Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (394)

Search Parameters:
Keywords = metals in pore water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 9212 KiB  
Review
Advanced Materials-Based Nanofiltration Membranes for Efficient Removal of Organic Micropollutants in Water and Wastewater Treatment
by Haochun Wei, Haibiao Nong, Li Chen and Shiyu Zhang
Membranes 2025, 15(8), 236; https://doi.org/10.3390/membranes15080236 - 5 Aug 2025
Abstract
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration [...] Read more.
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration (NF) technologies have emerged as a promising solution for water and wastewater treatment. This review begins by examining the sources of OMPs, as well as the risk of OMPs. Subsequently, the key criteria of NF membranes for OMPs are discussed, with a focus on the roles of pore size, charge property, molecular interaction, and hydrophilicity in the separation performance. Against that background, this review summarizes and analyzes recent advancements in materials such as metal organic frameworks (MOFs), covalent organic frameworks (COFs), graphene oxide (GO), MXenes, hybrid materials, and environmentally friendly materials. It highlights the porous nature and structural diversity of organic framework materials, the advantage of inorganic layered materials in forming controllable nanochannels through stacking, the synergistic effects of hybrid materials, and the importance of green materials. Finally, the challenges related to the performance optimization, scalable fabrication, environmental sustainability, and complex separation of advanced materials-based membranes for OMP removal are discussed, along with future research directions and potential breakthroughs. Full article
Show Figures

Figure 1

16 pages, 6440 KiB  
Article
Effect of Calcium Sulfate and Silica Gel on Vanadium Leaching Characteristics from Vanadium Titanomagnetite via Calcification Roasting–Sulfuric Acid Leaching: Formation Mechanism and Process Enhancement
by Jianli Chen, Yu Zheng, Benliu He, Shuzhong Chen, Shuai Wang, Feng Chen, Shiyuan Cui, Jing Liu, Lingzhi Yang, Yufeng Guo and Guanzhou Qiu
Metals 2025, 15(8), 870; https://doi.org/10.3390/met15080870 (registering DOI) - 3 Aug 2025
Viewed by 130
Abstract
Compared with vanadium extraction by sodium roasting followed by water leaching, the calcification roasting–sulfuric acid leaching method is considered a promising approach for the comprehensive utilization of vanadium titanomagnetite, as it avoids the introduction of alkali metals. However, during vanadium extraction by sulfuric [...] Read more.
Compared with vanadium extraction by sodium roasting followed by water leaching, the calcification roasting–sulfuric acid leaching method is considered a promising approach for the comprehensive utilization of vanadium titanomagnetite, as it avoids the introduction of alkali metals. However, during vanadium extraction by sulfuric acid heap leaching, the diffusion of leaching reagents and leaching products was hindered by the deposition of leaching solid products. To address this issue, this study systematically investigated the leaching kinetics and the mechanisms underlying the deposition of leaching solid products. The results indicated that vanadium leaching was governed by a combination of liquid film diffusion and internal diffusion through solid-phase products during days 0–2, and by internal diffusion alone from day 2 to day 9. The primary solid products formed during leaching were calcium sulfate and silica gel. Calcium sulfate precipitated and grew within the pore via two-dimensional nucleation, while silicates formed silica gel through dehydration. By optimizing the sulfuric acid leaching conditions—specifically, maintaining an H+ concentration of 2 mol/L, a leaching temperature of 40 °C, and a liquid-to-solid ratio of 5:1—the formation of calcium sulfate and silica gel was effectively suppressed. Under these conditions, the vanadium leaching efficiency reached 75.82%. Full article
(This article belongs to the Section Extractive Metallurgy)
20 pages, 4676 KiB  
Article
Adsorption of Pb2+ and Cd2+ from Aqueous Solutions by Porous Carbon Foam Derived from Biomass Phenolic Resin
by Jianwei Ling, Yu Gao, Ruiling Wang, Shiyu Lu, Xuemei Li, Shouqing Liu and Jianxiang Liu
Int. J. Mol. Sci. 2025, 26(15), 7302; https://doi.org/10.3390/ijms26157302 - 28 Jul 2025
Viewed by 208
Abstract
Due to its lightweight and superior adsorption properties, carbon foam is frequently employed for the removal of heavy metal pollutants from aqueous solutions. In this study, a novel modified carbon foam (M-CF) was successfully synthesized for the effective removal of Pb2+ and [...] Read more.
Due to its lightweight and superior adsorption properties, carbon foam is frequently employed for the removal of heavy metal pollutants from aqueous solutions. In this study, a novel modified carbon foam (M-CF) was successfully synthesized for the effective removal of Pb2+ and Cd2+ from water. The synthesis involved partially substituting phenol with the liquefaction product of bamboo powder, followed by modification with a silane coupling agent (KH560) and foaming with n-hexane-loaded activated carbon (H/AC). The prepared carbon foam was comprehensively characterized, and its adsorption performance and mechanism for Pb2+ and Cd2+ in aqueous solution were investigated. The results showed that M-CF possessed a uniform and well-developed spherical pore structure and demonstrated excellent removal capacity for Cd2+ and Pb2+. The adsorption process conformed to the Sips isotherm model and the pseudo-second-order kinetic equation, with maximum adsorption capacities of 22.15 mg·g−1 and 61.59 mg·g−1 for Cd2+ and Pb2+, respectively. Mechanistic analysis revealed that the removal of Cd2+ and Pb2+ was a result of the synergistic effect of physisorption and chemisorption, accompanied by complexation. Furthermore, precipitates formed during the adsorption process were found to be mainly composed of hydroxides, carbonates, and PbS. This research demonstrates the efficacy of carbon foam prepared from bamboo powder waste as a partial phenol substitute for the efficient removal of Pb2+ and Cd2+ from water, thus expanding the preparation pathways for novel heavy metal adsorption materials. Full article
Show Figures

