Alkali-Activated Materials Reinforced via Fibrous Biochar: Modification Mechanisms, Environmental Benefits, and Challenges
Abstract
:1. Introduction
2. Fundamentals of Alkali-Activated Materials (AAMs)
2.1. Composition of Alkali-Activated Materials
2.2. Reaction Mechanisms of Alkali-Activated Materials
2.3. Factors Determining Reaction Mechanisms
2.4. Challenges in AAM Development
3. Inherent Characteristics of Fibrous Biochar
3.1. Production of Fibrous Biochar
3.2. Physicochemical Properties of Biochar
3.3. Applications of Biochar in Construction
4. Pivotal Factors of Biochar-Reinforced AAMs
4.1. Incorporation Techniques
4.2. Interfacial Chemistry
4.3. Particle Size and Distribution
4.4. Curing Conditions
4.5. Water Absorption
4.6. Regional Considerations for Biochar Feedstock Availability
5. Reinforcement Mechanisms of Biochar Modified AAMs
5.1. Internal Curing Effect
5.2. Impact on Workability and Strength Development
5.3. Thermal Properties
5.4. Noise Damping
6. Environmental Resistance
7. Microstructural and Chemical Analysis
7.1. Microstructural Evolution of Biochar-Modified AAM
7.2. Physical and Chemical Interactions
8. Environmental and Economic Perspectives
8.1. Environmental Perspective
8.2. Economical Perspective
8.3. Life Cycle Assessment
8.4. Challenges
9. Potential Research Directions and Future Trends
9.1. Optimization of Biochar Production for Consistent Quality
9.2. Surface Modification Techniques to Enhance Compatibility with AAMs
9.3. Long-Term Performance Studies Under Diverse Environmental Conditions
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amran, M.; Debbarma, S.; Ozbakkaloglu, T. Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Constr. Build. Mater. 2021, 270, 121857. [Google Scholar] [CrossRef]
- Wang, T.; Fan, X.; Gao, C. Strength, pore characteristics, and characterization of fly ash-slag-based geopolymer mortar modified with silica fume. Structures 2024, 69, 107525. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Jitsangiam, P.; Rattanasak, U. Hydrophobicity and efflorescence of lightweight fly ash geopolymer incorporated with calcium stearate. J. Clean. Prod. 2022, 364, 132449. [Google Scholar] [CrossRef]
- Curcio, I.; Gigli, R.; Mormile, F.; Mormile, C. A comprehensive review on biochar, with a particular focus on nano properties and applications. Nano Trends 2025, 10, 100117. [Google Scholar] [CrossRef]
- He, D.; Luo, Y.; Zhu, B. Feedstock and pyrolysis temperature influence biochar properties and its interactions with soil substances: Insights from a DFT calculation. Sci. Total Environ. 2024, 922, 171259. [Google Scholar] [CrossRef]
- Saccani, A.; Baldazzi, L.; Manzi, S. Effects of Biochar Addition on the Properties of Alkali-Activated Materials. Materials 2025, 18, 486. [Google Scholar] [CrossRef]
- Gupta, S.; Krishnan, P.; Kashani, A.; Kua, H.W. Application of biochar from coconut and wood waste to reduce shrinkage and improve physical properties of silica fume-cement mortar. Constr. Build. Mater. 2020, 262, 120688. [Google Scholar] [CrossRef]
- Gupta, S.; Kashani, A.; Mahmood, A.H.; Han, T. Carbon sequestration in cementitious composites using biochar and fly ash—Effect on mechanical and durability properties. Constr. Build. Mater. 2021, 291, 123363. [Google Scholar] [CrossRef]
- An, Q.; Pan, H.; Zhao, Q.; Wang, D. Strength development and microstructure of sustainable geopolymers made from alkali-activated ground granulated blast-furnace slag, calcium carbide residue, and red mud. Constr. Build. Mater. 2022, 356, 129279. [Google Scholar] [CrossRef]
