Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (143)

Search Parameters:
Keywords = metatranscriptome sequencing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4116 KiB  
Article
Taxonomic and Functional Profiling of Bacterial Communities in Leather Biodegradation: Insights into Metabolic Pathways and Diversity
by Manuela Bonilla-Espadas, Marcelo Bertazzo, Irene Lifante-Martinez, Mónica Camacho, Elena Orgilés-Calpena, Francisca Arán-Aís and María-José Bonete
Bacteria 2025, 4(3), 37; https://doi.org/10.3390/bacteria4030037 - 1 Aug 2025
Viewed by 181
Abstract
Leather biodegradation is a complex microbial process with increasing relevance for sustainable waste management. In this study, we investigated bacterial communities responsible for the degradation of leather treated with different tanning agents (chrome, Zeolite, Biole®) using high-throughput 16S rRNA gene sequencing [...] Read more.
Leather biodegradation is a complex microbial process with increasing relevance for sustainable waste management. In this study, we investigated bacterial communities responsible for the degradation of leather treated with different tanning agents (chrome, Zeolite, Biole®) using high-throughput 16S rRNA gene sequencing and metatranscriptomic analysis. Proteobacteria, Bacteroidetes, and Patescibacteria emerged as the dominant phyla, while genera such as Acinetobacter, Pseudomonas, and Sphingopyxis were identified as key contributors to enzymatic activity and potential metal resistance. A total of 1302 enzymes were expressed across all the conditions, including 46 proteases, with endopeptidase La, endopeptidase Clp, and methionyl aminopeptidase being the most abundant. Collagen samples exhibited the highest functional diversity and total enzyme expression, whereas chrome-treated samples showed elevated protease activity, indicating selective pressure from heavy metals. Differential enzyme expression patterns were linked to both the microbial identity and tanning chemistry, revealing genus- and treatment-specific enzymatic signatures. These findings deepen our understanding of how tanning agents modulate the microbial structure and function and identify proteases with potential applications in the bioremediation and eco-innovation of leather waste processing. Full article
Show Figures

Figure 1

20 pages, 3758 KiB  
Article
Metagenomic Sequencing Revealed the Effects of Different Potassium Sulfate Application Rates on Soil Microbial Community, Functional Genes, and Yield in Korla Fragrant Pear Orchard
by Lele Yang, Xing Shen, Linsen Yan, Jie Li, Kailong Wang, Bangxin Ding and Zhongping Chai
Agronomy 2025, 15(7), 1752; https://doi.org/10.3390/agronomy15071752 - 21 Jul 2025
Viewed by 412
Abstract
Potassium fertilizer management is critical for achieving high yields of Korla fragrant pear, yet current practices often overlook or misuse potassium inputs. In this study, a two-year field experiment (2023–2024) was conducted with 7- to 8-year-old pear trees using four potassium levels (0, [...] Read more.
Potassium fertilizer management is critical for achieving high yields of Korla fragrant pear, yet current practices often overlook or misuse potassium inputs. In this study, a two-year field experiment (2023–2024) was conducted with 7- to 8-year-old pear trees using four potassium levels (0, 75, 150, and 225 kg/hm2). Metagenomic sequencing was employed to assess the effects on soil microbial communities, sulfur cycle functional genes, and fruit yield. Potassium treatments significantly altered soil physicochemical properties, the abundance of sulfur cycle functional genes, and fruit yield (p < 0.05). Increasing application rates significantly elevated soil-available potassium and organic matter while reducing pH (p < 0.05). Although alpha diversity was unaffected, NMDS analysis revealed differences in microbial community composition under different treatments. Functional gene analysis showed a significant decreasing trend in betB abundance, a peak in hpsO under K150, and variable patterns for soxX and metX across treatments (p < 0.05). All potassium applications significantly increased yield relative to CK, with K150 achieving the highest yield (p < 0.05). PLS-PM analysis indicated significant positive associations between potassium rate, nutrient availability, microbial abundance, sulfur cycling, and yield, and a significant negative association with pH (p < 0.05). These results provide a foundation for optimizing potassium fertilizer strategies in Korla fragrant pear orchards. It is recommended that future studies combine metagenomic and metatranscriptomic approaches to further elucidate the mechanisms linking potassium-driven microbial functional changes to improvements in fruit quality. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