Figure 1

14 pages, 2099 KiB  
Article
A Turn-On Fluorescence Sensor Based on Guest-Induced Luminescence Ru(bpy)32+@UiO-66 for the Detection of Organophosphorus Pesticides
by Jun Li, Jianlan Deng, Qian Tao, Chenyu Yan, Yuxuan Liu, Jianxiao Yang and Zhong Cao
Molecules 2025, 30(15), 3130; https://doi.org/10.3390/molecules30153130 - 25 Jul 2025
Viewed by 258
Abstract
Luminescent metal–organic frameworks (MOFs) are used for the detection of organophosphorus pesticides (OPs) due to their large surface area and pore volume as well as their special optical properties. However, most self-luminescent MOFs are not only complex to synthesize and unstable in water [...] Read more.
Luminescent metal–organic frameworks (MOFs) are used for the detection of organophosphorus pesticides (OPs) due to their large surface area and pore volume as well as their special optical properties. However, most self-luminescent MOFs are not only complex to synthesize and unstable in water but also feature a “turn-off” sensing system, which has highly restricted their practical applications in OP detection. Herein, a “turn-on” fluorescence sensor based on the guest-induced luminescence MOF Ru(bpy)32+@UiO-66 was constructed, which realized the sensitive detection of OPs through a dual-enzyme system for the first time. Compared with self-luminescent MOFs, Ru(bpy)32+@UiO-66 was not only more easily synthesized but also had higher chemical and photostability in water. In this strategy, by means of the hydrolysis of AChE and ChOx, H2O2 will be produced, which can oxidize Fe2+ to Fe3+, thereby quenching the fluorescence of Ru(bpy)32+@UiO-66. In the presence of OPs, the activity of AChE can be inhibited, resulting in the inability to generate H2O2 and Fe3+, which will turn on the fluorescence signal of Ru(bpy)32+@UiO-66. As a result, the Ru(bpy)32+@UiO-66 sensing system not only had high sensitivity for OPs detection but also possessed a satisfactory detection recovery rate for parathion-methyl in real samples, which provides a new approach for OP detection in food safety as well as environmental monitoring. Full article
Show Figures

