Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = micro supercapacitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7490 KiB  
Article
Effect of Chemical Etching on the Supercapacitive Performance of Electroless Ni-B Coatings
by Mate Czagany, Gabor Meszaros, Daniel Koncz-Horvath, Adrienn Hlavacs, Mark Windisch, Byungil Hwang and Peter Baumli
Materials 2025, 18(15), 3544; https://doi.org/10.3390/ma18153544 - 29 Jul 2025
Viewed by 202
Abstract
In our study, supercapacitor electrodes were prepared by depositing electroless Ni-B coating on copper plates, followed by nitric acid etching. The composition and the micro- and phase structure of the coatings were investigated by ICP-OES, PFIB-SEM, and XRD techniques. The original pebble-like structure [...] Read more.
In our study, supercapacitor electrodes were prepared by depositing electroless Ni-B coating on copper plates, followed by nitric acid etching. The composition and the micro- and phase structure of the coatings were investigated by ICP-OES, PFIB-SEM, and XRD techniques. The original pebble-like structure of the coating consists of 0.8–10 µm particles, with an X-ray amorphous phase structure. The surface morphology and porosity of the coating can be tuned simply by changing the etching time. The supercapacitive performance of the electrodes was evaluated by means of cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy measurements. The capacitance of the coating was found to vary on the etching time according to a maximum function, allowing for the determination of an optimal duration to obtain a specific capacitance of 157 mF/cm2 (at 0.5 A/g). An excellent charge storage retention of 178% was found after 5000 CV cycles at a scan rate of 50 mV/s owing to the evolved electrochemically active network on the surface of the electrode, indicating a long-term stable and reliable electrode. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

17 pages, 5663 KiB  
Article
Ultra-Stable, Conductive, and Porous P-Phenylenediamine-Aldehyde-Ferrocene Micro/Nano Polymer Spheres for High-Performance Supercapacitors with Positive Electrodes
by Xin Wang, Qingning Li, Zhiruo Bian, Da Wang, Cong Liu, Zhaoxu Yu, Xuewen Li and Qijun Li
Polymers 2025, 17(14), 1964; https://doi.org/10.3390/polym17141964 - 17 Jul 2025
Viewed by 300
Abstract
Supercapacitors, with their remarkable attributes such as including a high power density, an extended cycle life, and inherent safety, have emerged as a major research area for electrochemical energy storage. In this paper, phenylenediamine and glyoxal were used as raw material to prepare [...] Read more.
Supercapacitors, with their remarkable attributes such as including a high power density, an extended cycle life, and inherent safety, have emerged as a major research area for electrochemical energy storage. In this paper, phenylenediamine and glyoxal were used as raw material to prepare p-phenylenediamine glyoxal (PGo) with one single step. p-phenylenediamine glyoxal-ferrocene (PGo-Fcx, x = 1, 0.3, 0.2, 0.1) composites were synthesized based on a poly-Schiff base. FTIR and XRD results indicated that ferrocene doping preserves the intrinsic PGo framework while inducing grain refinement, as evidenced by the narrowing of the XRD diffraction peaks. SEM observations further revealed distinct morphological evolution. CV (cyclic voltammetry), EIS (electrochemical impedance spectroscopy), and GCD (galvanostatic charge–discharge) were conducted on PGo-Fcx in order to examine its electrochemical performance. The PGo-Fc0.3 in PGo-Fcx electrode material had a specific capacitance of 59.6 F/g at a current density of 0.5 A/g and 36 F/g at a current density of 10 A/g. Notably, even after undergoing 5000 charging–discharging cycles at 10 A/g, the material retained 76.2% of its specific capacitance compared to the initial cycle. Therefore, taking conductive polymers and metal oxide materials for modification can improve the stability and electrochemical performance of supercapacitors. Full article
(This article belongs to the Special Issue Design and Characterization of Polymer-Based Electrode Materials)
Show Figures

