Removal of Tetracycline from Water by Biochar: Mechanisms, Challenges, and Future Perspectives
Abstract
1. Introduction
2. Biochar Surface Characteristics
3. Methods for Modifying Biochar to Remove TC
3.1. Physical Modification
3.1.1. Heat-Treated Micropores
3.1.2. Ball Milling
3.1.3. Steam Activation
3.2. Chemical Modification
3.2.1. Acid–Base Modification
3.2.2. Heteroatom Codoping Modification
3.2.3. Magnetic Modification
4. Analysis of the Effects of Biochar on the Removal of TC from Water
4.1. Influence of Different Biomass Feedstocks, Preparation Conditions, and Modification Methods on the TC Removal Effect
4.2. Influence of the Environmental Factors of the Application Scenarios on the TC Removal Effect
4.2.1. pH
4.2.2. Coexisting Cations/Anions
4.2.3. Dissolved Organic Matter
5. Mechanisms of Modified BC Adsorption to TC
5.1. π–π Interactions
5.2. Electrostatic Interactions
5.3. Hydrogen Bonding
5.4. Pore Filling
5.5. Surface Complexation
5.6. Hydrophobic Interactions
6. Present Knowledge Gaps
6.1. Risk of Secondary Contamination of Raw Charcoal
6.2. Economic–Environmental Efficiency Conflicts
6.3. Laboratory–Actual Water Efficiency Deviation
7. Conclusions and Prospects
- (i).
- Secondary pollution risks of biochar
- (ii).
- Economic–environmental trade-offs
- (iii).
- Lab-to-field performance gaps
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Zhang, G.; Liu, Y.; Lu, S.; Qin, P.; Guo, X.; Bi, B.; Wang, L.; Xi, B.; Wu, F.; et al. Occurrence and fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing, China. Environ. Pollut. 2019, 246, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Pena, A.; Paulo, M.; Silva, L.J.G.; Seifrtová, M.; Lino, C.M.; Solich, P. Tetracycline antibiotics in hospital and municipal wastewaters: A pilot study in Portugal. Anal. Bioanal. Chem. 2010, 396, 2929–2936. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, X.; Feng, C.; Songtao, Z. Technologies for the Removal of Antibiotics in the Environment: A Review. Int. J. Electrochem. Sci. 2022, 17, 220768. [Google Scholar] [CrossRef]
- Kafaei, R.; Papari, F.; Seyedabadi, M.; Sahebi, S.; Tahmasebi, R.; Ahmadi, M.; Sorial, G.A.; Asgari, G.; Ramavandi, B. Occurrence, distribution, and potential sources of antibiotics pollution in the water-sediment of the northern coastline of the Persian Gulf, Iran. Sci. Total Environ. 2018, 627, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef]
- Leichtweis, J.; Vieira, Y.; Welter, N.; Silvestri, S.; Dotto, G.L.; Carissimi, E. A review of the occurrence, disposal, determination, toxicity and remediation technologies of the tetracycline antibiotic. Process Saf. Environ. 2022, 160, 25–40. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, J.; Lu, C.; Liao, Q.; Gudda, F.O.; Ling, W. Antibiotics in animal manure and manure-based fertilizers: Occurrence and ecological risk assessment. Chemosphere 2020, 255, 127006. [Google Scholar] [CrossRef]
- Li, S.; Hofstra, N.; van de Schans, M.G.M.; Yang, J.; Li, Y.; Zhang, Q.; Ma, L.; Strokal, M.; Kroeze, C.; Chen, X.; et al. Riverine Antibiotics from Animal Production and Wastewater. Environ. Sci. Technol. Lett. 2023, 10, 1059–1067. [Google Scholar] [CrossRef]
- Li, S.; Zhu, Y.; Zhong, G.; Huang, Y.; Jones, K.C. Comprehensive Assessment of Environmental Emissions, Fate, and Risks of Veterinary Antibiotics in China: An Environmental Fate Modeling Approach. Environ. Sci. Technol. 2024, 58, 5534–5547. [Google Scholar] [CrossRef]
- Pham, D.K.; Chu, J.; Do, N.T.; Brose, F.; Degand, G.; Delahaut, P.; De Pauw, E.; Douny, C.; Nguyen, K.V.; Vu, T.D.; et al. Monitoring Antibiotic Use and Residue in Freshwater Aquaculture for Domestic Use in Vietnam. Ecohealth 2015, 12, 480–489. [Google Scholar] [CrossRef]
- Kang, H.; Lee, S.; Shin, D.; Jeong, J.; Hong, J.; Rhee, G. Occurrence of veterinary drug residues in farmed fishery products in South Korea. Food Control 2018, 85, 57–65. [Google Scholar] [CrossRef]
- Shimizu, A.; Takada, H.; Koike, T.; Takeshita, A.; Saha, M.; Rinawati; Nakada, N.; Murata, A.; Suzuki, T.; Suzuki, S.; et al. Ubiquitous occurrence of sulfonamides in tropical Asian waters. Sci. Total Environ. 2013, 452, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Chen, B.; Nie, X.; Shi, Z.; Huang, X.; Li, X. The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China. Chemosphere 2013, 92, 1410–1416. [Google Scholar] [CrossRef] [PubMed]
- Faleye, A.C.; Adegoke, A.A.; Ramluckan, K.; Bux, F.; Stenström, T.A. Antibiotic Residue in the Aquatic Environment: Status in Africa. Open Chem. 2018, 16, 890–903. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P. Tetracycline antibiotics in the environment: A review. Environ. Chem. Lett. 2013, 11, 209–227. [Google Scholar] [CrossRef]
- Amangelsin, Y.; Semenova, Y.; Dadar, M.; Aljofan, M.; Bjørklund, G. The Impact of Tetracycline Pollution on the Aquatic Environment and Removal Strategies. Antibiotics 2023, 12, 440. [Google Scholar] [CrossRef]
- Yan, C.; Yang, Y.; Zhou, J.; Liu, M.; Nie, M.; Shi, H.; Gu, L. Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment. Environ. Pollut. 2013, 175, 22–29. [Google Scholar] [CrossRef]
- Charuaud, L.; Jarde, E.; Jaffrezic, A.; Thomas, M.; Le Bot, B. Veterinary pharmaceutical residues from natural water to tap water: Sales, occurrence and fate. J. Hazard. Mater. 2019, 361, 169–186. [Google Scholar] [CrossRef]
- Torres-Acosta, M.A.; Pereira, J.F.B.; Freire, M.G.; Aguilar-Yáñez, J.M.; Coutinho, J.A.P.; Titchener-Hooker, N.J.; Rito-Palomares, M. Economic evaluation of the primary recovery of tetracycline with traditional and novel aqueous two-phase systems. Sep. Purif. Technol. 2018, 203, 178–184. [Google Scholar] [CrossRef]
- Kim, K.; Owens, G.; Kwon, S.; So, K.; Lee, D.; Ok, Y.S. Erratum to: Occurrence and Environmental Fate of Veterinary Antibiotics in the Terrestrial Environment. Water Air Soil Pollut. 2012, 223, 6213–6214. [Google Scholar] [CrossRef]
