Preparation of Asymmetric Micro-Supercapacitors Based on Laser-Induced Graphene with Regulated Hydrophobicity and Hydrophilicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Coplanar Laser-Induced Graphene with Different Hydrophilicity and Hydrophobicity
2.3. Preparation of Electrode Materials
2.3.1. Hydrophobic Electrode Material
2.3.2. Hydrophilic Electrode Material
2.4. Preparation of LIG-Based Electrode
2.5. Preparation of PVA/H2SO4 Hydrogel Electrolyte
2.6. Assembly of AMSC
2.7. Characterizations
2.7.1. Electrochemical Measurements
2.7.2. Materials Characterization
3. Results
3.1. Characterization of LIG
3.2. Characterization of LIG-Based Electrode
3.3. Electrochemical Properties of AMSC
3.4. Application of AMSC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, R.C. Toward fully processable micro-supercapacitors. Joule 2021, 5, 2257–2258. [Google Scholar] [CrossRef]
- Kyeremateng, N.A.; Brousse, T.; Pech, D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 2017, 12, 7–15. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems. Acc. Chem. Res. 2013, 46, 1094–1103. [Google Scholar] [CrossRef]
- Gao, C.; Gu, Y.; Zhao, Y.; Qu, L. Recent Development of Integrated Systems of Microsupercapacitors. Energy Mater. Adv. 2022, 2022, 9804891. [Google Scholar] [CrossRef]
- Kim, J.; Wi, S.M.; Ahn, J.-G.; Son, S.; Lim, H.; Park, Y.; Eun, H.J.; Park, J.B.; Lim, H.; Pak, S.; et al. Engineering Geometric Electrodes for Electric Field-Enhanced High-Performance Flexible In-Plane Micro-Supercapacitors. Energy Environ. Mater. 2023, 6, e12581. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Fan, X.; Shi, X.; Liang, J. 3D-Printed Stretchable Micro-Supercapacitor with Remarkable Areal Performance. Adv. Energy Mater. 2020, 10, 1903794. [Google Scholar] [CrossRef]
- Wang, M.; Feng, S.; Bai, C.; Ji, K.; Zhang, J.; Wang, S.; Lu, Y.; Kong, D. Ultrastretchable MXene Microsupercapacitors. Small 2023, 19, 2300386. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, X.; Jiang, L.; Liang, M.; Zhang, X.; Wu, S.; Wu, J.; Tian, M.; Zhao, Y.; Qu, L. Laser maskless fast patterning for multitype microsupercapacitors. Nat. Commun. 2023, 14, 3967. [Google Scholar] [CrossRef]
- Gao, C.; You, Q.; Huang, J.; Sun, J.; Yao, X.; Zhu, M.; Zhao, Y.; Deng, T. Ultraconformable Integrated Wireless Charging Micro-Supercapacitor Skin. Nano-Micro Lett. 2024, 16, 123. [Google Scholar] [CrossRef]
- Chong, B.; Sisi, L.; Kang, J.; Menglu, W.; Desheng, K. Stretchable microbatteries and microsupercapacitors for next-generation wearable electronics. Energy Mater. 2023, 3, 300041. [Google Scholar] [CrossRef]
- Wang, S.; Ma, J.; Shi, X.; Zhu, Y.; Wu, Z.-S. Recent status and future perspectives of ultracompact and customizable micro-supercapacitors. Nano Res. Energy 2022, 1, 9120018. [Google Scholar] [CrossRef]
- Pingping, L.; Qing, L.; Rui, C.; Huibo, S.; Yu, M.; Yang, Z. Recent progress in biocompatible miniature supercapacitors. Energy Mater. 2025, 5, 500070. [Google Scholar] [CrossRef]
- Li, F.; Qu, J.; Li, Y.; Wang, J.; Zhu, M.; Liu, L.; Ge, J.; Duan, S.; Li, T.; Bandari, V.K.; et al. Stamping Fabrication of Flexible Planar Micro-Supercapacitors Using Porous Graphene Inks. Adv. Sci. 2020, 7, 2001561. [Google Scholar] [CrossRef]