Figure 1

19 pages, 2394 KiB  
Article
Three-Dimensional Printed MXene@PANI Hierarchical Architecture for High-Performance Micro-Supercapacitors
by Anyi Zhang, Yiming Wang, Haidong Yu and Yabin Zhang
Materials 2025, 18(10), 2277; https://doi.org/10.3390/ma18102277 - 14 May 2025
Viewed by 557
Abstract
The advent of the Internet of Things has boosted portable and wearable miniature electronics, especially micro-supercapacitors (MSCs) with excellent integrated performance as well as high-power density and a long lifetime. However, the rational design of electrode material formulations and the construction of three-dimensional [...] Read more.
The advent of the Internet of Things has boosted portable and wearable miniature electronics, especially micro-supercapacitors (MSCs) with excellent integrated performance as well as high-power density and a long lifetime. However, the rational design of electrode material formulations and the construction of three-dimensional (3D) structured electrodes with scalable and cost-effective fabrication remains an arduous task for improving the energy density of MSCs to meet all industrial sector requirements, such as the mass-production of microscale structures, a lasting power supply, and safety. To address these challenges, combining the respective capacitance merits of MXenes and polyaniline (PANI), we propose a constructing strategy for the preparation of a 3D MXene@PANI hierarchical architecture consisting of one-dimensional (1D) PANI nanofibers grown on two-dimensional (2D) Ti3C2 MXene nanosheets via extrusion-based 3D printing. Such a 3D architecture not only achieves a high loading mass of MSC electrodes prior to conventional planar MSCs for abundant active site exposure, but it also overcomes the restacking of MXene nanosheets accounting for sluggish ionic kinetics. These features enable the resulting MSCs to deliver excellent electrochemical properties, including a high volumetric capacitance of 1638.3 mF/cm3 and volumetric energy density of 328.2 mWh/cm3. This power supply ability is further demonstrated by lighting up a blue bulb or powering an electronic thermometer. This study provides a promising design strategy of the architecture of MXene@PANI composites for high-performance MSCs with 3D printing technology. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

10 pages, 3132 KiB  
Communication
Interfacial Synthesis of an Electro-Functional 2D Bis(terpyridine)copper(II) Polymer Nanosheet
by Kenji Takada, Joe Komeda, Hiroaki Maeda, Naoya Fukui, Hiroyasu Masunaga, Sono Sasaki and Hiroshi Nishihara
Molecules 2025, 30(9), 2044; https://doi.org/10.3390/molecules30092044 - 4 May 2025
Viewed by 623
Abstract
Coordination polymers are attractive materials for various fields of practical application. The high degree of freedom of choice of metal ions and organic ligands plays a critical role in functional diversification. In the present study, we report the liquid–liquid interfacial synthesis of a [...] Read more.
Coordination polymers are attractive materials for various fields of practical application. The high degree of freedom of choice of metal ions and organic ligands plays a critical role in functional diversification. In the present study, we report the liquid–liquid interfacial synthesis of a 2D bis(terpyridine)copper(II) polymer thin film, Cu-tpy. The synthesized Cu-tpy was characterized by various microscopic observations such as TEM, SEM, and AFM, and spectroscopic measurements such as XPS, Raman spectroscopy, SEM/EDS, and UV–Vis spectroscopy. Synchrotron-radiated X-ray scattering confirmed that Cu-tpy was oriented crystalline films. Moreover, Cu-tpy showed electrochemical micro-supercapacitor behavior in the solid-state owing to its ionic nature. This study expands the potential of bis(terpyridine)metal(II) polymers as electro-functional materials. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Graphical abstract