19 pages, 4441 KiB  
Article
Short-Term Probiotic Colonization Alters Molecular Dynamics of 3D Oral Biofilms
by Nadeeka S. Udawatte, Chun Liu, Reuben Staples, Pingping Han, Purnima S. Kumar, Thiruma V. Arumugam, Sašo Ivanovski and Chaminda J. Seneviratne
Int. J. Mol. Sci. 2025, 26(13), 6403; https://doi.org/10.3390/ijms26136403 - 3 Jul 2025
Cited by 1 | Viewed by 1680
Abstract
Three-dimensional (3D) scaffold systems have proven instrumental in advancing our understanding of polymicrobial biofilm dynamics and probiotic interactions within the oral environment. Among oral probiotics, Streptococcus salivarius K12 (Ssk12) has shown considerable promise in modulating microbial homeostasis; however, its long-term therapeutic [...] Read more.
Three-dimensional (3D) scaffold systems have proven instrumental in advancing our understanding of polymicrobial biofilm dynamics and probiotic interactions within the oral environment. Among oral probiotics, Streptococcus salivarius K12 (Ssk12) has shown considerable promise in modulating microbial homeostasis; however, its long-term therapeutic benefits are contingent upon successful and sustained colonization of the oral mucosa. Despite its clinical relevance, the molecular mechanisms underlying the adhesion, persistence, and integration of Ssk12 into the native oral microbiome/biofilm remain inadequately characterized. In this pilot study, we explored the temporal colonization dynamics of Ssk12 and its impact on the structure and functional profiles of salivary-derived biofilms cultivated on melt-electrowritten poly(ε-caprolactone) (MEW-mPCL) scaffolds, which emulate the native oral niche. Colonization was monitored via fluorescence in situ hybridization (smFISH), confocal microscopy, and RT-qPCR, while shifts in community composition and function were assessed using 16S rRNA sequencing and meta-transcriptomics. A single administration of Ssk12 exhibited transient colonization lasting up to 7 days, with detectable presence diminishing by day 10. This was accompanied by short-term increases in Lactobacillus and Bifidobacterium populations. Functional analyses revealed increased transcriptional signatures linked to oxidative stress resistance and metabolic adaptation. These findings suggest that even short-term probiotic colonization induces significant functional changes, underscoring the need for strategies to enhance probiotic persistence. Full article
Show Figures

Figure 1

20 pages, 1845 KiB  
Article
Meta-Transcriptomic Response to Copper Corrosion in Drinking Water Biofilms
by Jingrang Lu, Ian Struewing and Nicholas J. Ashbolt
Microorganisms 2025, 13(7), 1528; https://doi.org/10.3390/microorganisms13071528 - 30 Jun 2025
Viewed by 496
Abstract
Drinking water biofilm ecosystems harbor complex and dynamic prokaryotic and eukaryotic microbial communities. However, little is known about the impact of copper corrosion on microbial community functions in metabolisms and resistance. This study was conducted to evaluate the impact of upstream Cu pipe [...] Read more.
Drinking water biofilm ecosystems harbor complex and dynamic prokaryotic and eukaryotic microbial communities. However, little is known about the impact of copper corrosion on microbial community functions in metabolisms and resistance. This study was conducted to evaluate the impact of upstream Cu pipe materials on downstream viable community structures, pathogen populations, and metatranscriptomic responses of the microbial communities in drinking water biofilms. Randomly transcribed cDNA was generated and sequenced from downstream biofilm samples of either unplasticized polyvinylchloride (PVC) or Cu coupons. Diverse viable microbial organisms with enriched pathogen-like organisms and opportunistic pathogens were active in those biofilm samples. Cu-influenced tubing biofilms had a greater upregulation of genes associated with potassium (K) metabolic pathways (i.e., K-homeostasis, K-transporting ATPase, and transcriptional attenuator), and a major component of the cell wall of mycobacteria (mycolic acids) compared to tubing biofilms downstream of PVC. Other upregulated genes on Cu influenced biofilms included those associated with stress responses (various oxidative resistance genes), biofilm formation, and resistance to toxic compounds. Downregulated genes included those associated with membrane proteins responsible for ion interactions with potassium; respiration–electron-donating reactions; RNA metabolism in eukaryotes; nitrogen metabolism; virulence, disease, and defense; and antibiotic resistance genes. When combined with our previous identification of biofilm community differences, our studies reveal how microbial biofilms adapt to Cu plumbing conditions by fine-tuning gene expression, altering metabolic pathways, and optimizing their structural organization. This study offers new insights into how copper pipe materials affect the development and composition of biofilms in premise plumbing. Specifically, it highlights copper’s role in inhibiting the growth of many microbes while also contributing to the resistance of some microbes within the drinking water biofilm community. Full article
Show Figures