- Wang, D.; Li, J.; Xu, Z.; Zhu, Y.; Chen, G.; Cui, Z. Synthesis of g-C3N4/NiO p–n heterojunction materials with ball-flower morphology and enhanced photocatalytic performance for the removal of tetracycline and Cr6+. J. Mater. Sci. 2019, 54, 11417–11434. [Google Scholar] [CrossRef]
- Xu, Y.; Guo, C.; Luo, Y.; Lv, J.; Zhang, Y.; Lin, H.; Wang, L.; Xu, J. Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing, China. Environ. Pollut. 2016, 213, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Wu, Y.; Zhang, W.; Zhong, J.; Lou, Q.; Yang, P.; Fang, Y. Occurrence, distribution, and risk assessment of antibiotics in the surface water of Poyang Lake, the largest freshwater lake in China. Chemosphere 2017, 184, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Suthar, S. Occurrence, seasonal variations, and ecological risk of pharmaceuticals and personal care products in River Ganges at two holy cities of India. Chemosphere 2021, 268, 129331. [Google Scholar] [CrossRef]
- Burke, V.; Richter, D.; Greskowiak, J.; Mehrtens, A.; Schulz, L.; Massmann, G. Occurrence of Antibiotics in Surface and Groundwater of a Drinking Water Catchment Area in Germany. Water Environ. Res. 2016, 88, 652–659. [Google Scholar] [CrossRef]
- Topal, M.; Topal, E.I.A. Investigation of tetracycline and degradation products in Euphrates river receiving outflows of trout farms. Aquac. Res. 2016, 47, 3837–3844. [Google Scholar] [CrossRef]
- Harnisz, M.; Korzeniewska, E.; Golas, I. The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water. Chemosphere 2015, 128, 134–141. [Google Scholar] [CrossRef]
- Nantaba, F.; Wasswa, J.; Kylin, H.; Palm, W.; Bouwman, H.; Kümmerer, K. Occurrence, distribution, and ecotoxicological risk assessment of selected pharmaceutical compounds in water from Lake Victoria, Uganda. Chemosphere 2020, 239, 124642. [Google Scholar] [CrossRef]
- Chan, R.; Wandee, S.; Wang, M.; Chiemchaisri, W.; Chiemchaisri, C.; Yoshimura, C. Fate, transport and ecological risk of antibiotics from pig farms along the bang pakong River, Thailand. Agric. Ecosyst. Environ. 2020, 304, 107123. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, K.; Choi, K. Effect of runoff discharge on the environmental levels of 13 veterinary antibiotics: A case study of Han River and Kyungahn Stream, South Korea. Mar. Pollut. Bull. 2016, 107, 347–354. [Google Scholar] [CrossRef]
- Al-Haideri, H.H.; Hassan, F.M.; Sattar, S.; El-Sheekh, M.M. Anthropocentric perspective on climate variability: The destination of antibiotics in the Tigris river is not restricted. J. Water Health 2024, 22, 1306–1327. [Google Scholar] [CrossRef]
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Galbán-Malagón, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Li, N.; Ying, G. Antibiotic distribution, risk assessment, and microbial diversity in river water and sediment in Hong Kong. Environ. Geochem. Health 2018, 40, 2191–2203. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.H.; Hoang, L.; Nghiem, L.D.; Nguyen, N.; Ngo, H.H.; Guo, W.S.; Trinh, Q.T.; Mai, N.; Chen, H.T.; Nguyen, D.D.; et al. Occurrence and risk assessment of multiple classes of antibiotics in urban canals and lakes in Hanoi, Vietnam. Sci. Total Environ. 2019, 692, 157–174. [Google Scholar] [CrossRef]
- Liu, X.; Lu, S.; Guo, W.; Xi, B.; Wang, W. Antibiotics in the aquatic environments: A review of lakes, China. Sci. Total Environ. 2018, 627, 1195–1208. [Google Scholar] [CrossRef]
- Zhang, Q.; Cheng, J.; Xin, Q. Effects of tetracycline on developmental toxicity and molecular responses in zebrafish (Danio rerio) embryos. Ecotoxicology 2015, 24, 707–719. [Google Scholar] [CrossRef]
- Gudda, F.; Odinga, E.S.; Tang, L.; Waigi, M.G.; Wang, J.; Abdalmegeed, D.; Gao, Y. Tetracyclines uptake from irrigation water by vegetables: Accumulation and antimicrobial resistance risks. Environ. Pollut. 2023, 338, 122696. [Google Scholar] [CrossRef]
- Yao, X.; Cheng, Z.; Agathokleous, E.; Wei, Y.; Feng, X.; Li, H.; Zhang, T.; Li, S.; Dhawan, G.; Luo, X. Tetracycline and sulfadiazine toxicity in human liver cells Huh-7. Environ. Pollut. 2024, 345, 123454. [Google Scholar] [CrossRef]
- Ferreira, L.; Rosales, E.; Danko, A.S.; Sanromán, M.A.; Pazos, M.M. Bacillus thuringiensis a promising bacterium for degrading emerging pollutants. Process Saf. Environ. Prot. 2016, 101, 19–26. [Google Scholar] [CrossRef]
- Ajala, O.A.; Akinnawo, S.O.; Bamisaye, A.; Adedipe, D.T.; Adesina, M.O.; Okon-Akan, O.A.; Adebusuyi, T.A.; Ojedokun, A.T.; Adegoke, K.A.; Bello, O.S. Adsorptive removal of antibiotic pollutants from wastewater using biomass/biochar-based adsorbents. RSC Adv. 2023, 13, 4678–4712. [Google Scholar] [CrossRef]
- Munuhe, L.N.; Madivoli, E.S.; Nzilu, D.M.; Lemeitaron, P.N.; Kimani, P.K. Advances in Adsorbent Materials for Pharmaceutical Pollutant Removal: A Review of Occurrence, Fate, and State-of-the-Art Remediation. J. Chem. 2025, 2025, 4477822. [Google Scholar] [CrossRef]
- Chen, Y.; Mao, W.; Yang, W.; Niazi, N.K.; Wang, B.; Wu, P. A novel phosphate rock-magnetic biochar for Pb2+ and Cd2+ removal in wastewater: Characterization, performance and mechanisms. Environ. Technol. Innov. 2023, 32, 103268. [Google Scholar] [CrossRef]
- Teodosiu, C.; Gilca, A.; Barjoveanu, G.; Fiore, S. Emerging pollutants removal through advanced drinking water treatment: A review on processes and environmental performances assessment. J. Clean. Prod. 2018, 197, 1210–1221. [Google Scholar] [CrossRef]
- Cui, T.; Xie, Y.; Zhang, M.; Raise, A. Tetracycline removal from aqueous media and hospital wastewater using a magnetic composite of mango lignocellulosic kernel biochar/MnFe2O4/Cu@Zn-BDC MOF. Int. J. Biol. Macromol. 2025, 297, 139774. [Google Scholar] [CrossRef]