19 pages, 8736 KiB  
Article
Preparation of Asymmetric Micro-Supercapacitors Based on Laser-Induced Graphene with Regulated Hydrophobicity and Hydrophilicity
by Qing Liu, Wenpeng Wu, Pingping Luo, Hao Yu, Jiaqi Wang, Rui Chen and Yang Zhao
Nanomaterials 2025, 15(8), 584; https://doi.org/10.3390/nano15080584 - 11 Apr 2025
Viewed by 763
Abstract
Asymmetric micro-supercapacitors (AMSCs) with a small size and high energy density can be compatible with portable and wearable electronic devices and are capable of providing stable, long-term power supply, attracting great research interest in recent years. Here, we present a simple and rapid [...] Read more.
Asymmetric micro-supercapacitors (AMSCs) with a small size and high energy density can be compatible with portable and wearable electronic devices and are capable of providing stable, long-term power supply, attracting great research interest in recent years. Here, we present a simple and rapid preparation method for AMSCs’ fabrication. By regulating the hydrophilicity and hydrophobicity of coplanar laser-induced graphene (LIG) through the adjustment of the laser parameters, two electrode materials with distinct hydrophilic–hydrophobic properties were selectively deposited by sequentially dip-coating. The LIGs serve as current collectors, with activated carbon and poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) as active materials. After coating the electrolytes and folding the two electrodes, a high-performance AMSC was achieved. The device exhibits a high areal capacitance of 85.88 mF cm−2 at a current density of 0.4 mA cm−2, along with an impressive energy density of 11.93 µWh cm−2 and a good rate performance. Moreover, it is demonstrated to be highly stable in 500,000 cycles. Two AMSCs in series can supply power to an electronic clock and birthday card. The method of preparing asymmetric electrodes in the same plane greatly facilitates the large-area preparation of AMSCs and series–parallel connection, providing an excellent idea for developing high-performance miniature energy storage devices. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

12 pages, 3158 KiB  
Article
Nanostructure-Integrated Electrode Based on Ni/NiO Coaxial Bilayer Nanotube Array with Large Specific Capacitance for Miniaturized Applications
by Qianxun Gong, Xiaoyan Huang, Yong Liu, Sijie Zhang and Tian Yu
Materials 2025, 18(6), 1286; https://doi.org/10.3390/ma18061286 - 14 Mar 2025
Viewed by 807
Abstract
The fast development of portable electronics demands electrodes for supercapacitors that are compatible with miniaturized device applications. In this study, an orderly aligned coaxial bilayer nanotube array made of transition metal/transition metal oxides was adopted as a nanostructure-integrated electrode for applications as miniaturized [...] Read more.
The fast development of portable electronics demands electrodes for supercapacitors that are compatible with miniaturized device applications. In this study, an orderly aligned coaxial bilayer nanotube array made of transition metal/transition metal oxides was adopted as a nanostructure-integrated electrode for applications as miniaturized micro-supercapacitors. Using Ni and NiO as our model materials, the corresponding Ni/NiO-CBNTA electrodes were fabricated using templated growth and post-thermal oxidation. The Ni shells served as parts of the 3D nano-architectured collector, providing a large specific surface area, and the pseudocapacitive NiO layers were directly attached and electrically connected to the collector without any additives. The vertical growth of orderly aligned Ni/NiO-CBNTAs successfully avoided the underutilization of capacitive nanomaterials and allowed the electrolyte to be fully accessed, which manifested full charge storage capabilities under the miniaturizing. It was demonstrated that Ni/NiO-CBNTAs can serve as miniaturized electrodes with an improved specific capacitance of 1125 F/g ≅ 3 A/g, which is comparable to that obtained in a massive load electrode prepared by the conventional slurry-coating technique. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

12 pages, 1203 KiB  
Article
Electrochemical Investigations of the Suitability of 1-Propyl-2,3-dimethylidazolium bis(trifluoromethylsulfonyl)imide as the Electrolyte for Application in Micro–Mesoporous Carbon-Electrode-Based Supercapacitors and Other Electrochemical Systems
by Jaanus Kruusma and Enn Lust
Electrochem 2025, 6(1), 4; https://doi.org/10.3390/electrochem6010004 - 13 Feb 2025
Viewed by 1055
Abstract
The electrochemical properties of the hydrophobic room-temperature ionic liquid 1-propyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide (PMMIm(TFSI)) were investigated, for the first time, using an electrochemical double-layer capacitor-mimicking cell containing two identical-sized micro–mesoporous molybdenum carbide-derived carbon electrodes (MMP-C(Mo2C)), by applying cyclic voltammetry (CV) and electrochemical impedance [...] Read more.
The electrochemical properties of the hydrophobic room-temperature ionic liquid 1-propyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide (PMMIm(TFSI)) were investigated, for the first time, using an electrochemical double-layer capacitor-mimicking cell containing two identical-sized micro–mesoporous molybdenum carbide-derived carbon electrodes (MMP-C(Mo2C)), by applying cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Surprisingly, despite the substitution of the slightly acidic hydrogen atom with a methyl group at the carbon atom located between two nitrogen atoms in the imidazolium cation, the EIS and CV measurements demonstrated that PMMIm(TFSI) began to decompose electrochemically at the same cell potential (ΔE) as 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIm(BF4)), specifically at ΔE = 2.75 V. However, the CV and EIS data indicated that PMMIm(TFSI) decomposed with a significantly lower intensity than EMIm(BF4). Therefore, we believe that the use of PMMIm(TFSI) as the electrolyte will enable the construction of safer supercapacitors that can tolerate short periods of over-polarization up to ΔE = 4.0 V. However, when the ΔE ≤ 3.2 V was applied, EMIm(BF4) offered higher maximum power compared to PMMIm(TFSI). We found that the calculated maximum gravimetric power precisely describes the maximum ΔE applicable for a supercapacitor candidate. Full article
Show Figures