Graphical abstract

18 pages, 3168 KiB  
Article
Ammonium-Generating Microbial Consortia in Paddy Soil Revealed by DNA-Stable Isotope Probing and Metatranscriptomics
by Chao-Nan Wang, Yoko Masuda and Keishi Senoo
Microorganisms 2025, 13(7), 1448; https://doi.org/10.3390/microorganisms13071448 - 21 Jun 2025
Viewed by 568
Abstract
Rice paddy fields are sustainable agricultural systems as soil microorganisms help maintain nitrogen fertility through generating ammonium. In these soils, dissimilatory nitrate reduction to ammonium (DNRA), nitrogen fixation, and denitrification are closely linked. DNRA and denitrification share the same initial steps and nitrogen [...] Read more.
Rice paddy fields are sustainable agricultural systems as soil microorganisms help maintain nitrogen fertility through generating ammonium. In these soils, dissimilatory nitrate reduction to ammonium (DNRA), nitrogen fixation, and denitrification are closely linked. DNRA and denitrification share the same initial steps and nitrogen gas, the end product of denitrification, can serve as a substrate for nitrogen fixation. However, the microorganisms responsible for these three reductive nitrogen transformations, particularly those focused on ammonium generation, have not been comprehensively characterized. In this study, we used stable isotope probing with 15NO3, 15N2O, and 15N2, combined with 16S rRNA high-throughput sequencing and metatranscriptomics, to identify ammonium-generating microbial consortia in paddy soils. Our results revealed that several bacterial families actively contribute to ammonium generation under different nitrogen substrate conditions. Specifically, Geobacteraceae (N2O and +N2), Bacillaceae (+NO3 and +N2), Rhodocyclaceae (+N2O and +N2), Anaeromyxobacteraceae (+NO3 and +N2O), and Clostridiaceae (+NO3 and +N2) were involved. Many of these bacteria participate in key ecological processes typical of paddy environments, including iron or sulfate reduction and rice straw decomposition. This study revealed the ammonium-generating microbial consortia in paddy soil that contain several key bacterial drivers of multiple reductive nitrogen transformations and suggested their diverse functions in paddy soil metabolism. Full article
Show Figures

Figure 1

24 pages, 1816 KiB  
Review
A Systematic Review on Microbial Profiling Techniques in Goat Milk: Implications for Probiotics and Shelf-Life
by Nare Jessica Monareng, Keabetswe T. Ncube, Charles van Rooi, Mamokoma C. Modiba and Bohani Mtileni
Int. J. Mol. Sci. 2025, 26(12), 5551; https://doi.org/10.3390/ijms26125551 - 10 Jun 2025
Viewed by 856
Abstract
Due to its high digestibility, rich nutrient profile, and potential probiotic content, goat milk is an essential nutritional resource, particularly for individuals with cow milk allergies. This review summarises the current state of microbial diversity in goat milk, emphasising the implications for quality, [...] Read more.
Due to its high digestibility, rich nutrient profile, and potential probiotic content, goat milk is an essential nutritional resource, particularly for individuals with cow milk allergies. This review summarises the current state of microbial diversity in goat milk, emphasising the implications for quality, safety, and probiotic potential. This systematic review adhered to PRISMA guidelines, conducting a comprehensive literature search across PubMed, ScienceDirect, and Google Scholar using keywords related to microbial profiling in goat milk. The inclusion criteria targeted English-language studies from 2000 to 2025 that utilised high-throughput or next-generation sequencing methods. Out of 126 articles screened, 84 met the eligibility criteria. The extracted data focused on microbial diversity, profiling techniques, and their respective strengths and limitations in evaluating probiotic potential and spoilage risks. The review addresses the challenges linked to microbial spoilage and the composition and functional roles of microbial communities in goat milk. With species such as Bacillus and Pseudomonas playing crucial roles in fermentation and spoilage, key findings emphasise the prevalence of microbial phyla, including Proteobacteria, Firmicutes, and Actinobacteria in goat milk. The review also explores the probiotic potential of the goat milk microbiota, highlighting the health benefits associated with strains such as Lactobacillus and Bifidobacterium. Significant discoveries underline the necessity for advanced multi-omics techniques to thoroughly define microbial ecosystems and the substantial gaps in breed-specific microbiota research. Important findings illustrate the need for enhanced multi-omics techniques, given the challenges of host RNA and protein interference, low microbial biomass, and limited goat-specific reference databases, for optimising probiotic development, spoilage prevention strategies, and integrating metagenomics, metabolomics, metaproteomics, and metatranscriptomics to improve milk quality and safety as some of the future research objectives. This study emphasises the importance of understanding goat milk microbiology to advance dairy science and enhance human health. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