- Kurra, N.; Ahmed, B.; Gogotsi, Y.; Alshareef, H.N. MXene-on-Paper Coplanar Microsupercapacitors. Adv. Energy Mater. 2016, 6, 1601372. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Su, M.; An, B.; Liu, J.; Su, D.; Li, L.; Li, F.; Song, Y. Printing assembly and structural regulation of graphene towards three-dimensional flexible micro-supercapacitors. J. Mater. Chem. A 2017, 5, 16281–16288. [Google Scholar] [CrossRef]
- Kim, D.; Shin, G.; Kang, Y.J.; Kim, W.; Ha, J.S. Fabrication of a Stretchable Solid-State Micro-Supercapacitor Array. ACS Nano 2013, 7, 7975–7982. [Google Scholar] [CrossRef]
- Sung, J.-H.; Kim, S.-J.; Lee, K.-H. Fabrication of microcapacitors using conducting polymer microelectrodes. J. Power Sources 2003, 124, 343–350. [Google Scholar] [CrossRef]
- Diao, Y.; Lu, Y.; Yang, H.; Wang, H.; Chen, H.; D’Arcy, J.M. Direct Conversion of Fe2O3 to 3D Nanofibrillar PEDOT Microsupercapacitors. Adv. Funct. Mater. 2020, 30, 2003394. [Google Scholar] [CrossRef]
- Wu, Z.-S.; Parvez, K.; Feng, X.; Müllen, K. Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers. J. Mater. Chem. A 2014, 2, 8288–8293. [Google Scholar] [CrossRef]
- Wu, Z.-S.; Yang, S.; Zhang, L.; Wagner, J.B.; Feng, X.; Müllen, K. Binder-free activated graphene compact films for all-solid-state micro-supercapacitors with high areal and volumetric capacitances. Energy Storage Mater. 2015, 1, 119–126. [Google Scholar] [CrossRef]
- Li, J.; Sollami Delekta, S.; Zhang, P.; Yang, S.; Lohe, M.R.; Zhuang, X.; Feng, X.; Östling, M. Scalable Fabrication and Integration of Graphene Microsupercapacitors through Full Inkjet Printing. ACS Nano 2017, 11, 8249–8256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; McKeon, L.; Kremer, M.P.; Park, S.-H.; Ronan, O.; Seral-Ascaso, A.; Barwich, S.; Coileáin, C.Ó.; McEvoy, N.; Nerl, H.C.; et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 2019, 10, 1795. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhou, H.; Zeng, F.; Hu, L.; Wu, X.; Song, X.; Jiang, C.; Zhang, X. All-Printed High-Performance Flexible Supercapacitors Using Hierarchical Porous Nickel–Cobalt Hydroxide Inks. ACS Appl. Energy Mater. 2022, 5, 9418–9428. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Liu, J.; Wang, G.; Pu, F.; Ganesh, A.; Tang, C.; Shi, X.; Qiao, Y.; Chen, Y.; et al. Boosting areal energy density of 3D printed all-solid-state flexible microsupercapacitors via tailoring graphene composition. Energy Storage Mater. 2020, 30, 412–419. [Google Scholar] [CrossRef]
- Hu, H.; Pei, Z.; Ye, C. Recent advances in designing and fabrication of planar micro-supercapacitors for on-chip energy storage. Energy Storage Mater. 2015, 1, 82–102. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q. Recent progress on laser fabrication of on-chip microsupercapacitors. J. Energy Storage 2021, 34, 101994. [Google Scholar] [CrossRef]
- Xie, B.; Wang, Y.; Lai, W.; Lin, W.; Lin, Z.; Zhang, Z.; Zou, P.; Xu, Y.; Zhou, S.; Yang, C.; et al. Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components. Nano Energy 2016, 26, 276–285. [Google Scholar] [CrossRef]
- Tao, Y.; Wei, C.; Liu, J.; Deng, C.; Cai, S.; Xiong, W. Nanostructured electrically conductive hydrogels obtained via ultrafast laser processing and self-assembly. Nanoscale 2019, 11, 9176–9184. [Google Scholar] [CrossRef]