- Liao, G.; Wang, D.; Wang, W.; He, Y. Microstructure, strength development mechanism, and CO2 emission analyses of alkali-activated fly ash-slag mortars. J. Clean. Prod. 2024, 442, 141116. [Google Scholar] [CrossRef]
- Luo, L.; Yao, W.; Liang, G.; Luo, Y. Workability, autogenous shrinkage and microstructure of alkali-activated slag/fly ash slurries: Effect of precursor composition and sodium silicate modulus. J. Build. Eng. 2023, 73, 106712. [Google Scholar] [CrossRef]
- Tu, W.; Fang, G.; Dong, B.; Hu, Y.; Zhang, M. Behaviour of alkali-activated fly ash-slag paste at elevated temperatures: An experimental study. Cem. Concr. Compos. 2024, 147, 105438. [Google Scholar] [CrossRef]
- Venkitasamy, V.; Santhanam, M.; Rao, B.P.C.; Balakrishnan, S.; Kumar, A. Mechanical and durability properties of structural grade heavy weight concrete with fly ash and slag. Cem. Concr. Compos. 2024, 145, 105362. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, Y.; Liu, J.; Chen, X.; Ren, F.; Chen, W.; Cui, H. Improvement of shrinkage resistance and mechanical property of cement-fly ash-slag ternary blends by shrinkage-reducing polycarboxylate superplasticizer. J. Clean. Prod. 2024, 447, 141493. [Google Scholar] [CrossRef]
- Shi, S.; Li, H.; Zhou, Q.; Zhang, H.; Basheer, P.A.M.; Bai, Y. Alkali-activated fly ash cured with pulsed microwave and thermal oven: A comparison of reaction products, microstructure and compressive strength. Cem. Concr. Res. 2023, 166, 107104. [Google Scholar] [CrossRef]
- Sun, B.; Ye, G.; de Schutter, G. A review: Reaction mechanism and strength of slag and fly ash-based alkali-activated materials. Constr. Build. Mater. 2022, 326, 126843. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Li, Z.; Gao, Y.; Liu, C. Feasibility study of red mud-blast furnace slag based geopolymeric grouting material: Effect of superplasticizers. Constr. Build. Mater. 2021, 267, 120910. [Google Scholar] [CrossRef]
- Reddy, K.C.; Kim, G.M.; Park, S. Modeling the phase evolution in alkali-activated slag cements upon interaction with seawater. Case Stud. Constr. Mater. 2022, 17, e01476. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, M.; Zhang, G.; Mann, D.; Lumsden, K.; Tao, M. Durability of red mud-fly ash based geopolymer and leaching behavior of heavy metals in sulfuric acid solutions and deionized water. Constr. Build. Mater. 2016, 124, 373–382. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, Y.; Ouyang, X.; Fu, J.; Li, Z. Effect of CaO on the shrinkage and microstructure of alkali-activated slag/fly ash microsphere. Constr. Build. Mater. 2024, 421, 135672. [Google Scholar] [CrossRef]
- Ma, H.; Fu, C.; Dai, E.; Huang, K.; Zhang, S.; Feng, J. Research on the effect of 60 °C thermal cycling on the properties of alkali-activated fly ash-slag materials: A new perspective. Constr. Build. Mater. 2024, 416, 135192. [Google Scholar] [CrossRef]
- Zhang, D.; Zhu, H.; Wu, Q.; Yang, T.; Yin, Z.; Tian, L. Investigation of the hydrophobicity and microstructure of fly ash-slag geopolymer modified by polydimethylsiloxane. Constr. Build. Mater. 2023, 369, 130540. [Google Scholar] [CrossRef]
- Liu, C.; Li, Z.; Ye, G. Mechanisms of efflorescence of alkali-activated slag. Cem. Concr. Compos. 2025, 155, 105811. [Google Scholar] [CrossRef]
- Rajendiran, N.; Ganesan, S.; Weichgrebe, D.; Venkatachalam, S.S. Optimization of pyrolysis process parameters for the production of biochar from banana peduncle fibrous waste and its characterization. Clean Technol. Environ. Policy 2023, 25, 3189–3201. [Google Scholar] [CrossRef]