Graphical abstract

14 pages, 3187 KiB  
Article
Characterizations of Electrospun PVDF-Based Mixed Matrix Membranes with Nanomaterial Additives
by Haya Taleb, Venkatesh Gopal, Sofian Kanan, Raed Hashaikeh, Nidal Hilal and Naif Darwish
Nanomaterials 2025, 15(15), 1151; https://doi.org/10.3390/nano15151151 - 25 Jul 2025
Viewed by 349
Abstract
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. [...] Read more.
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. This work ultimately aims to develop a novel permselective polymeric membrane material to be employed in an electrochemical desalination system. This part of the study addresses the optimization, preparation, and characterization of a polyvinylidene difluoride (PVDF) polymeric membrane using the electrospinning technique. The membranes produced in this work were fabricated under specific operational, environmental, and material parameters. Five different additives and nano-additives, i.e., graphene oxide (GO), carbon nanotubes (CNTs), zinc oxide (ZnO), activated carbon (AC), and a zeolitic imidazolate metal–organic framework (ZIF-8), were used to modify the functionality and selectivity of the prepared PVDF membranes. Each membrane was synthesized at two different levels of additive composition, i.e., 0.18 wt.% and 0.45 wt.% of the entire PVDF polymeric solution. The physiochemical properties of the prepared membranes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential, contact angle, conductivity, porosity, and pore size distribution. Based on findings of this study, PVDF/GO membrane exhibited superior results, with an electrical conductivity of 5.611 mS/cm, an average pore size of 2.086 µm, and a surface charge of −38.33 mV. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

37 pages, 2969 KiB  
Review
Carbon Aerogels: Synthesis, Modification, and Multifunctional Applications
by Liying Li, Guiyu Jin, Jian Shen, Mengyan Guo, Jiacheng Song, Yiming Li and Jian Xiong
Gels 2025, 11(7), 548; https://doi.org/10.3390/gels11070548 - 15 Jul 2025
Viewed by 600
Abstract
Amidst global imperatives for sustainable energy and environmental remediation, carbon aerogels (CAs) present a transformative alternative to conventional carbon materials (e.g., activated carbon, carbon fibers), overcoming limitations of disordered pore structures, unmodifiable surface chemistry, and functional inflexibility. This review systematically examines CA-based electrochemical [...] Read more.
Amidst global imperatives for sustainable energy and environmental remediation, carbon aerogels (CAs) present a transformative alternative to conventional carbon materials (e.g., activated carbon, carbon fibers), overcoming limitations of disordered pore structures, unmodifiable surface chemistry, and functional inflexibility. This review systematically examines CA-based electrochemical systems as its primary focus, analyzing fundamental charge-storage mechanisms and establishing structure–property–application relationships critical to energy storage performance. We critically assess synthesis methodologies, emphasizing how stage-specific parameters govern structural/functional traits, and detail multifunctional modification strategies (e.g., heteroatom doping, composite engineering) that enhance electrochemical behavior through pore architecture optimization, surface chemistry tuning, and charge-transfer kinetics acceleration. Electrochemical applications are extensively explored, including the following: 1. Energy storage: supercapacitors (dual EDLC/pseudocapacitive mechanisms) and battery hybrids. 2. Electrocatalysis: HER, OER, ORR, and CO2 reduction reaction (CO2RR). 3. Electrochemical processing: capacitive deionization (CDI) and electrosorption. Beyond this core scope, we briefly acknowledge CA versatility in ancillary domains: environmental remediation (heavy metal removal, oil/water separation), flame retardancy, microwave absorption, and CO2 capture. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

