M.R.; Alsohaimi, I.H.; Hussein, M.F.; Alqahtani, M.M.; El-Amier, Y.A. A Treatment of Wastewater Containing Safranin O Using Immobilized Myriophyllum spicatum L. onto Polyacrylonitrile/Polyvinylpyrrodlidone Biosorbent. J. Inorg. Organomet. Polym. Mater. 2022, 32, 3181–3195. [Google Scholar] [CrossRef]
- Barontini, F.; Landi, M.; Silvestri, N.; Puccini, M. Hydrothermal Carbonization of Aquatic Biomass: A Promising Solution for the Invasive Species Myriophyllum Aquaticum. Chem. Eng. Trans. 2024, 109, 553–558. [Google Scholar] [CrossRef]
- Wang, B.; Yang, X.; Ma, L.; Zhai, L.; Xuan, J.; Liu, C.; Bai, Z. Ultra-high efficient pH induced selective removal of cationic and anionic dyes from complex coexisted solution by novel amphoteric biocomposite microspheres. Sep. Purif. Technol. 2020, 231, 115922. [Google Scholar] [CrossRef]
- Guo, J.; Zheng, L.; Li, Z.; Zhou, X.; Cheng, S.; Zhang, L.; Zhang, Q. Effects of various pyrolysis conditions and feedstock compositions on the physicochemical characteristics of cow manure-derived biochar. J. Clean. Prod. 2021, 311, 127458. [Google Scholar] [CrossRef]
- Holmes, L., Jr.; LaHurd, A.; Wasson, E.; McClarin, L.; Dabney, K. Racial and Ethnic Heterogeneity in the Association Between Total Cholesterol and Pediatric Obesity. Int. J. Environ. Res. Public Health 2016, 13, 19. [Google Scholar]
- Abilio, T.E.; Soares, B.C.; José, J.C.; Milani, P.A.; Labuto, G.; Carrilho, E.N.V.M. Hexavalent chromium removal from water: Adsorption properties of in natura and magnetic nanomodified sugarcane bagasse. Environ. Sci. Pollut. Res. Int. 2021, 28, 24816–24829. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xiang, M.; Zhu, W.; Hui, J.; Qin, H. Biomass Heteroatom Carbon/Cerium Dioxide Composite Nanomaterials Electrode for High-Performance Supercapacitors. ACS Sustain. Chem. Eng. 2020, 8, 6675–6681. [Google Scholar] [CrossRef]
- Li, S.-S.; Zhou, W.-Y.; Jiang, M.; Li, L.-N.; Sun, Y.-F.; Guo, Z.; Liu, J.-H.; Huang, X.-J. Insights into diverse performance for the electroanalysis of Pb(II) on Fe2O3 nanorods and hollow nanocubes: Toward analysis of adsorption sites. Electrochim. Acta 2018, 288, 42–51. [Google Scholar] [CrossRef]
- Gado, M.; Rashad, M.; Kassab, W.; Badran, M. Highly Developed Surface Area Thiosemicarbazide Biochar Derived from Aloe Vera for Efficient Adsorption of Uranium. Radiochemistry 2021, 63, 353–363. [Google Scholar] [CrossRef]
- Li, D.; Ding, X.; Liu, X.; Cheng, J.; Jiang, Z.; Guo, Y. CO2 hydrogenation to methane over Ni/ZrO2 and Ni/CeO2 catalysts: Experimental and DFT studies. J. Mater. Sci. 2023, 58, 12584–12595. [Google Scholar] [CrossRef]
- Su, P.; Zhang, C.; Liu, Y.; Zhang, J.; Djellabi, R.; Wang, R.; Guo, J.; Zhang, R.; Guo, H.; Ding, X.; et al. Boosting PFOA photocatalytic removal from water using highly adsorptive and sunlight-responsive ZIF67/MIL-100(Fe) modified C3N4. J. Environ. Chem. Eng. 2023, 11, 110765. [Google Scholar] [CrossRef]
- Tripathi, P.K.; Gan, L.; Liu, M. Synthesis of Large Pore Carbon Nanoparticles for Removal of Malachite Green. J. Nanosci. Nanotechnol. 2016, 16, 892–897. [Google Scholar] [CrossRef]
- Skyt, P.S.; Wahlstedt, I.; Yates, E.S.; Muren, L.P.; Petersen, J.B.B.; Balling, P. Exploring the dose response of radiochromic dosimeters. J. Phys. Conf. Ser. 2013, 444, 012036. [Google Scholar] [CrossRef]