Figure 1

15 pages, 11911 KiB  
Article
Transition Metal-Mediated Preparation of Nitrogen-Doped Porous Carbon for Advanced Zinc-Ion Hybrid Capacitors
by Mingcheng Li, Zheng Liu, Dan Wu, Huihao Wu and Kuikui Xiao
Nanomaterials 2025, 15(2), 83; https://doi.org/10.3390/nano15020083 - 7 Jan 2025
Cited by 3 | Viewed by 934
Abstract
Carbon is predominantly used in zinc-ion hybrid capacitors (ZIHCs) as an electrode material. Nitrogen doping and strategic design can enhance its electrochemical properties. Melamine formaldehyde resin, serving as a hard carbon precursor, synthesizes nitrogen-doped porous carbon after annealing. Incorporating transition metal catalysts like [...] Read more.
Carbon is predominantly used in zinc-ion hybrid capacitors (ZIHCs) as an electrode material. Nitrogen doping and strategic design can enhance its electrochemical properties. Melamine formaldehyde resin, serving as a hard carbon precursor, synthesizes nitrogen-doped porous carbon after annealing. Incorporating transition metal catalysts like Ni, Co, and Fe alters the morphology, pore structure, graphitization degree, and nitrogen doping types/proportions. Electrochemical tests reveal a superior capacitance of 159.5 F g−1 at a scan rate of 1 mV s−1 and rate performance in Fe-catalyzed N-doped porous carbon (Fe-NDPC). Advanced analysis shows Fe-NDPC’s high graphitic nitrogen content and graphitization degree, boosting its electric double-layer capacitance (EDLC) and pseudocapacitance. Its abundant micro- and mesopores increase the surface area fourfold compared to non-catalyzed samples, favoring EDLC and fast electrolyte transport. This study guides catalyst application in carbon materials for supercapacitors, illuminating how catalysts influence nitrogen-doped porous carbon structure and performance. Full article
Show Figures

Graphical abstract

24 pages, 7562 KiB  
Article
Analysis and Design of Low-Power Piezoelectric Energy Harvesting Circuit for Wearable Battery-Free Power Supply Devices
by Ivaylo Pandiev, Hristo Antchev, Nikolay Kurtev, Nikolay Tomchev and Mariya Aleksandrova
Electronics 2025, 14(1), 46; https://doi.org/10.3390/electronics14010046 - 26 Dec 2024
Cited by 2 | Viewed by 2045
Abstract
Improving microelectronic technologies has created various micro-power electronic devices with different practical applications, including wearable electronic modules and systems. Furthermore, the power sources for wearable electronic devices most often work with electrical energy obtained from the environment without using standard batteries. This paper [...] Read more.
Improving microelectronic technologies has created various micro-power electronic devices with different practical applications, including wearable electronic modules and systems. Furthermore, the power sources for wearable electronic devices most often work with electrical energy obtained from the environment without using standard batteries. This paper presents the structure and electrical parameters of a circuit configuration realized as a prototype of a low-power AC-DC conversion circuit intended for use as a power supply device for signal processing systems that test various biomedical parameters of the human body. The proposed prototype has to work as a wearable self-powered system that transfers electrical energy obtained through mechanical vibrations in the piezoelectric generator. The obtained electrical energy is used to charge a single low-voltage supercapacitor, which is used as an energy storage element. The proposed circuit configuration is realized with discrete components consisting of a low-voltage bridge rectifier, a low-pass filter, a DC-DC step-down (buck) synchronous converter, a power-controlling system with an error amplifier, and a window detector that produces a “power-good” signal. The power-controlling system allows tuning the output voltage level to around 1.8 V, and the power dissipation for it is less than 0.03 mW. The coefficient of energy efficiency achieved up to 78% for output power levels up to 3.6 mW. Experimental testing was conducted to verify the proposed AC-DC conversion circuit’s effectiveness, as the results confirmed the preliminary theoretical analyses and the derived analytical expressions for the primary electrical parameters. Full article
(This article belongs to the Special Issue Mixed Design of Integrated Circuits and Systems)
Show Figures