22 pages, 3123 KiB  
Article
Multiomics-Based Profiling of the Fecal Microbiome Reveals Potential Disease-Specific Signatures in Pediatric IBD (PIBD)
by Anita H. DeSantis, Kristina Buss, Keaton M. Coker, Brad A. Pasternak, Jinhua Chi, Jeffrey S. Patterson, Haiwei Gu, Peter W. Jurutka and Todd R. Sandrin
Biomolecules 2025, 15(5), 746; https://doi.org/10.3390/biom15050746 - 21 May 2025
Viewed by 1339
Abstract
Inflammatory bowel disease (IBD), which includes Crohn’s Disease (CD) and Ulcerative Colitis (UC), is a chronic gastrointestinal (GI) disorder affecting 1 in 100 people in the United States. Pediatric IBD (PIBD) is estimated to impact 15 per 100,000 children in North America. Factors [...] Read more.
Inflammatory bowel disease (IBD), which includes Crohn’s Disease (CD) and Ulcerative Colitis (UC), is a chronic gastrointestinal (GI) disorder affecting 1 in 100 people in the United States. Pediatric IBD (PIBD) is estimated to impact 15 per 100,000 children in North America. Factors such as the gut microbiome (GM), genetic predisposition to the disease, and certain environmental factors are thought to be involved in pathogenesis. However, the pathophysiology of IBD is incompletely understood, and diagnostic biomarkers and effective treatments, particularly for PIBD, are limited. Recent work suggests that these factors may interact to influence disease development, and multiomic approaches have emerged as promising tools to elucidate the pathophysiology. We employed metagenomics, metabolomics- and metatranscriptomics-based approaches to examine the microbiome, its genetic potential, and its activity to identify factors associated with PIBD. Metagenomics-based analyses revealed pathways such as octane oxidation and glycolysis that were differentially expressed in UC patients. Additionally, metatranscriptomics-based analyses suggested enrichment of glycan degradation and two component systems in UC samples as well as protein processing in the endoplasmic reticulum, ribosome, and protein export in CD and UC samples. In addition, metabolomics-based approaches revealed patterns of differentially abundant metabolites between healthy and PIBD individuals. Interestingly, overall microbiome community composition (as measured by alpha and beta diversity indices) did not appear to be associated with PIBD. However, we observed a small number of differentially abundant taxa in UC versus healthy controls, including members of the Classes Gammaproteobacteria and Clostridia as well as members of the Family Rikenellaceae. Accordingly, when identifying potential biomarkers for PIBD, our results suggest that multiomics-based approaches afford enhanced potential to detect putative biomarkers for PIBD compared to microbiome community composition sequence data alone. Full article
Show Figures