- Fan, S.S.; Wang, Y.; Wang, Z.; Tang, J.; Tang, J.; Li, X.D. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. J. Environ. Chem. Eng. 2017, 5, 601–611. [Google Scholar] [CrossRef]
- Song, C.-L.; Zhang, H.-M.; Zhong, Y.; Hu, X.-P.; Ji, S.-H.; Wang, L.; He, K.; Ma, X.-C.; Xue, Q.-K. Observation of Double-Dome Superconductivity in Potassium-Doped FeSe Thin Films. Phys. Rev. Lett. 2016, 116, 157001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, H.; Yang, X.; Tan, X.; Wan, C.; Liu, X. Characterization of electrodes modified with sludge-derived biochar and its performance of electrocatalytic oxidation of azo dyes. J. Environ. Manag. 2022, 324, 116445. [Google Scholar] [CrossRef] [PubMed]
- Muretta, J.E.; Prieto-Centurion, D.; LaDouceur, R.; Kirtley, J.D. Unique Chemistry and Structure of Pyrolyzed Bovine Bone for Enhanced Aqueous Metals Adsorption. Waste Biomass Valorization 2023, 14, 703–722. [Google Scholar] [CrossRef]
- Yao, X.; Ji, L.; Guo, J.; Ge, S.; Lu, W.; Chen, Y.; Cai, L.; Wang, Y.; Song, W. An abundant porous biochar material derived from wakame (Undaria pinnatifida) with high adsorption performance for three organic dyes. Bioresour. Technol. 2020, 318, 124082. [Google Scholar] [CrossRef]
- Choudhary, M.; Kumar, R.; Neogi, S. Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water. J. Hazard. Mater. 2020, 392, 122441. [Google Scholar] [CrossRef]
- Sun, S.; Zeng, X.; Gao, Y.; Zhang, W.; Zhou, L.; Zeng, X.; Liu, W.; Jiang, Q.; Jiang, C.; Wang, S. Iron oxide loaded biochar/attapulgite composites derived camellia oleifera shells as a novel bio-adsorbent for highly efficient removal of Cr(VI). J. Clean. Prod. 2021, 317, 128412. [Google Scholar] [CrossRef]
- Roy, S.; Mishra, S.R.; Ahmaruzzaman, M. Ultrasmall copper-metal organic framework (Cu-MOF) quantum dots decorated on waste derived biochar for enhanced removal of emerging contaminants: Synergistic effect and mechanistic insight. J. Environ. Manag. 2024, 366, 121802. [Google Scholar] [CrossRef]
- Sakurai, K.; Nakayama, A.; Watanabe, T.; Kyuma, K. Influences of aluminum ions on the determination of zpc (zero point of charge) of variable charge soils. Soil Sci. Plant Nutr. 1989, 35, 623–633. [Google Scholar] [CrossRef]
- Shahwan, T. Sorption kinetics: Obtaining a pseudo-second order rate equation based on a mass balance approach. J. Environ. Chem. Eng. 2014, 2, 1001–1006. [Google Scholar] [CrossRef]
- Xu, S.; Yu, Y.; Zhang, X.; Xue, D.; Wei, Y.; Xia, H.; Zhang, F.; Zhang, J. Enhanced Electron Delocalization Induced by Ferromagnetic Sulfur doped C(3)N(4) Triggers Selective H(2)O(2) Production. Angew. Chem. Int. Ed. Engl. 2024, 63, e202407578. [Google Scholar] [CrossRef]
- Li, X.; Jia, H.; Jiang, L.; Mou, Z.; Zhang, B.; Zhang, Z.; Chen, Y. Biochar Prepared from Steam-Exploded Bitter Melon Vine for the Adsorption of Methylene Blue from Aqueous Solution: Kinetics, Isotherm, Thermodynamics and Mechanism. Sustainability 2024, 16, 7278. [Google Scholar] [CrossRef]
- Revellame, E.D.; Fortela, D.L.; Sharp, W.; Hernandez, R.; Zappi, M.E. Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Clean. Eng. Technol. 2020, 1, 100032. [Google Scholar] [CrossRef]
- Maceiras, R.; Feijoo, J.; Perez-Rial, L.; Alfonsin, V.; Falcon, P. Study of natural zeolites for hydrogen purification: CO2 adsorption capacity and kinetic mechanism. Fuel 2024, 376, 132732. [Google Scholar] [CrossRef]