- Mutamima, A.; Sunarno, S.; Purnama, I.; Nurfatihayati, N.; Novendri, A.; Anesta, R.; Irianty, R.S. High-efficiency biochar production from oil palm fronds using acidic pretreatment and co-torrefaction with waste cooking oil. Waste Dispos. Sustain. Energy 2025. [Google Scholar] [CrossRef]
- Santos, D.C.B.D.; Evaristo, R.B.W.; Dutra, R.C.; Suarez, P.A.Z.; Silveira, E.A.; Ghesti, G.F. Advancing Biochar Applications: A Review of Production Processes, Analytical Methods, Decision Criteria, and Pathways for Scalability and Certification. Sustainability 2025, 17, 2685. [Google Scholar] [CrossRef]
- Cárdenas-Aguiar, E.; Méndez, A.; Gascó, G.; Lado, M.; Paz-González, A. The Effects of Feedstock, Pyrolysis Temperature, and Residence Time on the Properties and Uses of Biochar from Broom and Gorse Wastes. Appl. Sci. 2024, 14, 4283. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Smolyanichenko, A.S.; Beskopylny, N. High-Performance Concrete Nanomodified with Recycled Rice Straw Biochar. Appl. Sci. 2022, 12, 5480. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, R.; Gong, L.; Li, Y.; Cao, W.; Cheng, X. Development of porous fly ash-based geopolymer with low thermal conductivity. Mater. Des. 2015, 65, 529–533. [Google Scholar] [CrossRef]
- Trivedi, Y.; Sharma, M.; Mishra, R.K.; Sharma, A.; Joshi, J.; Gupta, A.B.; Achintya, B.; Shah, K.; Vuppaladadiyamd, A.K. Biochar potential for pollutant removal during wastewater treatment: A comprehensive review of separation mechanisms, technological integration, and process analysis. Desalination 2025, 600, 118509. [Google Scholar] [CrossRef]
- Singh, S.; Khan, N.A.; Shehata, N.; Singh, J.; Ramamurthy, P.C. Insight into biochar as sustainable biomass: Production methods, characteristics, and environmental remediation. J. Clean. Prod. 2024, 475, 143645. [Google Scholar] [CrossRef]
- Kołtowski, M.; Hilber, I.; Bucheli, T.D.; Charmas, B.; Skubiszewska-Zięba, J.; Oleszczuk, P. Activated biochars reduce the exposure of polycyclic aromatic hydrocarbons in industrially contaminated soils. Chem. Eng. J. 2017, 310, 33–40. [Google Scholar] [CrossRef]
- Masud, M.A.A.; Shin, W.S.; Sarker, A.; Septian, A.; Das, K.; Deepo, D.M.; Iqbal, M.A.; Islam, A.R.M.T.; Malafaia, G. A critical review of sustainable application of biochar for green remediation: Research uncertainty and future directions. Sci. Total Environ. 2023, 904, 166813. [Google Scholar] [CrossRef]
- Legan, M.; Gotvajn, A.Z.; Zupan, K. Potential of biochar use in building materials. J. Environ. Manag. 2022, 309, 114704. [Google Scholar] [CrossRef]
- Maljaee, H.; Madadi, R.; Paiva, H.; Tarelho, L.; Ferreira, V.M. Incorporation of biochar in cementitious materials: A roadmap of biochar selection. Constr. Build. Mater. 2021, 283, 122757. [Google Scholar] [CrossRef]
- Maljaee, H.; Paiva, H.; Madadi, R.; Tarelho, L.A.C.; Morais, M.; Ferreira, V.M. Effect of cement partial substitution by waste-based biochar in mortars properties. Constr. Build. Mater. 2021, 301, 124074. [Google Scholar] [CrossRef]
- Patel, R.; Babaei-Ghazvini, A.; Dunlop, M.J.; Acharya, B. Biomaterials-based concrete composites: A review on biochar, cellulose and lignin. Carbon Capture Sci. Technol. 2024, 12, 100232. [Google Scholar] [CrossRef]
- Xiao, S.; Li, Y.; Xu, C.; Deng, J.; Cheng, L.; Zhang, H.; Zhou, Y.; Hong, J. The influence of biochar addition on the mechanical performance, hydration mechanism, and carbonation capacity of Super Sulfated Cement. Constr. Build. Mater. 2025, 463, 140073. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, X.; Zhang, Y.; Wang, L.; Ma, B.; Zheng, Y.; Poon, C.S.; Yan, J.; Tsang, D.C.W. Carbonation-enhanced interfacial transition zone in biochar-cement mortar. Constr. Build. Mater. 2024, 451, 138606. [Google Scholar] [CrossRef]