Figure 1

21 pages, 4015 KiB  
Article
Characterizing the Endophytic Microbiome and Microbial Functional Assemblages Associated with Fengtang Plum (Prunus salicina Lindl.) Development and Resistance
by Jiqing Lei, Yinna Shi, Hong Li and Rui Wang
Horticulturae 2025, 11(5), 483; https://doi.org/10.3390/horticulturae11050483 - 30 Apr 2025
Viewed by 547
Abstract
Fengtang plum, a novel cultivar recently developed in China, has gained huge popularity due to its large fruit size, crisp sweetness, distinctive aroma, and notable resistance to brown rot caused by Monilinia spp. To investigate microbial community dynamics during fruit development, we analyzed [...] Read more.
Fengtang plum, a novel cultivar recently developed in China, has gained huge popularity due to its large fruit size, crisp sweetness, distinctive aroma, and notable resistance to brown rot caused by Monilinia spp. To investigate microbial community dynamics during fruit development, we analyzed samples from three phenological stages: fruit-setting (BSP1), veraison (BSP2), and maturity (BSP3). Our results demonstrated stage-specific microbial succession patterns: alpha diversity indices (observed species, ACE, PD_whole_tree) significantly increased at BSP2/BSP3 versus BSP1, accompanied by diverging Shannon index trends between bacteria (progressive enhancement) and fungi (stage-dependent reduction). Bacterial communities maintained Proteobacteria and Firmicutes dominance while accumulating low-abundance species (18.06–61.84%), whereas Ascomycota constituted the persistent fungal phylum with Trichoderma, reaching 95.91% dominance at BSP3. Community differentiation primarily arose from stage-specific bacteria Ralstonia, Brevundimonas, and Limnobacter, and dominant fungi Trichoderma and Cladosporium. Bacterial metabolic shifts were predicted to transition from basic energy production to complex organic/aromatic compound utilization, contrasting with fungal transitions from pathogen–saprophyte competition to saprophytic dominance. While the enrichment of Lactobacillus and Trichoderma during mid-to-late stages may suggest potential associations with aromatic compound production and fungal pathogen resistance, these hypotheses require validation through targeted metabolomics and pathogen challenge experiments. This study elucidates microbial community succession patterns during Fengtang plum development; notably, functional predictions were inferred from 16S/ITS sequencing data rather than direct metagenomic or metatranscriptomic analyses, thus limiting mechanistic interpretations, though future work integrating multi-omics approaches would strengthen functional insights. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

10 pages, 1638 KiB  
Communication
Optimization of Mapping Tools and Investigation of Ribosomal RNA Influence for Data-Driven Gene Expression Analysis in Complex Microbiomes
by Ryo Mameda and Hidemasa Bono
Microorganisms 2025, 13(5), 995; https://doi.org/10.3390/microorganisms13050995 - 26 Apr 2025
Viewed by 471
Abstract
For gene expression analysis in complex microbiomes, utilizing both metagenomic and metatranscriptomic reads from the same sample enables advanced functional analysis. Due to their diversity, metagenomic contigs are often used as reference sequences instead of complete genomes. However, studies optimizing mapping strategies for [...] Read more.
For gene expression analysis in complex microbiomes, utilizing both metagenomic and metatranscriptomic reads from the same sample enables advanced functional analysis. Due to their diversity, metagenomic contigs are often used as reference sequences instead of complete genomes. However, studies optimizing mapping strategies for both read types remain limited. In addition, although transcripts per million (TPM) is commonly used for normalization, few studies have evaluated the influence of ribosomal RNA (rRNA) in metatranscriptomic reads. This study compared Burrows–Wheeler Aligner–Maximal Exact Match (BWA-MEM) and Bowtie2 as mapping tools for metagenomic contigs. Even after optimizing Bowtie2 parameters, BWA-MEM showed higher efficiency in mapping both metagenomic and metatranscriptomic reads. Further analysis revealed that rRNA sequences contaminate predicted protein-coding regions in metagenomic contigs. When comparing TPM values across samples, contamination by rRNA led to an overestimation of TPM changes. This effect was more pronounced when the difference in rRNA content between samples was larger. These findings suggest that metatranscriptomic reads mapped to rRNA should be excluded before TPM calculations. This study highlights key factors influencing read mapping and quantification in gene expression analysis of complex microbiomes. The findings provide insights for improving analytical accuracy and advancing functional studies using both metagenomic and metatranscriptomic data. Full article
Show Figures