Figure 1

19 pages, 4841 KiB  
Article
Design and Fabrication of MoCuOx Bimetallic Oxide Electrodes for High-Performance Micro-Supercapacitor by Electro-Spark Machining
by Ri Chen, Siqi Lv, Yunying Xu, Zicong Lin, Guoying Zhang, Jian Wang, Bocheng Wang, Wenxia Wang, Igor Zhitomirsky and Yong Yang
Micromachines 2025, 16(1), 7; https://doi.org/10.3390/mi16010007 - 25 Dec 2024
Cited by 1 | Viewed by 1171
Abstract
Transition metal oxides, distinguished by their high theoretical specific capacitance values, inexpensive cost, and low toxicity, have been extensively utilized as electrode materials for high-performance supercapacitors. Nevertheless, their conductivity is generally insufficient to facilitate rapid electron transport at high rates. Therefore, research on [...] Read more.
Transition metal oxides, distinguished by their high theoretical specific capacitance values, inexpensive cost, and low toxicity, have been extensively utilized as electrode materials for high-performance supercapacitors. Nevertheless, their conductivity is generally insufficient to facilitate rapid electron transport at high rates. Therefore, research on bimetallic oxide electrode materials has become a hot spot, especially in the field of micro-supercapacitors (MSC). Hence, this study presents the preparation of bimetallic oxide electrode materials via electro-spark machining (EM), which is efficient, convenient, green and non-polluting, as well as customizable. The fabricated copper-molybdenum bimetallic oxide (MoCuOx) device showed good electrochemical performance under the electrode system. It provided a high areal capacity of 50.2 mF cm−2 (scan rate: 2 mV s−1) with outstanding cycling retention of 94.9% even after 2000 cycles. This work opens a new window for fabricating bimetallic oxide materials in an efficient, environmental and customizable way for various electronics applications. Full article
(This article belongs to the Special Issue Advanced Micro- and Nano-Manufacturing Technologies, 2nd Edition)
Show Figures

Figure 1

16 pages, 9287 KiB  
Article
One-Step Fabrication of 2.5D CuMoOx Interdigital Microelectrodes Using Numerically Controlled Electric Discharge Machining for Coplanar Micro-Supercapacitors
by Shunqi Yang, Ri Chen, Fu Huang, Wenxia Wang and Igor Zhitomirsky
Micromachines 2024, 15(11), 1319; https://doi.org/10.3390/mi15111319 - 29 Oct 2024
Cited by 1 | Viewed by 969
Abstract
With the increasing market demands for wearable and portable electronic devices, binary metal oxides (BMOs) with a remarkable capacity and good structure stability have been considered as a promising candidate for fabricating coplanar micro-supercapacitors (CMSCs), serving as the power source. However, the current [...] Read more.
With the increasing market demands for wearable and portable electronic devices, binary metal oxides (BMOs) with a remarkable capacity and good structure stability have been considered as a promising candidate for fabricating coplanar micro-supercapacitors (CMSCs), serving as the power source. However, the current fabrication methods for BMO microelectrodes are complex, which greatly hinder their further development and application in BMO CMSCs. Herein, the one-step fabrication of 2.5D CuMoOx-based CMSCs (CuMoCMSCs) has been realized by numerically controlled electric discharge machining (NCEDM) for the first time. In addition, the controllable capacity of CuMoCMSCs has been achieved by adjusting the NCEDM-machining voltage. The CuMoCMSCs machined by a machining voltage of 60 V (CuMoCMSCs60) showed the best performance. The fabricated CuMoCMSCs60 with binary metal oxides could operate at an ultra-high scanning rate of 10 V s−1, and gained a capacity of 40.3 mF cm−2 (1.1 mA cm−2), which is more than 4 times higher than that of MoOx-based CMSCs (MoCMSCs60) with a single metal oxide. This is because CuMoOx BMOs materials overcome the poor electroconductivity problem of the MoOx single metal oxide. This one-step and numerically controlled fabrication technique developed in this research opens a new vision for preparing BMO materials, BMO microelectrodes, and BMO microdevices in an environmental, automatic, and intelligent way. Full article
(This article belongs to the Special Issue Microelectrodes and Microdevices for Electrochemical Applications)
Show Figures