- Wang, H.; Liu, R.; Xiao, H.; Shi, X.; Wang, W.; Wen, Q. Developing green low-carbon cement-based composites via innovative design of biochar particle size distribution. Constr. Build. Mater. 2024, 453, 139099. [Google Scholar] [CrossRef]
- Chen, Y.; Zhan, B.; Guo, B.; Wang, C.; Li, H.; Tian, D.; Dai, S.; Ye, P.; Qin, H.; Gao, P.; et al. Accelerated carbonation curing of biochar-cement mortar: Effects of biochar pyrolysis temperatures on carbon sequestration, mechanical properties and microstructure. Constr. Build. Mater. 2024, 449, 138446. [Google Scholar] [CrossRef]
- Shi, G.; Xu, H.; Huang, J.; Qian, F.; Kong, L.; Huang, Y. A new perspective toward sludge biochar with adsorbed heavy metals for cement mortar production. Environ. Technol. Innov. 2025, 37, 104013. [Google Scholar] [CrossRef]
- Chen, T.; Yang, Z.; Liu, H.; Li, L.; Qin, L.; Gao, X. Effect of biochar characteristics on freeze-thaw durability of biochar-cement composites. J. Build. Eng. 2025, 102, 111959. [Google Scholar] [CrossRef]
- Wijeyawardana, P.; Law, D.; Gunasekara, C.; Nanayakkara, N.; Karunarathna, A.; Pramanik, B.K. Assessing the life cycle and economic impact of cement-modified biochar compared to conventional adsorbents for heavy metal removal in stormwater. Process Saf. Environ. Prot. 2024, 192, 244–256. [Google Scholar] [CrossRef]
- Piccolo, F.; Andreola, F.; Barbieri, L.; Lancellotti, I. Synthesis and Characterization of Biochar-Based Geopolymer Materials. Appl. Sci. 2021, 11, 10945. [Google Scholar] [CrossRef]
- Egodagamage, H.; Yapa, H.D.; Samith Buddika, H.A.D.; Navaratnam, S.; Nguyen, K. Effective use of biochar as an additive for alkali-activated slag mortar production. Constr. Build. Mater. 2023, 370, 130487. [Google Scholar] [CrossRef]
- Athira, V.S.; Charitha, V.; Athira, G.; Bahurudeen, A. Agro-waste ash based alkali-activated binder: Cleaner production of zero cement concrete for construction. J. Clean. Prod. 2021, 286, 125429. [Google Scholar] [CrossRef]
- John, S.K.; Nadir, Y.; Girija, K. Effect of source materials, additives on the mechanical properties and durability of fly ash and fly ash-slag geopolymer mortar: A review. Constr. Build. Mater. 2021, 280, 122443. [Google Scholar] [CrossRef]
- Mendonça, F.G.d.; Cunha, I.T.d.; Soares, R.R.; Tristão, J.C.; Lago, R.M. Tuning the surface properties of biochar by thermal treatment. Bioresour. Technol. 2017, 246, 28–33. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Bhusan Das, B.; Kanavaris, F. Biochar-concrete: A comprehensive review of properties, production and sustainability. Case Stud. Constr. Mater. 2024, 20, e02859. [Google Scholar] [CrossRef]
- Farges, R. Insulating foams geopolymer biochar. J. Ceram. Sci. Technol 2018, 9, 193–200. [Google Scholar] [CrossRef]
- Marathe, S.; Sadowski, Ł. Developments in biochar incorporated geopolymers and alkali activated materials: A systematic literature review. J. Clean. Prod. 2024, 469, 143136. [Google Scholar] [CrossRef]
- Tan, K.; Qin, Y.; Du, T.; Li, L.; Zhang, L.; Wang, J. Biochar from waste biomass as hygroscopic filler for pervious concrete to improve evaporative cooling performance. Constr. Build. Mater. 2021, 287, 123078. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, W.; Lin, H.; Li, Y.; Lu, H.; Wang, Y. A green technology for the preparation of high capacitance rice husk-based activated carbon. J. Clean. Prod. 2016, 112, 1190–1198. [Google Scholar] [CrossRef]