- Wang, W.; Lu, L.; Xie, Y.; Yuan, W.; Wan, Z.; Tang, Y.; Teh, K.S. A Highly Stretchable Microsupercapacitor Using Laser-Induced Graphene/NiO/Co3O4 Electrodes on a Biodegradable Waterborne Polyurethane Substrate. Adv. Mater. Technol. 2020, 5, 1900903. [Google Scholar] [CrossRef]
- Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E.L.G.; Yacaman, M.J.; Yakobson, B.I.; Tour, J.M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714. [Google Scholar] [CrossRef]
- Duy, L.X.; Peng, Z.; Li, Y.; Zhang, J.; Ji, Y.; Tour, J.M. Laser-induced graphene fibers. Carbon 2018, 126, 472–479. [Google Scholar] [CrossRef]
- Le, T.-S.D.; Park, S.; An, J.; Lee, P.S.; Kim, Y.-J. Ultrafast Laser Pulses Enable One-Step Graphene Patterning on Woods and Leaves for Green Electronics. Adv. Funct. Mater. 2019, 29, 1902771. [Google Scholar] [CrossRef]
- Li, Y.; Luong, D.X.; Zhang, J.; Tarkunde, Y.R.; Kittrell, C.; Sargunaraj, F.; Ji, Y.; Arnusch, C.J.; Tour, J.M. Laser-Induced Graphene in Controlled Atmospheres: From Superhydrophilic to Superhydrophobic Surfaces. Adv. Mater. 2017, 29, 1700496. [Google Scholar] [CrossRef] [PubMed]
- Nasser, J.; Lin, J.; Zhang, L.; Sodano, H.A. Laser induced graphene printing of spatially controlled super-hydrophobic/hydrophilic surfaces. Carbon 2020, 162, 570–578. [Google Scholar] [CrossRef]
- Le, T.-S.D.; Phan, H.-P.; Kwon, S.; Park, S.; Jung, Y.; Min, J.; Chun, B.J.; Yoon, H.; Ko, S.H.; Kim, S.-W.; et al. Recent Advances in Laser-Induced Graphene: Mechanism, Fabrication, Properties, and Applications in Flexible Electronics. Adv. Funct. Mater. 2022, 32, 2205158. [Google Scholar] [CrossRef]
- Jo, S.G.; Ramkumar, R.; Lee, J.W. Recent Advances in Laser-Induced Graphene-Based Materials for Energy Storage and Conversion. ChemSusChem 2024, 17, e202301146. [Google Scholar] [CrossRef]
- Zaccagnini, P.; Lamberti, A. A perspective on laser-induced graphene for micro-supercapacitor application. Appl. Phys. Lett. 2022, 120, 100501. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, C.; Chen, Y.; Nie, Z. Research Progress on the Preparation and Applications of Laser-Induced Graphene Technology. Nanomaterials 2022, 12, 2336. [Google Scholar] [CrossRef]
- Peng, Z.; Lin, J.; Ye, R.; Samuel, E.L.G.; Tour, J.M. Flexible and Stackable Laser-Induced Graphene Supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 3414–3419. [Google Scholar] [CrossRef]
- Ma, W.; Zhu, J.; Wang, Z.; Song, W.; Cao, G. Recent advances in preparation and application of laser-induced graphene in energy storage devices. Mater. Today Energy 2020, 18, 100569. [Google Scholar] [CrossRef]
- Klem, M.d.S.; Abreu, R.; Pinheiro, T.; Coelho, J.; Alves, N.; Martins, R. Electrochemical Deposition of Manganese Oxide on Paper-Based Laser-Induced Graphene for the Fabrication of Sustainable High-Energy-Density Supercapacitors. Adv. Sustain. Syst. 2024, 8, 2400254. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Peng, Z.; Li, Y.; Gao, C.; Ji, Y.; Ye, R.; Kim, N.D.; Zhong, Q.; Yang, Y.; et al. High-Performance Pseudocapacitive Microsupercapacitors from Laser-Induced Graphene. Adv. Mater. 2016, 28, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Xi, S.; Gao, X.-W.; Cheng, X.-M.; Liu, H.-L. Deposition of MnO2 on KOH-activated laser-produced graphene for a flexible planar micro-supercapacitor. New Carbon Mater. 2023, 38, 913–924. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, M.; Lu, H.; Cai, X.; Jiao, Z.; Li, S.; Song, W. Boosting High-Performance Aqueous Zinc-Ion Hybrid Capacitors via Organic Redox Species on Laser-Induced Graphene Network. Adv. Funct. Mater. 2024, 34, 2400663. [Google Scholar] [CrossRef]