- Liu, W.; Jiang, H.; Yu, H. Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chem. Rev. 2015, 115, 12251–12285. [Google Scholar] [CrossRef]
- Peiris, C.; Gunatilake, S.R.; Mlsna, T.E.; Mohan, D.; Vithanage, M. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review. Bioresour. Technol. 2017, 246, 150–159. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, W.; Wang, J.; Chen, G.; Li, N.; Song, Y.; Cheng, Z.; Yan, B.; Hou, L.; Wang, S. Sulfamethoxazole degradation by regulating active sites on distilled spirits lees-derived biochar in a continuous flow fixed bed peroxymonosulfate reactor. Appl. Catal. B-Environ. 2022, 310, 121342. [Google Scholar] [CrossRef]
- Yu, J.; Tang, L.; Pang, Y.; Zeng, G.; Feng, H.; Zou, J.; Wang, J.; Feng, C.; Zhu, X.; Ouyang, X.; et al. Hierarchical porous biochar from shrimp shell for persulfate activation: A two-electron transfer path and key impact factors. Appl. Catal. B-Environ. 2020, 260, 118160. [Google Scholar] [CrossRef]
- Kumar, A.; Bhattacharya, T. Biochar: A sustainable solution. Environ. Dev. Sustain. 2021, 23, 6642–6680. [Google Scholar] [CrossRef]
- Shi, W.; Wang, H.; Yan, J.; Shan, L.; Quan, G.; Pan, X.; Cui, L. Wheat straw derived biochar with hierarchically porous structure for bisphenol A removal: Preparation, characterization, and adsorption properties. Sep. Purif. Technol. 2022, 289, 120796. [Google Scholar] [CrossRef]
- Oginni, O.; Singh, K. Influence of high carbonization temperatures on microstructural and physicochemical characteristics of herbaceous biomass derived biochars. J. Environ. Chem. Eng. 2020, 8, 104169. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Y.; Jiang, H. Slow Pyrolysis Magnetization of Hydrochar for Effective and Highly Stable Removal of Tetracycline from Aqueous Solution. Ind. Eng. Chem. Res. 2017, 56, 3059–3066. [Google Scholar] [CrossRef]
- Li, X.; Jia, Y.; Zhang, J.; Qin, Y.; Wu, Y.; Zhou, M.; Sun, J. Efficient removal of tetracycline by H2O2 activated with iron-doped biochar: Performance, mechanism, and degradation pathways. Chin. Chem. Lett. 2022, 33, 2105–2110. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, R.; Zimmerman, A.R.; Wang, H.; Gao, B. Applications, impacts, and management of biochar persistent free radicals: A review. Environ. Pollut. 2023, 327, 121543. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Hu, X.; Liu, Q. A mini review of the specialties of the bio-oils produced from pyrolysis of 20 different biomasses. Renew. Sustain. Energy Rev. 2019, 114, 109313. [Google Scholar] [CrossRef]
- Wang, K.; Yao, R.; Zhang, D.; Peng, N.; Zhao, P.; Zhong, Y.; Zhou, H.; Huang, J.; Liu, C. Tetracycline Adsorption Performance and Mechanism Using Calcium Hydroxide-Modified Biochars. Toxics 2023, 11, 841. [Google Scholar] [CrossRef]
- Mei, Y.; Zhuang, S.; Wang, J. Biochar: A potential and green adsorbent for antibiotics removal from aqueous solution. Rev. Environ. Sci. Biol. Technol. 2024, 23, 1065–1103. [Google Scholar] [CrossRef]
- Janu, R.; Mrlik, V.; Ribitsch, D.; Hofman, J.; Sedláček, P.; Bielská, L.; Soja, G. Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resour. Convers. 2021, 4, 36–46. [Google Scholar] [CrossRef]
- Zhu, K.; Wang, X.; Geng, M.; Chen, D.; Lin, H.; Zhang, H. Catalytic oxidation of clofibric acid by peroxydisulfate activated with wood-based biochar: Effect of biochar pyrolysis temperature, performance and mechanism. Chem. Eng. J. 2019, 374, 1253–1263. [Google Scholar] [CrossRef]
- Huang, H.; Tang, J.; Gao, K.; He, R.; Zhao, H.; Werner, D. Characterization of KOH modified biochars from different pyrolysis temperatures and enhanced adsorption of antibiotics. RSC Adv. 2017, 7, 14640–14648. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, W.; Zou, Y.; Wu, Y.; Mao, W.; Zhang, J.; Zia-ur-Rehman, M.; Wang, B.; Wu, P. Quantification of the effect of biochar application on heavy metals in paddy systems: Impact, mechanisms and future prospects. Sci. Total Environ. 2024, 912, 168874. [Google Scholar] [CrossRef] [PubMed]
- Gasim, M.F.; Lim, J.; Low, S.; Lin, K.A.; Oh, W. Can biochar and hydrochar be used as sustainable catalyst for persulfate activation. Chemosphere 2022, 287, 132458. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Song, X.; Miao, J.; Ma, Y.; Zhao, T.; Yin, M. Removal of tetracycline from water by adsorption with biochar: A review. J. Water Process Eng. 2024, 60, 105215. [Google Scholar] [CrossRef]
- Zhu, X.; Li, C.; Li, J.; Xie, B.; Lu, J.; Li, Y. Thermal treatment of biochar in the air/nitrogen atmosphere for developed mesoporosity and enhanced adsorption to tetracycline. Bioresour. Technol. 2018, 263, 475–482. [Google Scholar] [CrossRef]
- Huang, H.; Niu, Z.; Shi, R.; Tang, J.; Lv, L.; Wang, J.; Fan, Y. Thermal oxidation activation of hydrochar for tetracycline adsorption: The role of oxygen concentration and temperature. Bioresour. Technol. 2020, 306, 123096. [Google Scholar] [CrossRef]
- Zhang, W.; Yan, L.; Wang, Q.; Li, X.; Guo, Y.; Song, W.; Li, Y. Ball milling boosted the activation of peroxymonosulfate by biochar for tetracycline removal. J. Environ. Chem. Eng. 2021, 9, 106870. [Google Scholar] [CrossRef]
- Yu, Z.; Ji, L.; Zuo, Y.; Zhang, F.; Wei, C.; Jiang, F.; Fu, X.; Wu, W.; Du, J.; Chen, C.; et al. Removal of Tetracycline Hydrochloride by Ball-Milled Mulberry Biochar. Water Air Soil Pollut. 2023, 234, 14. [Google Scholar] [CrossRef]
- Jiang, W.; Cai, Y.; Liu, D.; Shi, Q.; Wang, Q. Adsorption properties and mechanism of suaeda biochar and modified materials for tetracycline. Environ. Res. 2023, 235, 116549. [Google Scholar] [CrossRef]
- Shim, T.; Yoo, J.; Ryu, C.; Park, Y.; Jung, J. Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity. Bioresour. Technol. 2015, 197, 85–90. [Google Scholar] [CrossRef]