- Henini, G.; Khurshid, H.; Laidani, Y.; Henini, S.; Umoren, S.A.; Suleiman, R.K.; Meliani, M.H. An investigation into equilibrium, Kinetics, and thermodynamics of yellow bemacid dye removal from Aqueous Solutions using pomegranate skin (PG) and Date Pedicels (DPd) as Green Adsorbents. Adsorption 2024, 30, 2099–2112. [Google Scholar] [CrossRef]
- Hao, J.; Cui, Z.; Liang, J.; Ma, J.; Ren, N.; Zhou, H.; Xing, D. Sustainable efficient utilization of magnetic porous biochar for adsorption of orange G and tetracycline: Inherent roles of adsorption and mechanisms. Environ. Res. 2024, 252 Pt 1, 118834. [Google Scholar] [CrossRef]
- Fan, S.; Tang, J.; Wang, Y.; Li, H.; Zhang, H.; Tang, J.; Wang, Z.; Li, X. Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: Kinetics, isotherm, thermodynamic and mechanism. J. Mol. Liq. 2016, 220, 432–441. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Yao, J.; Zhan, S.; Li, H.; Zhang, J.; Qiu, Z. Synthesis of polyethyleneimine modified CoFe2O4-loaded porous biochar for selective adsorption properties towards dyes and exploration of interaction mechanisms. Sep. Purif. Technol. 2021, 277, 119474. [Google Scholar] [CrossRef]
- Hudson, A.; Murnane, J.; O’Dwyer, T.; Courtney, R. Influence of organic matter in wetland substrate on vanadium removal: A batch and column study. J. Water Process Eng. 2024, 68, 106359. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, S.; Chen, L.; Li, Z.; Wu, K.; Zhang, Y.; Su, Z.; Yin, X.; Hamza, M.F.; Wei, Y.; et al. Efficient separation of palladium from nitric acid solution by a novel silica-based ion exchanger with ultrahigh adsorption selectivity. Sep. Purif. Technol. 2023, 322, 124326. [Google Scholar] [CrossRef]
- Chen, L.; Liu, N.; Zhang, M.; Li, C.; Wu, K.; Qin, J.; Zhao, Q.; Song, J.; Liu, J.; Ye, Z. Preparation of chitosan resin by two-step crosslinking method and its adsorption for palladium in wastewater. Int. J. Biol. Macromol. 2024, 278 Pt 2, 134766. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Z.; Li, Z.; Chen, G.; Zhou, J.; Chen, Y.; Zhu, J.; Chen, Z. Rapid Separation and Efficient Removal of Cd Based on Enhancing Surface Precipitation by Carbonate-Modified Biochar. ACS Omega 2021, 6, 18253–18259. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wei, S.; Li, J.; Wang, X.; Wang, X.; Xue, B. Magnetically recyclable hydrothermal biochar functionalized with β-CD for simultaneous capturing of cationic methylene blue and auramine O in wastewater. Colloids Surf. C Environ. Asp. 2024, 2, 100033. [Google Scholar] [CrossRef]
- Mukhamatdinov, I.I.; Salih, I.S.S.; Khelkhal, M.A.; Vakhin, A.V. Application of Aromatic and Industrial Solvents for Enhancing Heavy Oil Recovery from the Ashalcha Field. Energy Fuels 2021, 35, 374–385. [Google Scholar] [CrossRef]
- Hewett, D.M.; Bocklitz, S.; Tabor, D.P.; Iii, E.L.S.; Suhm, M.A.; Zwier, T.S. Identifying the first folded alkylbenzene via ultraviolet, infrared, and Raman spectroscopy of pentylbenzene through decylbenzene. Chem. Sci. 2017, 8, 5305–5318. [Google Scholar] [CrossRef]
- Zeghioud, H.; Fryda, L.; Djelal, H.; Assadi, A.; Kane, A. A comprehensive review of biochar in removal of organic pollutants from wastewater: Characterization, toxicity, activation/functionalization and influencing treatment factors. J. Water Process Eng. 2022, 47, 102801. [Google Scholar] [CrossRef]