18 pages, 6926 KiB  
Article
Effect of Cerium Nitrate Content on the Performance of Ce(III)/CF/BN/EPN Heat Exchanger Coatings
by Yongbo Yan, Jirong Wu, Mingxing Liu, Qinghua Meng, Jing Zhou, Danyang Feng, Yi Li, Zhijie Xie, Jinyang Li, Xinhui Jiang, Jun Tang, Xuezhi Shi and Jianfeng Zhang
Coatings 2025, 15(7), 818; https://doi.org/10.3390/coatings15070818 - 13 Jul 2025
Viewed by 248
Abstract
This study investigates the influence of cerium nitrate (Ce(NO3)3·6H2O) content on the performance of Ce(III)/CF/BN/EPN coatings intended for heat exchangers. A series of Ce(III)/carbon fibre (CF)/boron nitride (BN)/epoxy phenolic (EPN) coatings are fabricated with varying concentrations of [...] Read more.
This study investigates the influence of cerium nitrate (Ce(NO3)3·6H2O) content on the performance of Ce(III)/CF/BN/EPN coatings intended for heat exchangers. A series of Ce(III)/carbon fibre (CF)/boron nitride (BN)/epoxy phenolic (EPN) coatings are fabricated with varying concentrations of Ce(NO3)3·6H2O. The results of SEM and EDS show that the dissolution of cerium nitrate in acetone due to the particulate form causes it to be distributed in a diffuse state in the coating. This diffuse distribution does not significantly alter the porosity or structural morphology of the coating. With the increase in cerium nitrate content, both the EIS test results and mechanical damage tests indicate a progressive improvement in the corrosion resistance and self-healing properties of the coatings, while the thermal conductivity (TC) remains largely unaffected. The Ce in the coating reacts with the water molecules penetrating into the coating to generate Ce2O3 and CeO2 with protective properties to fill the permeable pores inside the coating or to form a passivation film at the damaged metal–coating interface, which enhances the anticorrosive and self-repairing properties of the coating. However, the incorporation of Ce(NO3)3·6H2O does not change the distribution structure of the filler inside the coating. As a result, the phonon propagation path, rate, and distance remain unchanged, leading to negligible variation in the thermal conductivity. Therefore, at a cerium nitrate content of 2.5 wt%, the coating exhibits the best overall performance, characterised by a |Z|0.1Hz value of 6.08 × 109 Ω·cm2 and a thermal conductivity of approximately 1.4 W/(m·K). Full article
Show Figures

Figure 1

24 pages, 5788 KiB  
Review
Removal of Tetracycline from Water by Biochar: Mechanisms, Challenges, and Future Perspectives
by Lin Zhang, Wentao Yang, Yonglin Chen and Liyu Yang
Water 2025, 17(13), 1960; https://doi.org/10.3390/w17131960 - 30 Jun 2025
Viewed by 589
Abstract
Tetracycline (TC) is widely used in medicine and livestock farming. TC is difficult to degrade and tends to persist and accumulate in aquatic environments, and it has gradually become an emerging pollutant. Biochar (BC) has strong potential for removing TC from water. This [...] Read more.
Tetracycline (TC) is widely used in medicine and livestock farming. TC is difficult to degrade and tends to persist and accumulate in aquatic environments, and it has gradually become an emerging pollutant. Biochar (BC) has strong potential for removing TC from water. This potential arises from its excellent surface properties, low-cost raw materials, and renewable nature. However, raw biomass materials are highly diverse, and their preparation conditions vary significantly. Modification methods differ in specificity and the application scenarios are complex. These factors collectively cause unstable TC removal efficiency by biochar. The chemical activation process using KOH/H3PO4 significantly enhanced porosity and surface functionality, transforming raw biochar into an activated carbon material with targeted adsorption capacity. Adjusting the application dosage and environmental factors (particularly pH) further enhanced the removal performance. Solution pH critically governs the adsorption efficiency: optimal conditions (pH 5–7) increased removal by 35–40% through strengthened electrostatic attraction, whereas acidic/alkaline extremes disrupted ionizable functional groups. The dominant adsorption mechanisms of biochar involved π–π interactions, pore filling, hydrophobic interactions, hydrogen bonding, electrostatic interactions, and surface complexation. In addition, the main challenges currently hindering the large-scale application of biochar for the removal of TC from water are highlighted: (i) secondary pollution risks of biochar application from heavy metals, persistent free radicals, and toxic organic leaching; (ii) economic–environmental conflicts due to high preparation/modification costs; and (iii) performance gaps between laboratory studies and real water applications. Full article
Show Figures