- Wang, R.; Huang, D.; Liu, Y.; Zhang, C.; Lai, C.; Wang, X.; Zeng, G.; Zhang, Q.; Gong, X.; Xu, P. Synergistic removal of copper and tetracycline from aqueous solution by steam-activated bamboo-derived biochar. J. Hazard. Mater. 2020, 384, 121470. [Google Scholar] [CrossRef]
- Azargohar, R.; Dalai, A.K. Steam and KOH activation of biochar: Experimental and modeling studies. Micropor. Mesopor. Mater. 2008, 110, 413–421. [Google Scholar] [CrossRef]
- Sewu, D.D.; Jung, H.; Kim, S.S.; Lee, D.S.; Woo, S.H. Decolorization of cationic and anionic dye-laden wastewater by steam-activated biochar produced at an industrial-scale from spent mushroom substrate. Bioresour. Technol. 2019, 277, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Xu, J.; Zhang, Y.; Li, B.; Fan, S.; Xu, H. Effect of Fe-N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution. Bioresour. Technol. 2021, 325, 124732. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Liu, W.; Jiang, H.; Chen, J.; Li, W.; Yu, H. Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresour. Technol. 2012, 121, 235–240. [Google Scholar] [CrossRef]
- Joshi, M.; Bhatt, D.; Srivastava, A. Enhanced Adsorption Efficiency through Biochar Modification: A Comprehensive Review. Ind. Eng. Chem. Res. 2023, 62, 13748–13761. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Chen, K.; Shen, S.; Hu, H.; Chang, M.; Chen, D.; Wu, Y.; Yuan, H.; Wang, Y. Engineering banana-peel-derived biochar for the rapid adsorption of tetracycline based on double chemical activation. Resour. Conserv. Recycl. 2023, 190, 106821. [Google Scholar] [CrossRef]
- Thines, K.R.; Abdullah, E.C.; Mubarak, N.M.; Ruthiraan, M. Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: A review. Renew. Sustain. Energy Rev. 2017, 67, 257–276. [Google Scholar] [CrossRef]
- Ma, J.; Zhou, B.; Zhang, H.; Zhang, W. Fe/S modified sludge-based biochar for tetracycline removal from water. Powder Technol. 2020, 364, 889–900. [Google Scholar] [CrossRef]
- Liang, J.; Fang, Y.; Luo, Y.; Zeng, G.; Deng, J.; Tan, X.; Tang, N.; Li, X.; He, X.; Feng, C.; et al. Magnetic nanoferromanganese oxides modified biochar derived from pine sawdust for adsorption of tetracycline hydrochloride. Environ. Sci. Pollut. Res. 2019, 26, 5892–5903. [Google Scholar] [CrossRef]
- Shin, J.; Lee, Y.; Kwak, J.; Kim, S.; Lee, S.; Park, Y.; Lee, S.; Chon, K. Adsorption of radioactive strontium by pristine and magnetic biochars derived from spent coffee grounds. J. Environ. Chem. Eng. 2021, 9, 105119. [Google Scholar] [CrossRef]
- Jiang, F.; Wei, C.; Yu, Z.; Ji, L.; Liu, M.; Cao, Q.; Wu, L.; Li, F. Fabrication of Iron-Containing Biochar by One-Step Ball Milling for Cr(VI) and Tetracycline Removal from Wastewater. Langmuir 2023, 39, 18958–18970. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Zhang, S.; Song, J.; Zhao, Y.; Yang, F. Activation of porous magnetized biochar by artificial humic acid for effective removal of lead ions. J. Hazard. Mater. 2020, 389, 122115. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, J.; Liu, X.; Liu, H.; Wang, L.; Cheng, D.; Wang, Y.; Guo, W.; Ngo, H.H. Efficient antibiotics removal by pig manure-based magnetic biochar-driven catalytic degradation. J. Water Process Eng. 2025, 70, 107013. [Google Scholar] [CrossRef]
- Naghipour, D.; Hoseinzadeh, L.; Taghavi, K.; Jaafari, J.; Amouei, A. Effective removal of tetracycline from aqueous solution using biochar prepared from pine bark: Isotherms, kinetics and thermodynamic analyses. Int. J. Environ. Anal. Chem. 2023, 103, 5706–5719. [Google Scholar] [CrossRef]
- Wang, H.; Fang, C.; Wang, Q.; Chu, Y.; Song, Y.; Chen, Y.; Xue, X. Sorption of tetracycline on biochar derived from rice straw and swine manure. RSC Adv. 2018, 8, 16260–16268. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Y.; Cao, Y.; Han, L. Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures. Bioresour. Technol. 2019, 285, 121348. [Google Scholar] [CrossRef]
- Liu, D.; Cai, Y.; Yu, X.; Wang, Q. Removal of tetracycline with grape leaves–based biochar: Adsorption properties and mechanism. Biomass Convers. Biorefin. 2025, 14. [Google Scholar] [CrossRef]
- Dai, Y.; Li, J.; Shan, D. Adsorption of tetracycline in aqueous solution by biochar derived from waste Auricularia auricula dregs. Chemosphere 2020, 238, 124432. [Google Scholar] [CrossRef]
- Hoslett, J.; Ghazal, H.; Katsou, E.; Jouhara, H. The removal of tetracycline from water using biochar produced from agricultural discarded material. Sci. Total Environ. 2021, 751, 141755. [Google Scholar] [CrossRef]
- Zhang, D.; He, Q.; Hu, X.; Zhang, K.; Chen, C.; Xue, Y. Enhanced adsorption for the removal of tetracycline hydrochloride (TC) using ball-milled biochar derived from crayfish shell. Colloids Surf. A Physicochem. Eng. Asp. 2021, 615, 126254. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Ren, X.; Dong, W.; Chen, H.; Cai, T.; Zeng, W.; Li, W.; Tang, L. Soybean residue based biochar prepared by ball milling assisted alkali activation to activate peroxydisulfate for the degradation of tetracycline. J. Colloid. Interf. Sci. 2021, 599, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, H.; Cai, S.; Hu, Z.; Guo, D.; Sha, L. Efficient removal of tetracycline by boosting persulfate activation with ball milling biochar derived from iron-rich paper sludge. J. Water Process Eng. 2025, 69, 106858. [Google Scholar] [CrossRef]
- Zhu, J.; Yan, L.; Li, X.; Song, W.; Yan, T.; Li, Y. Ball-milled MoS2/biochar as peroxymonosulfate activator efficiently removes tetracycline: Multiple active sites-triggered radical/non-radical pathways. Ind. Crop Prod. 2023, 205, 117450. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Y.; Zhou, C.; Luo, G.; Zhang, S.; Chen, J. A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline. Carbon 2014, 77, 627–636. [Google Scholar] [CrossRef]