Figure 1

72 pages, 10521 KiB  
Review
Emerging Capacitive Materials for On-Chip Electronics Energy Storage Technologies
by Bukola Jolayemi, Gaetan Buvat, Pascal Roussel and Christophe Lethien
Batteries 2024, 10(9), 317; https://doi.org/10.3390/batteries10090317 - 7 Sep 2024
Cited by 4 | Viewed by 2582
Abstract
Miniaturized energy storage devices, such as electrostatic nanocapacitors and electrochemical micro-supercapacitors (MSCs), are important components in on-chip energy supply systems, facilitating the development of autonomous microelectronic devices with enhanced performance and efficiency. The performance of the on-chip energy storage devices heavily relies on [...] Read more.
Miniaturized energy storage devices, such as electrostatic nanocapacitors and electrochemical micro-supercapacitors (MSCs), are important components in on-chip energy supply systems, facilitating the development of autonomous microelectronic devices with enhanced performance and efficiency. The performance of the on-chip energy storage devices heavily relies on the electrode materials, necessitating continuous advancements in material design and synthesis. This review provides an overview of recent developments in electrode materials for on-chip MSCs and electrostatic (micro-/nano-) capacitors, focusing on enhancing energy density, power density, and device stability. The review begins by discussing the fundamental requirements for electrode materials in MSCs, including high specific surface area, good conductivity, and excellent electrochemical stability. Subsequently, various categories of electrode materials are evaluated in terms of their charge storage mechanisms, electrochemical performance, and compatibility with on-chip fabrication processes. Furthermore, recent strategies to enhance the performance of electrode materials are discussed, including nanostructuring, doping, heteroatom incorporation, hybridization with other capacitive materials, and electrode configurations. Full article
(This article belongs to the Section Supercapacitors)
Show Figures

Figure 1

12 pages, 5090 KiB  
Article
Controllable Synthesis of Manganese Organic Phosphate with Different Morphologies and Their Derivatives for Supercapacitors
by Jingwen Zhao, Qingling Jing, Ting Zhou, Xinhuan Zhang, Wenting Li and Huan Pang
Molecules 2024, 29(17), 4186; https://doi.org/10.3390/molecules29174186 - 4 Sep 2024
Cited by 1 | Viewed by 1212
Abstract
Morphological control of metal-organic frameworks (MOFs) at the micro/nanoscopic scale is critical for optimizing the electrochemical properties of them and their derivatives. In this study, manganese organic phosphate (Mn-MOP) with three distinct two-dimensional (2D) morphologies was synthesized by varying the molar ratio of [...] Read more.
Morphological control of metal-organic frameworks (MOFs) at the micro/nanoscopic scale is critical for optimizing the electrochemical properties of them and their derivatives. In this study, manganese organic phosphate (Mn-MOP) with three distinct two-dimensional (2D) morphologies was synthesized by varying the molar ratio of Mn2+ to phenyl phosphonic acid, and one of the morphologies is a unique palm leaf shape. In addition, a series of 2D Mn-MOP derivatives were obtained by calcination in air at different temperatures. Electrochemical studies showed that 2D Mn-MOP derivative calcined at 550 °C and exhibited a superior specific capacitance of 230.9 F g−1 at 0.5 A g−1 in 3 M KOH electrolyte. The aqueous asymmetric supercapacitor and the constructed flexible solid-state device demonstrated excellent rate performance. This performance reveals the promising application of 2D Mn-MOP materials for energy storage. Full article
Show Figures