Figure 1

42 pages, 1014 KiB  
Review
The Gut Mycobiome for Precision Medicine
by Islam El Jaddaoui, Sofia Sehli, Najib Al Idrissi, Youssef Bakri, Lahcen Belyamani and Hassan Ghazal
J. Fungi 2025, 11(4), 279; https://doi.org/10.3390/jof11040279 - 2 Apr 2025
Cited by 3 | Viewed by 2414
Abstract
The human gastrointestinal tract harbors a vast array of microorganisms, which play essential roles in maintaining metabolic balance and immune function. While bacteria dominate the gut microbiome, fungi represent a much smaller, often overlooked fraction. Despite their relatively low abundance, fungi may significantly [...] Read more.
The human gastrointestinal tract harbors a vast array of microorganisms, which play essential roles in maintaining metabolic balance and immune function. While bacteria dominate the gut microbiome, fungi represent a much smaller, often overlooked fraction. Despite their relatively low abundance, fungi may significantly influence both health and disease. Advances in next-generation sequencing, metagenomics, metatranscriptomics, metaproteomics, metabolomics, and computational biology have provided novel opportunities to study the gut mycobiome, shedding light on its composition, functional genes, and metabolite interactions. Emerging evidence links fungal dysbiosis to various diseases, including inflammatory bowel disease, colorectal cancer, metabolic disorders, and neurological conditions. The gut mycobiome also presents a promising avenue for precision medicine, particularly in biomarker discovery, disease diagnostics, and targeted therapeutics. Nonetheless, significant challenges remain in effectively integrating gut mycobiome knowledge into clinical practice. This review examines gut fungal microbiota, highlighting analytical methods, associations with human diseases, and its potential role in precision medicine. It also discusses pathways for clinical translation, particularly in diagnosis and treatment, while addressing key barriers to implementation. Full article
(This article belongs to the Special Issue Gut Mycobiome, 2nd Edition)
Show Figures

Figure 1

13 pages, 1251 KiB  
Article
Two Avastrovirus Species Discovered in Psittaciformes Expand the Host Range of the Family Astroviridae
by K9 Jenns, John-Sebastian Eden, Annabelle Olsson and David Phalen
Viruses 2025, 17(3), 450; https://doi.org/10.3390/v17030450 - 20 Mar 2025
Viewed by 609
Abstract
Metatranscriptomics has recently revealed greater species richness and host range of the Avastrovirus genus, quadrupling the number of avian orders known to host them in less than a decade. Despite this growing awareness of astrovirus presence in wild birds, limited attention has been [...] Read more.
Metatranscriptomics has recently revealed greater species richness and host range of the Avastrovirus genus, quadrupling the number of avian orders known to host them in less than a decade. Despite this growing awareness of astrovirus presence in wild birds, limited attention has been paid to these viruses in the context of disease in Australian avifauna. Here we used unbiased RNA sequencing of intestinal samples from a galah (Eolophus roseicapilla) and an Australian king parrot (Alisterus scapularis) with a chronic diarrhoeal and wasting disease to detect the entire genomes of two novel astrovirus species. We propose naming these viruses Avastrovirus eolorosei (PQ893528) and Avastrovirus aliscap (PQ893527). The phylogenetic positions of these viruses highlight the importance of current and future metatranscriptomic virus screening in investigations of avian host landscapes beyond Galloanserae. This is also the first documentation of avastrovirus infections in Psittaciformes and the first to report their potential role as disease agents in them. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

33 pages, 1407 KiB  
Article
Detection and In Vivo Validation of Dichorhavirus e-Probes in Meta-Transcriptomic Data via Microbe Finder (MiFi®) Discovers a Novel Host and a Possible New Strain of Orchid Fleck Virus
by Avijit Roy, Jonathan Shao, Andres S. Espindola, Daniel Ramos Lopez, Gabriel Otero-Colina, Yazmín Rivera, Vessela A. Mavrodieva, Mark K. Nakhla, William L. Schneider and Kitty Cardwell
Viruses 2025, 17(3), 441; https://doi.org/10.3390/v17030441 - 19 Mar 2025
Cited by 1 | Viewed by 677
Abstract
Dichorhavirus is a recently accepted plant virus genus within the family Rhabdoviridae. Species assigned to the genus consist of bi-segmented, negative sense, single-stranded RNA viruses and are transmitted by Brevipalpus spp. Currently, there are five recognized species and two unclassified members in [...] Read more.
Dichorhavirus is a recently accepted plant virus genus within the family Rhabdoviridae. Species assigned to the genus consist of bi-segmented, negative sense, single-stranded RNA viruses and are transmitted by Brevipalpus spp. Currently, there are five recognized species and two unclassified members in the genus Dichorhavirus. Four out of seven-orchid fleck virus (OFV), citrus leprosis virus N, citrus chlorotic spot virus, and citrus bright spot virus-can infect citrus and produce leprosis disease-like symptoms. The E-probe Diagnostic for Nucleic Acid Analysis (EDNA) was developed to reduce computational effort and then integrated within Microbe-Finder (MiFi®) online platform to design and evaluate e-probes in raw High Throughput Sequencing (HTS) data. During this study, Dichorhavirus genomes were downloaded from public databases and e-probes were designed using the MiProbe incorporated into the MiFi® platform. Three different sizes of e-probes, 40, 60, and 80 nucleotides, were developed and selected based on whole genome comparisons with near-neighbor genomes. For curation, each e-probe was searched in the NCBI nucleotide sequence database using BLASTn. All the e-probes that had hits with non-target species with ≥90% identities were removed. The sensitivity and specificity of Dichorhavirus genus, species, strain, and variant-specific e-probes were validated in vivo using HTS meta-transcriptomic libraries generated from Dichorhavirus-suspected citrus, orchid, and ornamentals. Through downstream analysis of HTS data, EDNA not only detected the known hosts of OFV but also discovered an unknown host leopard plant (Farfugium japonicum), and the possible existence of a new ornamental strain of OFV in nature. Full article
(This article belongs to the Special Issue The World of Rhabdoviruses)
Show Figures