- Torres-Perez, J.; Gerente, C.; Andres, Y. Sustainable Activated Carbons from Agricultural Residues Dedicated to Antibiotic Removal by Adsorption. Chin. J. Chem. Eng. 2012, 20, 524–529. [Google Scholar] [CrossRef]
- Chen, T.; Luo, L.; Deng, S.; Shi, G.; Zhang, S.; Zhang, Y.; Deng, O.; Wang, L.; Zhang, J.; Wei, L. Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure. Bioresour. Technol. 2018, 267, 431–437. [Google Scholar] [CrossRef]
- Liu, Q.; Li, D.; Cheng, H.; Cheng, J.; Du, K.; Hu, Y.; Chen, Y. High mesoporosity phosphorus-containing biochar fabricated from Camellia oleifera shells: Impressive tetracycline adsorption performance and promotion of pyrophosphate-like surface functional groups (C-O-P bond). Bioresour. Technol. 2021, 329, 124922. [Google Scholar] [CrossRef]
- Li, H.; Hu, J.; Meng, Y.; Su, J.; Wang, X. An investigation into the rapid removal of tetracycline using multilayered graphene-phase biochar derived from waste chicken feather. Sci. Total Environ. 2017, 603–604, 39–48. [Google Scholar] [CrossRef]
- Cheng, D.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Zhang, X.; Varjani, S.; Liu, Y. Feasibility study on a new pomelo peel derived biochar for tetracycline antibiotics removal in swine wastewater. Sci. Total Environ. 2020, 720, 137662. [Google Scholar] [CrossRef]
- Shi, Q.; Wang, W.; Zhang, H.; Bai, H.; Liu, K.; Zhang, J.; Li, Z.; Zhu, W. Porous biochar derived from walnut shell as an efficient adsorbent for tetracycline removal. Bioresour. Technol. 2023, 383, 129213. [Google Scholar] [CrossRef]
- Jang, H.M.; Kan, E. Engineered biochar from agricultural waste for removal of tetracycline in water. Bioresour. Technol. 2019, 284, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.M.; Yoo, S.; Choi, Y.; Park, S.; Kan, E. Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar. Bioresour. Technol. 2018, 259, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.C.; Pezoti, O.; Cazetta, A.L.; Bedin, K.C.; Yamazaki, D.A.S.; Bandoch, G.F.G.; Asefa, T.; Visentainer, J.V.; Almeida, V.C. Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies. Chem. Eng. J. 2015, 260, 291–299. [Google Scholar] [CrossRef]
- Nguyen, V.; Nguyen, T.; Huang, C.P.; Chen, C.; Bui, X.; Dong, C. Alkaline modified biochar derived from spent coffee ground for removal of tetracycline from aqueous solutions. J. Water Process Eng. 2021, 40, 101908. [Google Scholar] [CrossRef]
- Zhao, J.; Dai, Y. Tetracycline adsorption mechanisms by NaOH-modified biochar derived from waste Auricularia auricula dregs. Environ. Sci. Pollut. Res. 2022, 29, 9142–9152. [Google Scholar] [CrossRef]
- Meng, Y.; Chen, X.; Ai, D.; Wei, T.; Fan, Z.; Wang, B. Sulfur-doped zero-valent iron supported on biochar for tetracycline adsorption and removal. J. Clean. Prod. 2022, 379, 134769. [Google Scholar] [CrossRef]
- Wu, J.F.; Hou, B.W.; Wang, X.Q.; Liu, Z.W.; Wang, Z.D.; Liu, B.A.; Li, S.Y.; Gao, H.B.; Zhu, X.F.; Mao, Y.L. Preparation of N,S-codoped magnetic bagasse biochar and adsorption characteristics for tetracycline. RSC Adv. 2022, 12, 11786–11795. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, B.; Zhang, H.; Ma, J.; Mu, B.; Zhang, W. A novel Biochar modified by Chitosan-Fe/S for tetracycline adsorption and studies on site energy distribution. Bioresour. Technol. 2019, 294, 122152. [Google Scholar] [CrossRef]
- Gao, W.; Lin, Z.; Yan, S.; Gao, Y.; Zhang, H.; Hu, X.; Sun, H.; Zhang, S. Preparation of N-, O-, and S-Tri-Doped Biochar through One-Pot Pyrolysis of Poplar and Urea Formaldehyde and Its Enhanced Removal of Tetracycline from Wastewater. Energies 2022, 15, 8081. [Google Scholar] [CrossRef]
- Zeng, Z.; Ye, S.; Wu, H.; Xiao, R.; Zeng, G.; Liang, J.; Zhang, C.; Yu, J.; Fang, Y.; Song, B. Research on the sustainable efficacy of g -MoS2 decorated biochar nanocomposites for removing tetracycline hydrochloride from antibiotic-polluted aqueous solution. Sci. Total Environ. 2019, 648, 206–217. [Google Scholar] [CrossRef]
- Huang, K.; Yang, S.; Liu, X.; Zhu, C.; Qi, F.; Wang, K.; Wang, J.; Wang, Q.; Wang, T.; Ma, P. Adsorption of antibiotics from wastewater by cabbage-based N, P co-doped mesoporous carbon materials. J. Clean. Prod. 2023, 391, 136174. [Google Scholar] [CrossRef]
- Peng, H.; Wang, H.; Wang, L.; Huang, C.; Zheng, X.; Wen, J. Efficient adsorption-photocatalytic removal of tetracycline hydrochloride over La2S3-modified biochar with S,N-codoping. J. Water Process Eng. 2022, 49, 103038. [Google Scholar] [CrossRef]
- Yu, D.; Zeng, S.; Wu, Y.; Niu, J.; Tian, H.; Yao, Z.; Wang, X. Removal of tetracycline in the water by a kind of S/N co-doped tea residue biochar. J. Environ. Manag. 2024, 365, 121601. [Google Scholar] [CrossRef]
- Zhang, X.; Zhen, D.; Liu, F.; Chen, R.; Peng, Q.; Wang, Z. An achieved strategy for magnetic biochar for removal of tetracyclines and fluoroquinolones: Adsorption and mechanism studies. Bioresour. Technol. 2023, 369, 128440. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, S.; Wang, Q.; Hu, K.; Zhang, H.; Chang, J.; Liu, N.; Kokyo, O.H.; Cheng, H. Tetracycline removal from aqueous solution by magnetic biochar modified with different iron valences: A comparative study. Sep. Purif. Technol. 2024, 339, 126614. [Google Scholar] [CrossRef]
- Peng, L.; Ren, Y.; Gu, J.; Qin, P.; Zeng, Q.; Shao, J.; Lei, M.; Chai, L. Iron improving bio-char derived from microalgae on removal of tetracycline from aqueous system. Environ. Sci. Pollut. Res. 2014, 21, 7631–7640. [Google Scholar] [CrossRef]
- Varadharajan, V.; Senthilkumar, D.S.; Senthilkumar, K.; Sundramurthy, V.P.; Manikandan, R.; Senthilarasan, H.; Ganesan, H.; Kesavamoorthy, I.; Ramasamy, A. Process modeling and toxicological evaluation of adsorption of tetracycline onto the magnetized cotton dust biochar. J. Water Process Eng. 2022, 49, 103046. [Google Scholar] [CrossRef]