- Kim, J.-G.; Kim, H.-B.; Baek, K. Novel electrochemical method to activate biochar derived from spent coffee grounds for enhanced adsorption of lead (Pb). Sci. Total Environ. 2023, 886, 163891. [Google Scholar] [CrossRef]
- Teli, S.; Soni, S.; Teli, P.; Agarwal, S. Recent insights into modified biochars: A half-decade study. J. Mater. Sci. 2024, 59, 18357–18394. [Google Scholar] [CrossRef]
- Motta, A.; Li, X.; Shen, Q.; Zhang, D.; Mei, X.; Ran, W.; Xu, Y.; Yu, G. Functional Groups Determine Biochar Properties (pH and EC) as Studied by Two-Dimensional 13C NMR Correlation Spectroscopy. PLoS ONE 2013, 8, e65949. [Google Scholar] [CrossRef]
- Harvey, O.R. Metal Interactions at the Biochar-Water Interface: Energetics and Structure-Sorption Relationships Elucidated by Flow Adsorption Microcalorimetry. Environ. Sci. Technol. 2011, 45, 135796. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Insight into biochar properties and its cost analysis. Biomass Bioenergy 2016, 84, 76–86. [Google Scholar] [CrossRef]
- Khamlue, P.; Lertcumfu, N.; Jaita, P.; Manotham, S.; Tunkasiri, T.; Malasri, P.; Rujijanagul, G. The Effects of Biochar Additive on the Properties of Geopolymer Materials. Key Eng. Mater. 2019, 798, 273–278. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, H.; Guo, Y.; Wang, C.; Cui, H.; Xue, J. Mechanical performance and water resistance of biochar admixture lightweight magnesium oxychloride cement. Sci. Total Environ. 2024, 912, 168773. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Jiang, N.; Jin, F.; Reddy, K.R.; Wang, Y.; Liu, K.; Du, Y. Effects of biochar-amended alkali-activated slag on the stabilization of coral sand in coastal areas. J. Rock Mech. Geotech. Eng. 2023, 15, 760–772. [Google Scholar] [CrossRef]
- Deepshikaa, R.; Prasanthrajan, M.; Rahale, C.S.; Kanna, S.U.; Mahendiran, R.; Parthiban, K.T.; Geethalakshmi, V. Advancements in nanobiochar for environmental remediation. Plant Sci. Today 2024, 11, 111076. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, K.; Wang, X.; Zhao, Q.; Jiang, J.; Xue, R.; Yuan, L. Mn-embedded biochar for enhanced removal of Cd(II), Pb(II) and Ni(II): Physicochemical properties, high-efficiency adsorption capacities and quantitative mechanism analysis. J. Environ. Chem. Eng. 2024, 12, 112691. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, P.; Dai, X.; Zheng, Y.; Hu, S. Workability of self-compacting geopolymer concrete: The effect of nano-SiO2 and steel-polyvinyl alcohol hybrid fiber. Constr. Build. Mater. 2025, 460, 139849. [Google Scholar] [CrossRef]
- Sambucci, M.; Al-Noaimat, Y.A.; Nouri, S.M.; Chougan, M.; Ghaffar, S.H.; Valente, M. Influence of Nanoceramic-Plated Waste Carbon Fibers on Alkali-Activated Mortar Performance. Ceramics 2024, 7, 821–839. [Google Scholar] [CrossRef]
- Doctolero, J.Z.S.; Beltran, A.B.; Bernardo, G.P.O.; Promentilla, M.A.B. Applying X-ray Microtomography to Study Microbial-Induced Self-Healing of Geopolymers. Chem. Eng. Trans. 2021, 88, 775–780. [Google Scholar] [CrossRef]
- Chen, Y.X.; Wu, F.; Yu, Q.; Brouwers, H.J.H. Bio-based ultra-lightweight concrete applying miscanthus fibers: Acoustic absorption and thermal insulation. Cem. Concr. Compos. 2020, 114, 103829. [Google Scholar] [CrossRef]
- Han, X.; Jiang, N.; Wang, Y. A laboratory investigation of coastal sand stabilization using biochar-enhanced alkali-activated slag. Jpn. Geotech. Soc. Spec. Publ. 2021, 9, 292–295. [Google Scholar] [CrossRef]