Figure 1

17 pages, 10250 KiB  
Article
Planar Micro-Supercapacitors with High Power Density Screen-Printed by Aqueous Graphene Conductive Ink
by Youchang Wang, Xiaojing Zhang, Yuwei Zhu, Xiaolu Li and Zhigang Shen
Materials 2024, 17(16), 4021; https://doi.org/10.3390/ma17164021 - 13 Aug 2024
Cited by 2 | Viewed by 1543
Abstract
Simple and scalable production of micro-supercapacitors (MSCs) is crucial to address the energy requirements of miniature electronics. Although significant advancements have been achieved in fabricating MSCs through solution-based printing techniques, the realization of high-performance MSCs remains a challenge. In this paper, graphene-based MSCs [...] Read more.
Simple and scalable production of micro-supercapacitors (MSCs) is crucial to address the energy requirements of miniature electronics. Although significant advancements have been achieved in fabricating MSCs through solution-based printing techniques, the realization of high-performance MSCs remains a challenge. In this paper, graphene-based MSCs with a high power density were prepared through screen printing of aqueous conductive inks with appropriate rheological properties. High electrical conductivity (2.04 × 104 S∙m−1) and low equivalent series resistance (46.7 Ω) benefiting from the dense conductive network consisting of the mesoporous structure formed by graphene with carbon black dispersed as linkers, as well as the narrow finger width and interspace (200 µm) originating from the excellent printability, prompted the fully printed MSCs to deliver high capacitance (9.15 mF∙cm−2), energy density (1.30 µWh∙cm−2) and ultrahigh power density (89.9 mW∙cm−2). Notably, the resulting MSCs can effectively operate at scan rates up to 200 V∙s−1, which surpasses conventional supercapacitors by two orders of magnitude. In addition, the MSCs demonstrate excellent cycling stability (91.6% capacity retention and ~100% Coulombic efficiency after 10,000 cycles) and extraordinary mechanical properties (92.2% capacity retention after 5000 bending cycles), indicating their broad application prospects in flexible wearable/portable electronic systems. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Graphical abstract

35 pages, 18128 KiB  
Article
Straightforward Production Methods for Diverse Porous PEDOT:PSS Structures and Their Characterization
by Rike Brendgen, Thomas Grethe and Anne Schwarz-Pfeiffer
Sensors 2024, 24(15), 4919; https://doi.org/10.3390/s24154919 - 29 Jul 2024
Cited by 3 | Viewed by 1722
Abstract
Porous conductive polymer structures, in particular Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) structures, are gaining in importance due to their versatile fields of application as sensors, hydrogels, or supercapacitors, to name just a few. Moreover, (porous) conducting polymers have become of interest for wearable and [...] Read more.
Porous conductive polymer structures, in particular Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) structures, are gaining in importance due to their versatile fields of application as sensors, hydrogels, or supercapacitors, to name just a few. Moreover, (porous) conducting polymers have become of interest for wearable and smart textile applications due to their biocompatibility, which enables applications with direct skin contact. Therefore, there is a huge need to investigate distinct, straightforward, and textile-compatible production methods for the fabrication of porous PEDOT:PSS structures. Here, we present novel and uncomplicated approaches to producing diverse porous PEDOT:PSS structures and characterize them thoroughly in terms of porosity, electrical resistance, and their overall appearance. Production methods comprise the incorporation of micro cellulose, the usage of a blowing agent, creating a sponge-like structure, and spraying onto a porous base substrate. This results in the fabrication of various porous structures, ranging from thin and slightly porous to thick and highly porous. Depending on the application, these structures can be modified and integrated into electronic components or wearables to serve as porous electrodes, sensors, or other functional devices. Full article
Show Figures

Graphical abstract

Back to TopTop