- Qu, J.; Wang, S.; Jin, L.; Liu, Y.; Yin, R.; Jiang, Z.; Tao, Y.; Huang, J.; Zhang, Y. Magnetic porous biochar with high specific surface area derived from microwave-assisted hydrothermal and pyrolysis treatments of water hyacinth for Cr(VI) and tetracycline adsorption from water. Bioresour. Technol. 2021, 340, 125692. [Google Scholar] [CrossRef]
- Oladipo, A.A.; Ifebajo, A.O. Highly efficient magnetic chicken bone biochar for removal of tetracycline and fluorescent dye from wastewater: Two-stage adsorber analysis. J. Environ. Manag. 2018, 209, 9–16. [Google Scholar] [CrossRef]
- Zhao, T.; Chen, R.; Wang, J. A Mild Method for Preparation of Highly Selective Magnetic Biochar Microspheres. Int. J. Mol. Sci. 2020, 21, 3752. [Google Scholar] [CrossRef]
- Shan, D.; Deng, S.; Zhao, T.; Wang, B.; Wang, Y.; Huang, J.; Yu, G.; Winglee, J.; Wiesner, M.R. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. J. Hazard. Mater. 2016, 305, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, A.; Sokolowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biol. Technol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Cao, X.; Harris, W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour. Technol. 2010, 101, 5222–5228. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Li, Y.; Zhang, J.; Wu, S.; Cao, Y.; Liang, P.; Zhang, J.; Wong, M.H.; Wang, M.; Shan, S.; et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. J. Hazard. Mater. 2016, 320, 417–426. [Google Scholar] [CrossRef]
- Liu, Y.; Li, F.; Deng, J.; Wu, Z.; Lei, T.; Tan, M.; Wu, Z.; Qin, X.; Li, H. Mechanism of sulfamic acid modified biochar for highly efficient removal of tetracycline. J. Anal. Appl. Pyrolysis 2021, 158, 105247. [Google Scholar] [CrossRef]
- Xiang, W.; Wan, Y.; Zhang, X.; Tan, Z.; Xia, T.; Zheng, Y.; Gao, B. Adsorption of tetracycline hydrochloride onto ball-milled biochar: Governing factors and mechanisms. Chemosphere 2020, 255, 127057. [Google Scholar] [CrossRef]
- Hong, G.; Yu, Z.; Kong, D.; Huhe, T.; Shan, R.; Yuan, H.; Chen, Y. Removal of tetracycline from aqueous solution by magnetic biochar modified with different iron valence and K2C2O4: A comparative study and mechanism. J. Anal. Appl. Pyrolysis 2025, 187, 107005. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Li, J.; Chen, F.; Lan, J.; Hou, H. Efficient removal of tetracycline from water by tannic acid-modified rice straw-derived biochar: Kinetics and mechanisms. J. Mol. Liq. 2021, 340, 117237. [Google Scholar] [CrossRef]
- Lian, F.; Sun, B.; Chen, X.; Zhu, L.; Liu, Z.; Xing, B. Effect of humic acid (HA) on sulfonamide sorption by biochars. Environ. Pollut. 2015, 204, 306–312. [Google Scholar] [CrossRef]
- Zhu, Y.; Yan, J.; Sui, F.; Wang, H.; Quan, G.; Cui, L. Interaction mechanism of biochar dissolved organic matter (BDOM) and tetracycline for environmental remediation. Environ. Res. 2025, 275, 121405. [Google Scholar] [CrossRef]
- Xiong, Y.; Bi, E. Effect of endogenetic dissolved organic matter on tetracycline adsorption by biochar. Environ. Sci. Pollut. Res. 2023, 30, 77022–77031. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Gao, M.; Cao, M.; Dan, J.; Yang, H. Self-propagating synthesis of Zn-loaded biochar for tetracycline elimination. Sci. Total Environ. 2021, 759, 143542. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Wang, J.; Tian, X.; Yu, N.; Zhang, X.; Zhao, Y.; Liu, Y.; Sui, S.; Wang, C.; Lian, F.; et al. Effect of biochar-derived dissolved organic matter on tetracycline sorption by KMnO4-modified biochar. Chem. Eng. J. 2023, 474, 145872. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, W.; Yin, S.; Liu, R.; Li, Z. Efficient removal of tetracycline from aqueous solution by K2CO3 activated penicillin fermentation residue biochar. Front. Chem. 2022, 10, 1078877. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Johir, M.A.H.; Sun, L.; Asadullah, M.; Belhaj, D. Sorption of hydrophobic organic contaminants on functionalized biochar: Protagonist role of π-π electron-donor-acceptor interactions and hydrogen bonds. J. Hazard. Mater. 2018, 360, 270–278. [Google Scholar] [CrossRef]
- Rosales, E.; Meijide, J.; Pazos, M.; Sanromán, M.A. Challenges and recent advances in biochar as low-cost biosorbent: From batch assays to continuous-flow systems. Bioresour. Technol. 2017, 246, 176–192. [Google Scholar] [CrossRef]
- Jha, S.; Gaur, R.; Shahabuddin, S.; Tyagi, I. Biochar as Sustainable Alternative and Green Adsorbent for the Remediation of Noxious Pollutants: A Comprehensive Review. Toxics 2023, 11, 117. [Google Scholar] [CrossRef]
- Cheng, N.; Wang, B.; Wu, P.; Lee, X.; Xing, Y.; Chen, M.; Gao, B. Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. Environ. Pollut. 2021, 273, 116448. [Google Scholar] [CrossRef]
- Qin, Y.; Chai, B.; Wang, C.; Yan, J.; Fan, G.; Song, G. Removal of tetracycline onto KOH-activated biochar derived from rape straw: Affecting factors, mechanisms and reusability inspection. Colloid. Surface A 2022, 640, 128466. [Google Scholar] [CrossRef]
- Li, C.; Zhu, X.; He, H.; Fang, Y.; Dong, H.; Lu, J.; Li, J.; Li, Y. Adsorption of two antibiotics on biochar prepared in air-containing atmosphere: Influence of biochar porosity and molecular size of antibiotics. J. Mol. Liq. 2019, 274, 353–361. [Google Scholar] [CrossRef]
- Yang, J.; Dai, J.; Wang, L.; Ge, W.; Xie, A.; He, J.; Yan, Y. Ultrahigh adsorption of tetracycline on willow branche-derived porous carbons with tunable pore structure: Isotherm, kinetics, thermodynamic and new mechanism study. J. Taiwan. Inst. Chem. Eng. 2019, 96, 473–482. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, W.; Chen, Y.; Zou, Y.; Wang, S.; Zhang, J.; Yang, L.; Niazi, N.K.; Wang, B.; Zhou, H.; et al. Acid mine drainage sludge-modified biochar for the efficient removal of As(III) in wastewater: Adsorption performance and mechanism. J. Water Process Eng. 2025, 71, 107279. [Google Scholar] [CrossRef]