- Wang, L.; Liu, M.; Wu, Y.; Zheng, H. Asymmetrically superwetting Janus membrane constructed by laser-induced graphene (LIG) for on-demand oil–water separation and electrothermal anti-/de-icing. Chem. Eng. J. 2024, 488, 150862. [Google Scholar] [CrossRef]
- Liu, K.; Yang, C.; Zhang, S.; Wang, Y.; Zou, R.; Alamusi; Deng, Q.; Hu, N. Laser direct writing of a multifunctional superhydrophobic composite strain sensor with excellent corrosion resistance and Anti-Icing/Deicing performance. Mater. Des. 2022, 218, 110689. [Google Scholar] [CrossRef]
- Mahbub, H.; Nowrin, F.H.; Saed, M.A.; Malmali, M. Radiofrequency-triggered surface-heated laser-induced graphene membranes for enhanced membrane distillation. J. Mater. Chem. A 2025, 13, 1950–1963. [Google Scholar] [CrossRef]
- Cai, J.; Lv, C.; Watanabe, A. Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment. J. Mater. Chem. A 2016, 4, 1671–1679. [Google Scholar] [CrossRef]
- Xu, R.; Lu, H.; Zheng, Z.; Zhou, T. In Situ Laser Direct Writing of Graphene-Based Layered Hybrid Materials with Superhydrophilicity. ACS Appl. Mater. Interfaces 2025, 17, 2436–2449. [Google Scholar] [CrossRef]
- Xu, K.; Cai, Z.; Luo, H.; Lu, Y.; Ding, C.; Yang, G.; Wang, L.; Kuang, C.; Liu, J.; Yang, H. Toward Integrated Multifunctional Laser-Induced Graphene-Based Skin-Like Flexible Sensor Systems. ACS Nano 2024, 18, 26435–26476. [Google Scholar] [CrossRef]
- Chen, B.; Johnson, Z.T.; Sanborn, D.; Hjort, R.G.; Garland, N.T.; Soares, R.R.A.; Van Belle, B.; Jared, N.; Li, J.; Jing, D.; et al. Tuning the Structure, Conductivity, and Wettability of Laser-Induced Graphene for Multiplexed Open Microfluidic Environmental Biosensing and Energy Storage Devices. ACS Nano 2022, 16, 15–28. [Google Scholar] [CrossRef]
- Richard, D.; Clanet, C.; Quéré, D. Contact time of a bouncing drop. Nature 2002, 417, 811. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Tao, L.Q.; Yu, J.; Zheng, K.; Wang, G.; Chen, X. Improved Performance of Flexible Graphene Heater Based on Repeated Laser Writing. IEEE Electron Device Lett. 2020, 41, 501–504. [Google Scholar] [CrossRef]
- Mikheev, K.G.; Zonov, R.G.; Syugaev, A.V.; Bulatov, D.L.; Mikheev, G.M. The effect of line-by-line laser scanning on the properties of laser-induced graphene. Phys. Solid State 2022, 64, 579. [Google Scholar] [CrossRef]
- de la Roche, J.; López-Cifuentes, I.; Jaramillo-Botero, A. Influence of lasing parameters on the morphology and electrical resistance of polyimide-based laser-induced graphene (LIG). Carbon Lett. 2023, 33, 587–595. [Google Scholar] [CrossRef]
- Dreyfus, R.W. CN temperatures above laser ablated polyimide. Appl. Phys. A 1992, 55, 335–339. [Google Scholar] [CrossRef]
- Wei, Y.; Li, W.; Zhang, S.; Yu, J.; Tang, Y.; Wu, J.; Yu, S. Laser-Induced Porous Graphene/CuO Composite for Efficient Interfacial Solar Steam Generation. Adv. Funct. Mater. 2024, 34, 2401149. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, Y.; Sun, Y.; Sui, X.; Wang, Y.; Liang, W.; Wang, Y.; Zhu, D.; Zhao, H. Flexible superhydrophobic films with the electrothermal and photothermal response for enhanced passive anti-icing and active de-icing. Surf. Interfaces 2023, 42, 103430. [Google Scholar] [CrossRef]