Figure 1

24 pages, 18983 KiB  
Article
Multi-Factor Analysis and Graded Remediation Strategy for Goaf Stability in Underground Metal Mines: Fluid–Solid Coupling Simulation and Genetic Algorithm-Based Optimization Approach
by Xuzhao Yuan, Xiaoquan Li, Xuefeng Li, Tianlong Su, Han Du and Danhua Zhu
Symmetry 2025, 17(7), 1024; https://doi.org/10.3390/sym17071024 - 30 Jun 2025
Viewed by 286
Abstract
To ensure the green, safe, and efficient extraction of mineral resources and promote sustainability, the stability of mined-out areas has become a critical factor affecting safe production and ecological restoration in underground metal mines. The instability of underground goafs poses a significant threat [...] Read more.
To ensure the green, safe, and efficient extraction of mineral resources and promote sustainability, the stability of mined-out areas has become a critical factor affecting safe production and ecological restoration in underground metal mines. The instability of underground goafs poses a significant threat to mine safety, especially when irregular excavation patterns interact with high ground stress, exacerbating instability risks. Most existing studies lack a systematic and multidisciplinary integrated framework for comprehensive evaluation and management. This paper proposes a trinity research system of “assessment–optimization–governance”, integrating theoretical analysis, three-dimensional fluid–solid coupling numerical simulation, and a filling sequence optimization method based on genetic algorithms. An analysis of data measured from 243 pillars and 49 goafs indicates that approximately 20–30% of the pillars have a factor of safety (FoS) below 1.0, signaling immediate instability risks; additionally, 58% do not meet the threshold for long-term stability (FoS ≥ 1.5). Statistical and spatial analyses highlight that pillar width-to-height ratio (W/H) and cross-sectional area significantly influence stability; when W/H exceeds 1.5, FoS typically surpasses 2.0. Numerical simulations reveal pore water pressures of 1.4–1.8 MPa in deeper goafs, substantially reducing effective stress and accelerating plastic zone expansion. Stability classification categorizes the 49 goafs into 7 “poor”, 37 “moderate”, and 5 “good” zones. A genetic algorithm-optimized filling sequence prioritizes high-risk area remediation, reducing maximum principal stress by 60.96% and pore pressure by 28.6%. Cemented waste rock filling applied in high-risk areas, complemented by general waste rock filling in moderate-risk areas, significantly enhances overall stability. This integrated method provides a scientific foundation for stability assessment and dynamic remediation planning under complex hydrogeological conditions, offering a risk-informed and scenario-specific application of existing tools that improves engineering applicability. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