- Wei, J.; Liu, Y.; Li, J.; Zhu, Y.; Yu, H.; Peng, Y. Adsorption and co-adsorption of tetracycline and doxycycline by one-step synthesized iron loaded sludge biochar. Chemosphere 2019, 236, 124254. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Yang, W.; Chen, Y.; Zhang, J.; Wang, B.; Niazi, N.K.; Yang, L.; Wang, S.; Zhou, H.; Wu, P. Efficient removal of tetracycline from wastewater via KHCO3-activated biochar: Characterization, performance, and mechanism. J. Water Process Eng. 2024, 68, 106450. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, B.; Wang, S.; Liu, C.; Zhu, L.; Zhao, Z.; Li, W.; Shao, Z.; Liu, X.; Dai, Y. Enhanced removal of tetracycline by vitamin C-modified cow manure biochar in water. Sci. Rep. 2024, 14, 16. [Google Scholar] [CrossRef]
- Tang, Y.; Li, Y.; Zhan, L.; Wu, D.; Zhang, S.; Pang, R.; Xie, B. Removal of emerging contaminants (bisphenol A and antibiotics) from kitchen wastewater by alkali-modified biochar. Sci. Total Environ. 2022, 805, 150158. [Google Scholar] [CrossRef]
- Sen, U.; Esteves, B.; Aguiar, T.; Pereira, H. Removal of Antibiotics by Biochars: A Critical Review. Appl. Sci. 2023, 13, 11963. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Li, Z.; Yu, G.; Wang, Y. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge. Ecotoxicol. Environ. Saf. 2019, 168, 45–52. [Google Scholar] [CrossRef]
- Jia, H.; Zhao, S.; Nulaji, G.; Tao, K.; Wang, F.; Sharma, V.K.; Wang, C. Environmentally Persistent Free Radicals in Soils of Past Coking Sites: Distribution and Stabilization. Environ. Sci. Technol. 2017, 51, 6000–6008. [Google Scholar] [CrossRef]
- Godlewska, P.; Ok, Y.S.; Oleszczuk, P. THE DARK SIDE OF BLACK GOLD: Ecotoxicological aspects of biochar and biochar-amended soils. J. Hazard. Mater. 2021, 403, 123833. [Google Scholar] [CrossRef]
- Zhang, R.; Zimmerman, A.R.; Zhang, R.; Li, P.; Zheng, Y.; Gao, B. Persistent free radicals generated from a range of biochars and their physiological effects on wheat seedlings. Sci. Total Environ. 2024, 908, 168260. [Google Scholar] [CrossRef] [PubMed]
- Lieke, T.; Zhang, X.; Steinberg, C.E.W.; Pan, B. Overlooked Risks of Biochars: Persistent Free Radicals trigger Neurotoxicity in Caenorhabditis elegans. Environ. Sci. Technol. 2018, 52, 7981–7987. [Google Scholar] [CrossRef]
- Ndirangu, S.M.; Liu, Y.; Xu, K.; Song, S. Risk Evaluation of Pyrolyzed Biochar from Multiple Wastes. J. Chem. 2019, 2019, 4506314. [Google Scholar] [CrossRef]
- Alhashimi, H.A.; Aktas, C.B. Life cycle environmental and economic performance of biochar compared with activated carbon: A meta-analysis. Resour. Conserv. Recycl. 2017, 118, 13–26. [Google Scholar] [CrossRef]
- Snyder, B.F. Costs of biomass pyrolysis as a negative emission technology: A case study. Int. J. Energy Res. 2019, 43, 1232–1244. [Google Scholar] [CrossRef]
- Katiyar, R.; Chen, C.; Singhania, R.R.; Tsai, M.; Saratale, G.D.; Pandey, A.; Dong, C.; Patel, A.K. Efficient remediation of antibiotic pollutants from the environment by innovative biochar: Current updates and prospects. Bioengineered 2022, 13, 14730–14748. [Google Scholar] [CrossRef]
S. No | Region | Unit | TC | Refs. | |
---|---|---|---|---|---|
1 | River | Yangtze River in China | ng/L | 11.16 | [21] |
2 | River | Tonghui River, China | ng/L | ND–6800 | [22] |
3 | River | Wenyu River, China | ng/L | ND–9500 | [22] |
4 | River | Qinghe River, China | ng/L | ND–6800 | [22] |
5 | Lake | Poyang Lake, China | ng/L | ND–10.8 | [23] |
6 | River | River Ganges, India | ng/L | 98.62 | [24] |
7 | River | Soeste River, Germany | ng/L | 21 | [25] |
8 | River | Euphrates River, Turkey | ng/L | 50.0 ± 2.5 | [26] |
9 | River | Drwęca River, Poland | ng/L | 54 | [27] |
10 | Lake | Lake Victoria, Uganda | ng/L | 3–70 | [28] |
11 | River | Bang Pakong River, Thailand | ng/L | 15.1 | [29] |
12 | River | Han River, Korea | ng/L | 2093 | [30] |
13 | River | Tigris River, Iraq | ng/L | 43.57 | [31] |
14 | River | Malaysia, Kajang | ng/L | 132 | [32] |
15 | Rivers | Hong Kong, China | ng/L | ND–31.5 | [33] |
16 | Rivers | Austria, Vienna | ng/L | 122 | [32] |
17 | Lake | Hanoi, Vietnam | ng/L | 101 | [34] |
18 | Lake | Taihu Lake, China | ng/L | ND–125 | [35] |
19 | Lake | Dongting Lake, China | ng/L | ND–21.5 | [35] |
Biochar Modification Methods | Biochar Raw Material | Modifying Reagents | Pyrolysis Temperature | SSA (m2/g) | Qmax (mg/g) | Initial Concentration of TC mg/L | Removal Rate of TC (%) | Refs. | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Before Modification | After Modification | Before Modification | After Modification | ||||||||
Raw biochar | Pine bark | / | 800 | 683.33 | / | 58.47 | / | 50 | 89.5 | [84] | |
Rice straw | / | 400 | 6.72 | / | 8.246 | / | 100 | / | [85] | ||
Rice straw | 600 | 21.69 | 14.185 | 100 | / | [85] | |||||
Swine manure | / | 400 | 5.17 | / | 5.886 | / | 100 | / | [85] | ||
Swine manure | / | 600 | 10.56 | / | 8.169 | / | 100 | / | [85] | ||
Cow manure | / | 700 | 31.23 | / | 11.793 | / | 50 | / | [86] | ||
Grape leaves | / | 900 | 234.201 | / | 52.858 | / | 30 | / | [87] | ||
Waste Auricularia auricula dregs | / | 300 | 2.55 | / | 2.02 | / | 10 | 41.22 | [88] | ||
Waste Auricularia auricula dregs | / | 500 | 18.95 | / | 3.27 | / | 10 | 80.81 | [88] | ||
Waste Auricularia auricula dregs | / | 700 | 46.56 | / | 4.13 | / | 10 | 92.00 | [88] | ||
Food and garden waste | / | 300 | 20 | / | 2.98 | / | 20 | / | [89] | ||
Food and garden waste | / | 300 | / | / | 4.68 | / | 40 | / | [89] | ||
Food and garden waste | / | 300 | / | / | 5.78 | / | 60 | / | [89] | ||
Food and garden waste | / | 300 | / | / | 8.23 | / | 80 | / | [89] | ||
Food and garden waste | / | 300 | / | / | 9.45 | / | 100 | / | [89] | ||
Physical modification | Ball milling | Crayfish shell | / | 800 | 127.9 | 289.7 | 39.1 | 60.7 | 100 | 88.0 | [90] |