- Stark, M.; Ditze, S.; Drost, M.; Buchner, F.; Steinrück, H.-P.; Marbach, H. Coverage dependent disorder-order transition of 2H-tetraphenylporphyrin on Cu(111). Langmuir 2013, 29, 4104–4110. [Google Scholar] [CrossRef]
- Darby, I.; Xu, C.-Y.; Wallace, H.M.; Joseph, S.; Pace, B.; Bai, S.H. Short-term dynamics of carbon and nitrogen using compost, compost-biochar mixture and organo-mineral biochar. Environ. Sci. Pollut. Res. 2016, 23, 11267–11278. [Google Scholar] [CrossRef]
- Bardestani, R.; Biriaei, R.; Kaliaguine, S. Hydrogenation of Furfural to Furfuryl Alcohol over Ru Particles Supported on Mildly Oxidized Biochar. Catalysts 2020, 10, 934. [Google Scholar] [CrossRef]
- Jiang, J.; Lu, B.; Zhu, B.; Li, X.; Rauhut, G.; Zeng, X. Hydrogen-Bonded π Complexes between Phosphaethyne and Hydrogen Chloride. J. Phys. Chem. Lett. 2023, 14, 4327–4333. [Google Scholar] [CrossRef]
- Piriya, R.S.; Jayabalakrishnan, R.M.; Maheswari, M.; Boomiraj, K.; Oumabady, S. Comparative adsorption study of malachite green dye on acid-activated carbon. Int. J. Environ. Anal. Chem. 2023, 103, 16–30. [Google Scholar] [CrossRef]
- Shao, J.; Wu, D. Study on the Performance of Coal Gangue-Loaded Hydroxyapatite (CG@HAP) for the Adsorption of Malachite Green. Molecules 2024, 29, 5649. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Guo, F.; Shu, R.; Dong, K.; Qiao, Q.; Liu, S.; Xu, L.; Bai, Y. Evaluation of the High Metals-Containing Coal Gasification Fine Slag as a High-Performance Adsorbent for Malachite Green Adsorption. Waste Biomass Valorization 2022, 13, 4897–4909. [Google Scholar] [CrossRef]
- Söğüt, E.G.; Karataş, Y.; Gülcan, M.; Kılıç, N.Ç. Enhancement of adsorption capacity of reduced graphene oxide by sulfonic acid functionalization: Malachite green and Zn (II) uptake. Mater. Chem. Phys. 2020, 256, 123662. [Google Scholar] [CrossRef]
- Chouli, F.; Ezzat, A.O.; Sabantina, L.; Benyoucef, A.; Zehhaf, A. Optimization Conditions of Malachite Green Adsorption onto Almond Shell Carbon Waste Using Process Design. Molecules 2024, 29, 54. [Google Scholar]
- Zhang, Y.; Qi, X.; Ma, Q.; Li, J.; Guo, X.; Qiao, J.; Wu, Y. Fluorescent β-cyclodextrin-based hydrogel for enhanced adsorption and fluorescence detection of malachite green. Sep. Purif. Technol. 2025, 363, 132065. [Google Scholar] [CrossRef]
- Ranote, S.; Chauhan, S.; Kumar, K.; Kowalczuk, M.; Chauhan, G.S. Pine needles, a forest waste biomass, driven biosorbent for malachite green dye. Biomass Convers. Biorefinery 2024, 14, 25885–25899. [Google Scholar] [CrossRef]
- Bullen, J.C.; Saleesongsom, S.; Gallagher, K.; Weiss, D.J. A Revised Pseudo-Second-Order Kinetic Model for Adsorption, Sensitive to Changes in Adsorbate and Adsorbent Concentrations. Langmuir 2021, 37, 3189–3201. [Google Scholar] [CrossRef]
- Chen, G.; Yin, Y.; Zhang, X.; Qian, A.; Pan, X.; Liu, F.; Li, R. Enhanced Adsorption of Methyl Orange from Aqueous Phase Using Chitosan-Palmer Amaranth Biochar Composite Microspheres. Molecules 2024, 29, 1836. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Ryu, S.; Loganathan, P.; Kandasamy, J.; Nguyen, T.V.; Vigneswaran, S. Arsenic adsorption by low-cost laterite column: Long-term experiments and dynamic column modeling. Process Saf. Environ. Prot. 2022, 160, 868–875. [Google Scholar] [CrossRef]
Weight Percent (%) | Molar Ratio | |||||||
---|---|---|---|---|---|---|---|---|
C | H | O | N | S | H/C | O/C | (O+N)/C | |
MAB | 41.68 | 6.64 | 46.75 | 2.25 | 0.45 | 1.912 | 0.841 | 0.888 |