19 pages, 5729 KiB  
Article
Highly Engineered Cr-In/H-SSZ-39 Catalyst for Enhanced Performance in CH4-SCR of NOx
by Jiuhu Zhao, Jingjing Jiang, Guanyu Chen, Meng Wang, Xiaoyuan Zuo, Yanjiao Bi and Rongshu Zhu
Molecules 2025, 30(13), 2691; https://doi.org/10.3390/molecules30132691 - 21 Jun 2025
Viewed by 367
Abstract
The selective catalytic reduction of NOx with CH4 (CH4-SCR) holds the potential to simultaneously abate harmful NOx and CH4 greenhouse gases. In this study, a series of bimetallic M-In/H-SSZ-39 catalysts (where M represents Cr, Co, Ce, and [...] Read more.
The selective catalytic reduction of NOx with CH4 (CH4-SCR) holds the potential to simultaneously abate harmful NOx and CH4 greenhouse gases. In this study, a series of bimetallic M-In/H-SSZ-39 catalysts (where M represents Cr, Co, Ce, and Fe) were prepared via an ion exchange method and subsequently evaluated for their CH4-SCR activity. The influences of the preparation parameters, including the metal ion concentration and calcination temperature, as well as the operating conditions, such as the CH4/NO ratio, O2 concentration, water vapor content, and gas hourly space velocity (GHSV), on the catalytic activity of the optimal Cr-In/H-SSZ-39 catalyst were meticulously examined. The results revealed that the Cr-In/H-SSZ-39 catalyst exhibited peak CH4-SCR catalytic performance when the Cr(NO3)3 concentration was 0.0075 M, the In(NO3)3 concentration was 0.066 M, and the calcination temperature was 500 °C. Under optimal operating conditions, namely GHSV of 10,000 h−1, 400 ppm NO, 800 ppm CH4, 15 vol% O2, and 6 vol% H2O, the NOx conversion rate reached 93.4%. To shed light on the excellent performance of Cr-In/H-SSZ-39 under humid conditions, a comparative analysis of the crystalline phase, chemical composition, pore structure, surface chemical state, surface acidity, and redox properties of Cr-In/H-SSZ-39 and In/H-SSZ-39 was conducted. The characterization results indicated that the incorporation of Cr into In/H-SSZ-39 enhanced its acidity and also facilitated the generation of InO+ active species, which promoted the oxidation of NO and the activation of CH4, respectively. A synergistic effect was observed between Cr and In species, which significantly improved the redox properties of the catalyst. Consequently, the activated CH4 could further interact with InO+ to produce carbon-containing intermediates such as HCOO, which ultimately reacted with nitrate-based intermediates to yield N2, CO2, and H2O. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis for Sustainability and Carbon-Neutrality)
Show Figures

Figure 1

15 pages, 3020 KiB  
Article
Metal Oxide-Modified PES Membranes for Efficient Separation of Oil-in-Water Emulsions and Trace Organic Compounds
by Jinze Li, Wensheng Yang, Yang Xu, Chengfeng Sun, Yingying Zhu and Geng Chen
Catalysts 2025, 15(6), 604; https://doi.org/10.3390/catal15060604 - 19 Jun 2025
Viewed by 512
Abstract
The efficient removal of emulsified oil and trace organic pollutants via forward osmosis (FO) technology remains challenging due to limited water flux and membrane fouling. In this study, a series of metal oxide-modified PES-based composite FO membranes were fabricated and systematically evaluated to [...] Read more.
The efficient removal of emulsified oil and trace organic pollutants via forward osmosis (FO) technology remains challenging due to limited water flux and membrane fouling. In this study, a series of metal oxide-modified PES-based composite FO membranes were fabricated and systematically evaluated to compare the effects of ZnO, Al2O3, and CuO nanoparticles on membrane structure and separation performance. The results demonstrated that the membrane modified with 0.04 g of ZnO nanoparticles achieved optimal synergy in terms of hydrophilicity, surface charge, and pore structure. The pure water flux increased from 5.48 L·m−2·h−1 for the pristine membrane to 18.5 L·m−2·h−1 for the ZnO-modified membrane, exhibiting a 237.5% increase in pure water flux compared to the pristine PES membrane, an oil rejection rate exceeding 97%, and over 95% rejection of typical negatively charged trace organic pollutants such as ibuprofen and tetracycline. Moreover, the ZnO-modified membrane showed excellent antifouling performance and structural stability in various organic solvent systems. This study not only optimized the interfacial chemistry and microstructure of the FO membrane but also enhanced pollutant repellence and the self-cleaning capability through increased hydrophilicity and surface negative charge density. These findings highlight the significant potential of ZnO modification for enhancing the overall performance of FO membranes and provide an effective strategy for developing high-performance, broadly applicable FO membranes for complex water purification. Full article
Show Figures