- Zhang, Z.; Chang, H.; Wang, P.; Zhang, G. Rapidly one-step fabrication of durable superhydrophobic graphene surface with high temperature resistance and self-clean. J. Colloid Interface Sci. 2025, 679, 476–486. [Google Scholar] [CrossRef]
- Santos, N.F.; Pereira, S.O.; Moreira, A.; Girão, A.V.; Carvalho, A.F.; Fernandes, A.J.S.; Costa, F.M. IR and UV Laser-Induced Graphene: Application as Dopamine Electrochemical Sensors. Adv. Mater. Technol. 2021, 6, 2100007. [Google Scholar] [CrossRef]
- Wang, M.; Nam, H.K.; Yang, D.; Lee, Y.; Lu, Y.; Kim, S.-W.; Yu, L.; Kim, Y.-J. Green smart multifunctional wooden roofs enabled by single-step hydrophobic laser-induced graphene fabrication. Carbon 2024, 228, 119373. [Google Scholar] [CrossRef]
- Chang, H.; Liu, D.; Zhang, Z.; Zhang, G. Wettability, droplet impact and anti-icing performance of micro-nano hierarchical structure on Ti6Al4V surface via integrating of chemical modification and laser-induced plasma micromachining. Surf. Coat. Technol. 2024, 485, 130932. [Google Scholar] [CrossRef]
- Tahir, M.; He, L.; Li, L.; Cao, Y.; Yu, X.; Lu, Z.; Liao, X.; Ma, Z.; Song, Y. Pushing the Electrochemical Performance Limits of Polypyrrole Toward Stable Microelectronic Devices. Nano-Micro Lett. 2023, 15, 49. [Google Scholar] [CrossRef] [PubMed]
- Qu, G.; Wang, Z.; Zhang, X.; Zhao, S.; Wang, C.; Zhao, G.; Hou, P.; Xu, X. Designing flexible asymmetric supercapacitor with high energy density by electrode engineering and charge matching mechanism. Chem. Eng. J. 2022, 429, 132406. [Google Scholar] [CrossRef]
- Wang, L.; Ding, Y.; Xu, Z.; Li, J.; Guan, Y.; Yang, L.; Gu, H.; Fang, H. Picosecond ultraviolet laser patterned in-plane asymmetric micro-supercapacitors with high-precision capacity matching. Energy Storage Mater. 2024, 65, 103132. [Google Scholar] [CrossRef]
- Reina, M.; Scalia, A.; Auxilia, G.; Fontana, M.; Bella, F.; Ferrero, S.; Lamberti, A. Boosting Electric Double Layer Capacitance in Laser-Induced Graphene-Based Supercapacitors. Adv. Sustain. Syst. 2022, 6, 2100228. [Google Scholar] [CrossRef]
- Song, W.; Zhu, J.; Gan, B.; Zhao, S.; Wang, H.; Li, C.; Wang, J. Flexible, Stretchable, and Transparent Planar Microsupercapacitors Based on 3D Porous Laser-Induced Graphene. Small 2018, 14, 1702249. [Google Scholar] [CrossRef]
- Fu, X.-Y.; Shu, R.-Y.; Ma, C.-J.; Zhang, Y.-Y.; Jiang, H.-B.; Yao, M.-N. Self-assembled MXene-graphene oxide composite enhanced laser-induced graphene based electrodes towards conformal supercapacitor applications. Appl. Surf. Sci. 2023, 631, 157549. [Google Scholar] [CrossRef]
- Zhu, C.; Dong, X.; Mei, X.; Gao, M.; Wang, K.; Zhao, D. Direct laser writing of MnO2 decorated graphene as flexible supercapacitor electrodes. J. Mater. Sci. 2020, 55, 17108–17119. [Google Scholar] [CrossRef]
- Jha, S.; Mehta, S.; Chen, Y.; Renner, P.; Sankar, S.S.; Parkinson, D.; Kundu, S.; Liang, H. NiWO4 nanoparticle decorated lignin as electrodes for asymmetric flexible supercapacitors. J. Mater. Chem. C 2020, 8, 3418–3430. [Google Scholar] [CrossRef]