Figure 1

14 pages, 2605 KiB  
Case Report
Case Report: Shift from Aggressive Periodontitis to Feline Chronic Gingivostomatitis Is Linked to Increased Microbial Diversity
by Claire A. Shaw, Maria Soltero-Rivera, Rodrigo Profeta and Bart C. Weimer
Pathogens 2025, 14(3), 228; https://doi.org/10.3390/pathogens14030228 - 26 Feb 2025
Cited by 1 | Viewed by 976
Abstract
Aggressive Periodontitis (AP) and Feline Chronic Gingivostomatitis (FCGS) are two oral inflammatory diseases in cats with unknown etiology. Both conditions present with severe inflammation of the oral cavity and in FCGS it is found with additional deterioration of the non-keratinized mucosa. The oral [...] Read more.
Aggressive Periodontitis (AP) and Feline Chronic Gingivostomatitis (FCGS) are two oral inflammatory diseases in cats with unknown etiology. Both conditions present with severe inflammation of the oral cavity and in FCGS it is found with additional deterioration of the non-keratinized mucosa. The oral microbiome is increasingly implicated in disease progression, but little is known about shifts in the microbial community during the AP and FCGS progression. To that end, we used deep metagenomic sequencing with total RNA on three longitudinal samples of the oral microbiome in a cat first diagnosed with AP that progressed to FCGS. This deep sequencing approach revealed that increased diversity at both the genus and species levels marked the shift from AP to FCGS, including increases in Porphyromonas and Treponema species, and decreased Streptobacillus species. The metatranscriptomes were then probed for expression of antimicrobial resistance genes and virulence factors. Disease-related genes that include cheY, and ompP5 were expressed in early AP and FCGS, while others like galU were only expressed in one or the other disease state. Both genus and species-level shifts were observed along the longitudinal microbiome samples with a noted increase in species diversity in the FCGS-associated microbiome. Corroborating that functional shifts accompany taxonomic changes, the AMR and virulence factor expression similarly changed between the sampling points. Together, these taxonomic and functional shifts indicate that AP and FCGS are potentially linked and may be marked by changes in the oral microbiome, which supports the development of microbial-based clinical diagnostics and therapeutics. Full article
Show Figures