Soybean residue | / | 800 | 398.81 | 863.1 | / | / | 50 | 77.35 | [91] | ||
Mulberry | / | 500 | 0.81 | 12.62 | 20.1 | 103.7 | 50 | 80.71 | [67] | ||
Coconut shell biochar | / | 900 | 1263 | 1057 | / | / | 20 | 69.3 | [66] | ||
Iron-rich paper sludge | / | 700 | / | / | / | / | 20 | 96.4 | [92] | ||
Iron-rich paper sludge | / | 700 | / | / | / | / | 200 | 86.1 | [92] | ||
Wheat straw | / | 700 | / | / | / | / | 20 | 82.47 | [93] | ||
Sawdust | / | 600 | 166.95 | 219.24 | / | 41.08 | 50 | 82.64 | [81] | ||
Heat-treated | Softwood (Pinus radiata) sawdust | / | 400 | 363 | 586 | 10.4 | 96.1 | 200 | / | [64] | |
The waste hydrochar | / | 700 | 7.16 | 316 | / | 28.77 | 50 | / | [94] | ||
Poplar saw dust | 300 °C air | 220 | / | / | 6.29 | 33.32 | 100 | / | [65] | ||
Poplar saw dust | 500 °C air | 220 | / | / | 6.29 | 196.7 | 250 | / | [65] | ||
Poplar saw dust | 700 °C air | 220 | / | / | 6.29 | 60.9 | 100 | / | [65] | ||
Poplar saw dust | 300 °C N2 | 220 | / | / | 6.29 | 6.22 | 100 | / | [65] | ||
Poplar saw dust | 500 °C N2 | 220 | / | / | 6.29 | 14.00 | 250 | / | [65] | ||
Poplar saw dust | 700 °C N2 | 220 | / | / | 6.29 | 22.21 | 100 | / | [65] | ||
Steam activation | Bamboo | / | 500 | 1.22 | 2.12 | / | 98.66 | / | 95.75 | [70] | |
Beetroot residue | / | 850 | / | 821 | / | 288 | 200 | / | [95] | ||
Ectoparasitic shell | / | 850 | / | 829 | / | 28 | 200 | / | [95] | ||
Coconut shell | / | 850 | 1138 | / | 133.1 | 200 | [95] | ||||
Chemical modification | Acid–base modification | Swine manure | H3PO4 | 700 | 227.56 | 319.04 | 109.5 | 141.5 | 120 | / | [96] |
Rice straw biochar | H3PO4 | 700 | 369.26 | 372.2 | 132.7 | 167.5 | 120 | / | [96] | ||
Camellia oleifera shell | H3PO4 | 600 | 384.2 | 1392.4 | 33.4 | 451.5 | 25 | 99.5 | [97] | ||
Rice straw biochar | H2SO4 | 500 | 34.4 | 46.8 | 16.95 | 23.26 | 800 | / | [74] | ||
Rice straw biochar | KOH | 500 | 34.4 | 117.8 | 16.95 | 58.82 | 800 | / | [74] | ||
Chicken feather | KOH | 800 | 412.5 | 1838.86 | 228.6 | 288.33 | 50 | 99.65 | [98] | ||
Pomelo peel | KOH | 600 | 27.50 | 2457.37 | 12.33 | 476.19 | 10 | 85.04 | [99] | ||
Poplar | KOH | 300 | 12.32 | 111.39 | 4.30 | 21.17 | 30 | / | [60] | ||
Walnut shells | KOH | 900 | 14.66 | 1713.87 | / | 607.00 | 20 | 95 | [100] | ||
Alfalfa | NaOH | 800 | 0.68 | 796.5 | 30.7 | 302.37 | 100 | / | [101] | ||
Pine wood | NaOH | 800 | 1.4 | 959.9 | 29.42 | 274.81 | 100 | / | [102] | ||
Macadamia nut shells | NaOH | 700 | / | 1524 | / | 455.33 | 600 | 80 | [103] | ||
Coffee grounds | NaOH | 500 | 3.644 | 116.591 | 39.22 | 113.64 | 100 | / | [104] | ||
Banana skin | KOH | 700 | 3.77 | 1276.63 | 51 | 295 | 50 | 98 | [76] | ||
Waste Auricularia auricula dregs biochar | NaOH | 700 | / | 46.56 | / | 11.9 | 10 | 91.10 | [105] | ||
Heteroatom codoping | Corn stover | Fe, S | 400 | / | / | 12.5 | 505.68 | 120 | / | [106] | |
Waste sludge | Fe, S | 500 | 10.68 | 62.25 | 32.58 | 174.06 | 100 | / | [78] | ||
Bagasse | N, S | 300 | 2.0710 | 10.0525 | 16.23 | 51.1 | 50 | 64.2 | [107] | ||
Rice straw | Fe, N | 700 | 177.7154 | 606.6225 | 29 | 156 | 50 | 69 | [73] | ||
Waste sludge | Fe, S | 500 | / | / | 51.78 | 183.01 | 400 | 80 | [108] | ||
Poplar tree | N, O, S | 900 | 477.1 | 542.5 | 17.4 | 41.7 | 40 | 71.84 | [109] | ||
Rice straw | Mo, S | 500 | / | 176.8 | / | 249.45 | 100 | 85 | [110] | ||
Cabbage leaf | N, P | 500 | 462 | 1400 | / | 247 | 50 | 97.5 | [111] | ||
Bagasse | La2S3, S, N | 600 | / | / | / | 419.18 | 200 | 98.45 | [112] | ||
Tea residue | S, N | 220 | / | 11.689 | / | 271 | 100 | 94.16 | [113] | ||
Magnetically modified | Pine sawdust | FeCl | 500 | 13.08 | 666.22 | 33.76 | 100.74 | 100 | 80.6 | [79] | |
Rice straw | FeCl3 | 300 | 28.13 | 115.5 | 37.803 | 98.334 | 50 | 69 | [88] | ||
Poplar | NH4Fe(SO4)2 | 500 | 165.18 | 122.12 | / | 81.13 | 60 | 80.1 | [114] | ||
Sawdust | FeCl3 | 600 | 166.94 | 17.19 | 4.22 | 66.91 | 50 | 78.43 | [81] | ||
Suaeda | Fe | 800 | 35.98 | 248.8 | 54.88 | 70.17 | 80 | 83.28 | [68] | ||
Spent mushroom substrate | Fe | 500 | 90.61 | 100.29 | 11.06 | 37.95 | 100 | 42.20 | [115] | ||
Spent mushroom substrate | FeSO4·7H2O | 500 | 90.61 | 296.89 | 11.06 | 31.89 | 100 | 35.00 | [115] | ||
Spent mushroom substrate | FeCl3·6H2O | 500 | 90.61 | 160.91 | 11.06 | 25.36 | 100 | 27.80 | [115] | ||
Spent mushroom substrate | K2FeO4 | 500 | 90.61 | 373.29 | 11.06 | 19.63 | 100 | 23.82 | [115] | ||
Microalgae | Fe | 170 | / | 128.3 | / | 95.86 | 50 | 93 | [116] | ||
Wood chip | FeCl3 | 800 | 1.7 | 1710 | / | 423.7 | 100 | 96 | [52] | ||
Cotton dust | FeSO4·7H2O and FeCl3·6H2O | 450 | / | / | / | 146.70 | 100 | 96.92 | [117] | ||
Water hyacinth | FeCl3⋅6H2O, | 700 | / | / | / | 202.62 | 50 | 90.91 | [118] | ||
Waste chicken bones | FeCl3·6H2O, FeSO4·7H2O | 500 | 316.05 | 328.06 | / | 98.89 | 100 | 96 | [119] | ||
Straw | FeCl3, FeCl2·4H2O | 450 | 7.467 | 504.994 | 2.10 | 15.45 | 20 | / | [120] | ||
Coconut, pinenut, and walnut shells | Fe, Fe2O3, Fe3O4 | 500 | 30.9 | 365 | / | 94.2 | 50 | 99 | [121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Yang, W.; Chen, Y.; Yang, L. Removal of Tetracycline from Water by Biochar: Mechanisms, Challenges, and Future Perspectives. Water 2025, 17, 1960. https://doi.org/10.3390/w17131960
Zhang L, Yang W, Chen Y, Yang L. Removal of Tetracycline from Water by Biochar: Mechanisms, Challenges, and Future Perspectives. Water. 2025; 17(13):1960. https://doi.org/10.3390/w17131960
Chicago/Turabian StyleZhang, Lin, Wentao Yang, Yonglin Chen, and Liyu Yang. 2025. "Removal of Tetracycline from Water by Biochar: Mechanisms, Challenges, and Future Perspectives" Water 17, no. 13: 1960. https://doi.org/10.3390/w17131960
APA StyleZhang, L., Yang, W., Chen, Y., & Yang, L. (2025). Removal of Tetracycline from Water by Biochar: Mechanisms, Challenges, and Future Perspectives. Water, 17(13), 1960. https://doi.org/10.3390/w17131960