- Ghosh, A.; Kaur, S.; Verma, G.; Dolle, C.; Azmi, R.; Heissler, S.; Eggeler, Y.M.; Mondal, K.; Mager, D.; Gupta, A.; et al. Enhanced Performance of Laser-Induced Graphene Supercapacitors via Integration with Candle-Soot Nanoparticles. ACS Appl. Mater. Interfaces 2024, 16, 40313–40325. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.A.H.; Ghobadi, N.; Zahrabi, F. Highly conductive supercapacitor based on laser-induced graphene and silver nanowires. J. Mater. Sci. Mater. Electron. 2022, 33, 18356–18363. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, N.; Liu, X.-H.; Shang, H. High-performance N-doped activated carbon derived from walnut green peel for supercapacitors. Biomass Convers. Biorefinery 2024, 14, 14641–14651. [Google Scholar] [CrossRef]
- Zahed, M.A.; Das, P.S.; Maharjan, P.; Barman, S.C.; Sharifuzzaman, M.; Yoon, S.H.; Park, J.Y. Flexible and robust dry electrodes based on electroconductive polymer spray-coated 3D porous graphene for long-term electrocardiogram signal monitoring system. Carbon 2020, 165, 26–36. [Google Scholar] [CrossRef]
- Karade, S.S.; Raut, S.S.; Gajare, H.B.; Nikam, P.R.; Sharma, R.; Sankapal, B.R. Widening potential window of flexible solid-state supercapacitor through asymmetric configured iron oxide and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate coated multi-walled carbon nanotubes assembly. J. Energy Storage 2020, 31, 101622. [Google Scholar] [CrossRef]
- Stott, A.; Tas, M.O.; Matsubara, E.Y.; Masteghin, M.G.; Rosolen, J.M.; Sporea, R.A.; Silva, S.R.P. Exceptional rate capability from carbon-encapsulated polyaniline supercapacitor electrodes. Energy Environ. Mater. 2020, 3, 389–397. [Google Scholar] [CrossRef]
- Song, Z.; Duan, H.; Li, L.; Zhu, D.; Cao, T.; Lv, Y.; Xiong, W.; Wang, Z.; Liu, M.; Gan, L. High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5 V gel-type electrolyte. Chem. Eng. J. 2019, 372, 1216–1225. [Google Scholar] [CrossRef]
Hydrophobic LIG | Hydrophilic LIG | |
---|---|---|
Focal length (cm) | 26.15 | 26.15 |
Scanning rate (mm/s) | 10 | 10 |
Frequency (kHz) | 72 | 74 |
Filling method | Horizontal direction | Horizontal + vertical direction |
Line spacing (mm) | 0.01 | 0.01 |
Hydrophobic LIG | Hydrophilic LIG | |
---|---|---|
C | 80.9% | 81.3% |
N | 6.4% | 1.7% |
O | 12.7% | 17.0% |
Hydrophobic LIG | Hydrophilic LIG | |
---|---|---|
C-C sp2 | 64.7% | 79.8% |
C-N | 15.5% | / |
C-O | 11.5% | 13.8% |
O-C=O | 4.9% | / |
π-π* shake-up | 3.5% | 6.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Wu, W.; Luo, P.; Yu, H.; Wang, J.; Chen, R.; Zhao, Y. Preparation of Asymmetric Micro-Supercapacitors Based on Laser-Induced Graphene with Regulated Hydrophobicity and Hydrophilicity. Nanomaterials 2025, 15, 584. https://doi.org/10.3390/nano15080584
Liu Q, Wu W, Luo P, Yu H, Wang J, Chen R, Zhao Y. Preparation of Asymmetric Micro-Supercapacitors Based on Laser-Induced Graphene with Regulated Hydrophobicity and Hydrophilicity. Nanomaterials. 2025; 15(8):584. https://doi.org/10.3390/nano15080584
Chicago/Turabian StyleLiu, Qing, Wenpeng Wu, Pingping Luo, Hao Yu, Jiaqi Wang, Rui Chen, and Yang Zhao. 2025. "Preparation of Asymmetric Micro-Supercapacitors Based on Laser-Induced Graphene with Regulated Hydrophobicity and Hydrophilicity" Nanomaterials 15, no. 8: 584. https://doi.org/10.3390/nano15080584
APA StyleLiu, Q., Wu, W., Luo, P., Yu, H., Wang, J., Chen, R., & Zhao, Y. (2025). Preparation of Asymmetric Micro-Supercapacitors Based on Laser-Induced Graphene with Regulated Hydrophobicity and Hydrophilicity. Nanomaterials, 15(8), 584. https://doi.org/10.3390/nano15080584