Graphical abstract

29 pages, 5717 KiB  
Review
Alkali-Activated Materials Reinforced via Fibrous Biochar: Modification Mechanisms, Environmental Benefits, and Challenges
by Yukai Wang, Kai Zheng, Lilin Yang, Han Li, Yang Liu, Ning Xie and Guoxiang Zhou
J. Compos. Sci. 2025, 9(6), 298; https://doi.org/10.3390/jcs9060298 - 11 Jun 2025
Viewed by 764
Abstract
Alkali-activated materials, as a low-carbon cementitious material, are widely known for their excellent durability and mechanical properties. In recent years, the modification of alkali-activated materials using biochar has gradually attracted attention. Fibrous biochar has a highly porous structure and large specific surface area, [...] Read more.
Alkali-activated materials, as a low-carbon cementitious material, are widely known for their excellent durability and mechanical properties. In recent years, the modification of alkali-activated materials using biochar has gradually attracted attention. Fibrous biochar has a highly porous structure and large specific surface area, which can effectively adsorb alkaline ions in alkali-activated materials, thereby improving their pore structure and density. Additionally, the surface of the biochar contains abundant functional groups and chemically reactive sites. These can interact with the active components in alkali-activated materials, forming stable composite phases. This interaction further enhances the material’s mechanical strength and durability. Moreover, the incorporation of biochar endows alkali-activated materials with special adsorption capabilities and environmental remediation functions. For instance, they can adsorb heavy metal ions and organic pollutants from water, offering significant environmental benefits. However, research on biochar-modified alkali-activated materials is still in the exploratory phase. There are several challenges, such as the unclear mechanisms of how biochar preparation conditions and performance parameters affect the modification outcomes, and the need for further investigation into the compatibility and long-term stability of biochar with alkali-activated materials. Future research should focus on these issues to promote the widespread application of biochar-modified alkali-activated materials. Full article
Show Figures

Figure 1

14 pages, 2703 KiB  
Article
Evaluation of Heavy Metal Adsorption Efficiency of Biochars Derived from Agricultural Waste
by Velyana Georgieva, Lenia Gonsalvesh, Sonia Mileva, Mariyana Hamanova and Hyusein Yemendzhiev
Biomass 2025, 5(2), 33; https://doi.org/10.3390/biomass5020033 - 3 Jun 2025
Cited by 1 | Viewed by 933
Abstract
This study investigates the potential of biochars derived from agricultural waste biomass for the removal of heavy metal ions from aqueous solutions. Biochars were produced via slow pyrolysis at 793 K using almond shells (AS), walnut shells (WS), pistachio shells (PS), and rice [...] Read more.
This study investigates the potential of biochars derived from agricultural waste biomass for the removal of heavy metal ions from aqueous solutions. Biochars were produced via slow pyrolysis at 793 K using almond shells (AS), walnut shells (WS), pistachio shells (PS), and rice husks (RH) as feedstocks. The physicochemical properties and adsorption performance of the resulting materials were evaluated with respect to Cd(II), Mn(II), Co(II), Ni(II), Zn(II), total Iron (Fetot), total Arsenic (Astot), and total Chromium (Crtot) in model solutions. Surface morphology, porosity, and surface chemistry of the biochars were characterized by scanning electron microscopy (SEM), nitrogen adsorption at 77 K (for specific surface area and pore structure), Fourier-transform infrared spectroscopy (FTIR), and determination of the point of zero charge (pHpzc). Based on their textural properties, biochars derived from WS, PS, and AS were classified as predominantly microporous, while RH-derived biochar exhibited mesoporous characteristics. The highest Brunauer–Emmett–Teller (SBET) surface area was recorded for PS biochar, while RH biochar showed the lowest. The pistachio shell biochar exhibited the highest specific surface area (440 m2/g), while the rice husk biochar was predominantly mesoporous. Batch adsorption experiments were conducted at 25 °C, with an adsorbent dose of 3 g/L and a contact time of 24 h. The experiments in multicomponent systems revealed removal efficiencies exceeding 87% for all tested metals, with maximum values reaching 99.9% for Cd(II) and 97.5% for Fetot. The study highlights strong correlations between physicochemical properties and sorption performance, demonstrating the suitability of these biochars as low-cost sorbents for complex water treatment applications. Full article
Show Figures