MBC | 61.59 | 1.84 | 22.57 | 1.99 | 0.79 | 0.358 | 0.275 | 0.303 |
KMBC | 69.29 | 3.31 | 25.07 | 1.51 | 0.79 | 0.573 | 0.271 | 0.290 |
Fitting Model | Parameter | MBC | KMBC |
---|---|---|---|
PFO | k1 (min−1) | 10.4 × 10−3 | 2.40 × 10−3 |
qe (mg/g) | 1529.2 | 1020.5 | |
R2 | 0.9567 | 0.9434 | |
PSO | k2 (min−1) | 11.9 × 10−6 | 7.94 × 10−6 |
qe (mg/g) | 1576.7 | 2671.7 | |
R2 | 0.9962 | 0.9968 | |
Intraparticle diffusion | kd1 (mg/g/min0.5) | 66.6 | 85.9 |
R12 | 0.9775 | 0.9822 | |
kd2 (mg/g/min0.5) | 28.4 | 33.1 | |
R2 | 0.9677 | 0.9824 | |
kd3 (mg/g/min0.5) | — | 19.3 | |
R2 | — | 1 | |
Langmuir | qm (mg/g) | 1772.3 | 2570.7 |
KL (L/mg) | 0.129 | 0.119 | |
R2 | 0.9994 | 0.995 | |
RL | 0.025 | 0.027 | |
Freundlich | KF (L/mg) | 210.4 | 1774.0 |
R2 | 0.928 | 0.9422 |
Parameter | MBC | KMBC |
---|---|---|
KL (L/mol) | 0.035 | 0.033 |
ΔH0 (kJ/mol) | 101.9 | 99.5 |
ΔS0 (kJ/mol/K) | 0.37 | 0.37 |
ΔG0298K (kJ/mol) | −7.79 | −12.56 |
ΔG0303K (kJ/mol) | −9.31 | −13.75 |
ΔG0308K (kJ/mol) | −11.47 | −16.33 |
Column Parameters | Thomas | Yoon-Nelson | Adams-Bohart | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
c0 (mg/L) | H (cm) | V (mL/min) | qT (mg/g) | KT (mL/min/mg) | qm (mg/g) | R2 | KY (1/min) | τ (min) | R2 | KA (mL/mg/min) | N0 (mg/L) | R2 |
100 | 2.3 | 8.0 | 274.27 | 1.111 | 210.44 | 0.874 | 0.111 | 13.15 | 0.874 | 1.111 | 71.91 | 0.874 |
4.5 | 8.0 | 421.46 | 0.652 | 371.13 | 0.942 | 0.065 | 46.43 | 0.942 | 0.652 | 129.64 | 0.942 | |
8.4 | 8.0 | 435.76 | 0.624 | 425.01 | 0.990 | 0.050 | 86.69 | 0.967 | 0.624 | 159.17 | 0.990 | |
4.5 | 6.4 | 408.51 | 0.464 | 386.03 | 0.883 | 0.046 | 55.67 | 0.882 | 0.464 | 134.36 | 0.883 | |
4.5 | 9.6 | 252.46 | 0.993 | 219.72 | 0.872 | 0.099 | 22.88 | 0.872 | 0.993 | 76.75 | 0.872 | |
150 | 4.5 | 8.0 | 391.04 | 0.675 | 335.02 | 0.934 | 0.126 | 30.99 | 0.828 | 0.675 | 117.02 | 0.934 |
200 | 4.5 | 8.0 | 364.07 | 1.242 | 296.48 | 0.914 | 0.230 | 24.29 | 0.903 | 1.242 | 103.56 | 0.914 |
Adsorbent | Raw Material | qm (mg/g) | References |
---|---|---|---|
MBC | Myriophyllum aquaticum | 1772.3 | This paper |
KMBC | 2570.7 | ||
CSC | Coconut shell | 32.787 | [71] |
CG@HAP | Hydroxyapatite | 386 | [72] |
CGFS | Coal gasification fine slag | 1787 | [73] |
rGO-SO3H | Abstract Graphene oxide | 1111.11 | [74] |
AS | Almond shel | 166.66 | [75] |
βCCM | Hydrogel | 1789 | [76] |
AWPN | Pine needles | 377.36 | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, X.; Xu, W. Adsorption Performance and Mechanism of Waste Myriophyllum aquaticum Biochar for Malachite Green in Wastewater: Batch and Column Studies. Sustainability 2025, 17, 2868. https://doi.org/10.3390/su17072868
Zhang X, Zhang X, Xu W. Adsorption Performance and Mechanism of Waste Myriophyllum aquaticum Biochar for Malachite Green in Wastewater: Batch and Column Studies. Sustainability. 2025; 17(7):2868. https://doi.org/10.3390/su17072868
Chicago/Turabian StyleZhang, Xin, Xiaoping Zhang, and Wei Xu. 2025. "Adsorption Performance and Mechanism of Waste Myriophyllum aquaticum Biochar for Malachite Green in Wastewater: Batch and Column Studies" Sustainability 17, no. 7: 2868. https://doi.org/10.3390/su17072868
APA StyleZhang, X., Zhang, X., & Xu, W. (2025). Adsorption Performance and Mechanism of Waste Myriophyllum aquaticum Biochar for Malachite Green in Wastewater: Batch and Column Studies. Sustainability, 17(7), 2868. https://doi.org/10.3390/su17072868