Figure 1

14 pages, 2748 KiB  
Article
Identification of Mycoviruses in Cytospora chrysosperma: Potential Biocontrol Agents for Walnut Canker
by Yingjie Mi, Shaohua Chen, Kexin Liu, Zhanjiang Tie, Junchao Ren, Mingli Zhang, Zheng Liu, Sifeng Zhao, Hui Xi and Xuekun Zhang
Viruses 2025, 17(2), 180; https://doi.org/10.3390/v17020180 - 26 Jan 2025
Viewed by 1114
Abstract
Walnut canker is a common disease in the Xinjiang Uygur autonomous region of China, which is caused by Cytospora chrysosperma. To date, there is no effective control measure for this disease. Infection with mycoviruses has been widely proven to reduce the virulence [...] Read more.
Walnut canker is a common disease in the Xinjiang Uygur autonomous region of China, which is caused by Cytospora chrysosperma. To date, there is no effective control measure for this disease. Infection with mycoviruses has been widely proven to reduce the virulence of plant pathogenic fungi, with some mycoviruses even serving as potential biological control agents for plant diseases. In this study, mycoviruses associated with 31 strains of C. chrysosperma from Xinjiang Uygur autonomous region were identified by metatranscriptomic sequencing. Seven new mycoviruses were identified by BLAST and RT-PCR analysis, which were Botrytis cinerea partitivirus 5 (BcPV5), Gammapartitivirus sp-XJ1 (GVsp-XJ1), Botoulivirus sp-XJ2 (BVsp-XJ2), Luoyang Fusar tick virus 2 (LfTV2), Leptosphaeria biglobosa narnavirus 17 (LbNV17), Sclerotinia sclerotiorum narnavirus 6 (SsNV6), and Cytospora ribis mitovirus (CrMV3). Among these, BcPV5, GVsp-XJ1, BVsp-XJ2, CrMV3, and LfTV2 were found to co-infect C. chrysosperma strain WS-11 and significantly reduce both the colony growth rate and virulence of the host. After co-culturing the virus-free WS-FV strain with WS-11, the colony growth rate and virulence of the derivative strain were also decreased. These results provide potential biocontrol resources for the control of walnut canker. Full article
(This article belongs to the Collection Mycoviruses)
Show Figures

Figure 1

21 pages, 5403 KiB  
Article
Integrated Analysis of Metatranscriptome and Amplicon Sequencing to Reveal Distinctive Rhizospheric Microorganisms of Salt-Tolerant Rice
by Wenna Meng, Zhenling Zhou, Mingpu Tan, Anqi Liu, Shuai Liu, Jiaxue Wang, Zhiguang Sun, Yiluo Tan, Yan Liu, Baoxiang Wang and Yanming Deng
Plants 2025, 14(1), 36; https://doi.org/10.3390/plants14010036 - 26 Dec 2024
Cited by 3 | Viewed by 1126
Abstract
Salt stress poses a significant constraint on rice production, so further exploration is imperative to elucidate the intricate molecular mechanisms governing salt tolerance in rice. By manipulating the rhizosphere microbial communities or targeting specific microbial functions, it is possible to enhance salt tolerance [...] Read more.
Salt stress poses a significant constraint on rice production, so further exploration is imperative to elucidate the intricate molecular mechanisms governing salt tolerance in rice. By manipulating the rhizosphere microbial communities or targeting specific microbial functions, it is possible to enhance salt tolerance in crops, improving crop yields and food security in saline environments. In this study, we conducted rice rhizospheric microbial amplicon sequencing and metatranscriptome analysis, revealing substantial microbiomic differences between the salt-tolerant rice cultivar TLJIAN and the salt-sensitive HUAJING. Fungal taxa including Hormiactis, Emericellopsis, Ceriosporopsis, Dirkmeia, and Moesziomyces predominated in the rhizosphere of salt-tolerant rice, while bacterial genera such as Desulfoprunum and Hydrogenophaga exhibited notable differences. Metatranscriptomic analysis identified 7192 differentially expressed genes (DEGs) in the two rice varieties, with 3934 genes being upregulated and 3258 genes being downregulated. Enrichment analyses in KEGG and GO pathways highlighted the majority of DEGs were associated with the “two-component system”, “sulfur metabolism”, and “microbial metabolism in diverse environments”. The interaction network of DEGs and microbial taxa revealed upregulation of transporters, transcriptional factors, and chaperones, such as ABC transporters and chaperonin GroEL, in the rhizosphere microbiomes of salt-tolerant varieties. Our multi-omics network analysis unveiled that fungi like Ceriosporopsis and Dirkmeria, along with bacteria such as Desulfoprunum, Rippkaea, and Bellilinea, showed a positive correlation with flavonoid synthesis in salt-tolerant rice. This study provides an in-depth exploration of the distinctive microbial communities associated with the rhizosphere of salt-tolerant rice varieties, shedding light on the complex interactions between these microbial consortia and their host plants under stress conditions. Full article
(This article belongs to the Special Issue Physiological and Molecular Responses for Stress Tolerance in Rice)
Show Figures

Figure 1

Back to TopTop