Figure 1

17 pages, 1897 KiB  
Review
Zeolite Imidazole Frame-67 (ZIF-67) and Its Derivatives for Pollutant Removal in Water: A Review
by Lei Chen, Pan Li, Ke Li, Songying Zhao, Miaomiao Chen, Wenbo Pan, Yu Liu and Zeyu Li
Processes 2025, 13(6), 1724; https://doi.org/10.3390/pr13061724 - 31 May 2025
Viewed by 918
Abstract
Water pollution, driven by industrial wastewater, agricultural runoff, and domestic sewage, introduces organic pollutants (e.g., dyes and antibiotics) and heavy metal ions (e.g., Pb2⁺ and Cr(VI)), threatening ecosystems and human health. Although traditional water treatment technologies have now matured, they still [...] Read more.
Water pollution, driven by industrial wastewater, agricultural runoff, and domestic sewage, introduces organic pollutants (e.g., dyes and antibiotics) and heavy metal ions (e.g., Pb2⁺ and Cr(VI)), threatening ecosystems and human health. Although traditional water treatment technologies have now matured, they still have some deficiencies in terms of specific pollutants. Metal–organic frameworks (MOFs), particularly zeolite imidazole frame-67 (ZIF-67)—a cobalt-based MOF with high surface area, tunable pores, and robust chemical stability—show excellent adsorption capacity for pollutants and have emerged as promising candidates for water treatment due to their efficacy in adsorption, catalysis, and photocatalysis. This review examines ZIF-67’s synthesis, functionalization strategies, and applications in removing organic pollutants and heavy metals. It explores its mechanisms, composite designs, and recyclability, while highlighting challenges and future directions for developing efficient, sustainable water treatment technologies. Full article
Show Figures

Figure 1

12 pages, 2936 KiB  
Article
Synthesis of Well-Crystallized Cu-Rich Layered Double Hydroxides and Improved Catalytic Performances for Water–Gas Shift Reaction
by Shicheng Liu, Yinjie Hu, Qian Zhang, Xia Tan, Haonan Cui, Fei Li, Huibin Lei and Ou Zhuo
Catalysts 2025, 15(6), 546; https://doi.org/10.3390/catal15060546 - 30 May 2025
Viewed by 566
Abstract
Cu-based layered double hydroxides (LDH) have been extensively employed as catalyst precursors. However, due to the Jahn–Teller effect of copper ions, it is a challenge to synthesize well-crystallized LDH with a high Cu content, which usually contains considerable CuO impurity. By adding competitive [...] Read more.
Cu-based layered double hydroxides (LDH) have been extensively employed as catalyst precursors. However, due to the Jahn–Teller effect of copper ions, it is a challenge to synthesize well-crystallized LDH with a high Cu content, which usually contains considerable CuO impurity. By adding competitive ligands during the coprecipitation process, such as glycine, a well-crystallized Cu-rich LDH with less CuO impurity was successfully synthesized. The Cu-Mg-Al mixed oxides derived from the well-crystallized Cu-rich LDH have relatively high SBET, large pore volume, and well dispersion of Cu nanoparticles. The derived catalyst exhibited unexpectedly high catalytic activity in the water–gas shift (WGS) reaction, and the mass-specific reaction rate was reached as high as 33.5 μmolCO·gcat1·s−1 at 200 °C. The high catalytic activity of this catalyst may originate from the high SBET and well dispersion of Cu particles and metal oxides. Moreover, the derived catalyst also displayed outstanding long-term stability in the WGS reaction, which should benefit from the enhanced metal–support interaction. Full article
(This article belongs to the Special Issue Sustainable Catalysis for Green Chemistry and Energy Transition)
Show Figures

Figure 1

Back to TopTop