- Ishak, S.; Lee, H.-S.; Singh, J.K.; Ariffin, M.A.M.; Lim, N.H.A.S.; Yang, H.-M. Performance of Fly Ash Geopolymer Concrete Incorporating Bamboo Ash at Elevated Temperature. Materials 2019, 12, 3404. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, S.; Wang, D.; Li, X.; Huo, Z.; Zhang, L. Curing optimization and material synergy in developing high-strength geopolymers from multiple solid wastes. Sustain. Chem. Pharm. 2025, 43, 101898. [Google Scholar] [CrossRef]
- Araújo, L.B.R.; Targino, D.L.L.; Babadopulos, L.F.A.L.; Fabbri, A.; Cabral, A.E.B.; Chehade, R.; Costa, H.N. Impact of Curing Temperature and Steel Slag Aggregates on High-Strength Self-Compacting Alkali-Activated Concrete. Buildings 2025, 15, 457. [Google Scholar] [CrossRef]
- Yadav, S.K.; Bag, R. Influence of prolong curing, freeze thaw cycles on strength and compaction condition on water retention behaviour of bamboo biochar amended soils. Sci. Rep. 2025, 15, 9. [Google Scholar] [CrossRef] [PubMed]
- Seow, Y.X.; Tan, Y.H.; Mubarak, N.M.; Kansedo, J.; Khalid, M.; Ibrahim, M.L.; Ghasemi, M. A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications. J. Environ. Chem. Eng. 2022, 10, 107017. [Google Scholar] [CrossRef]
- Aller, D.M.; Archontoulis, S.V.; Zhang, W.; Sawadgo, W.; Laird, D.A.; Moore, K. Long term biochar effects on corn yield, soil quality and profitability in the US Midwest. Field Crops Res. 2018, 227, 30–40. [Google Scholar] [CrossRef]
- Waheed, A.; Xu, H.; Qiao, X.; Aili, A.; Yiremaikebayi, Y.; Haitao, D.; Muhammad, M. Biochar in sustainable agriculture and Climate Mitigation: Mechanisms, challenges, and applications in the circular bioeconomy. Biomass Bioenergy 2025, 193, 107531. [Google Scholar] [CrossRef]
- Batista, E.M.C.C.; Shultz, J.; Matos, T.T.S.; Fornari, M.R.; Ferreira, T.M.; Szpoganicz, B.; de Freitas, R.A.; Mangrich, A.S. Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Sci. Rep. 2018, 8, 10677. [Google Scholar] [CrossRef]
- Zabihi, S.M.; Tavakoli, H.; Mohseni, E. Engineering and Microstructural Properties of Fiber-Reinforced Rice Husk–Ash Based Geopolymer Concrete. J. Mater. Civ. Eng. 2018, 30, 610–618. [Google Scholar] [CrossRef]
- Huseien, G.F.; Tahir, M.M.; Mirza, J.; Ismail, M.; Shah, K.W.; Asaad, M.A. Effects of POFA replaced with FA on durability properties of GBFS included alkali activated mortars. Constr. Build. Mater. 2018, 175, 174–186. [Google Scholar] [CrossRef]
- Prabahar, J.; Vafaei, B.; Baffoe, E.; Ghahremaninezhad, A. The Effect of Biochar on the Properties of Alkali-Activated Slag Pastes. Constr. Mater. 2021, 2, 1–14. [Google Scholar] [CrossRef]
- Dixit, A.; Gupta, S.; Pang, S.D.; Kua, H.W. Waste Valorisation using biochar for cement replacement and internal curing in ultra-high performance concrete. J. Clean. Prod. 2019, 238, 117876. [Google Scholar] [CrossRef]
- Zhang, Y.; He, M.; Wang, L.; Yan, J.; Ma, B.; Zhu, X.; Ok, Y.S.; Mechtcherine, V.; Tsang, D.C.W. Biochar as construction materials for achieving carbon neutrality. Biochar 2022, 4, 59. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Poon, C.S.; Wang, C.-H.; Ok, Y.S.; Mechtcherine, V.; Tsang, D.C.W. Roles of Biochar and CO2 Curing in Sustainable Magnesia Cement-Based Composites. ACS Sustain. Chem. Eng. 2021, 9, 8603–8610. [Google Scholar] [CrossRef]
- Mo, L.; Fang, J.; Huang, B.; Wang, A.; Deng, M. Combined effects of biochar and MgO expansive additive on the autogenous shrinkage, internal relative humidity and compressive strength of cement pastes. Constr. Build. Mater. 2019, 229, 116877. [Google Scholar] [CrossRef]
- Shafie, S.T.; Salleh, M.M.; Hang, L.L.; Rahman, M.; Ghani, W.A.W.A.K. Effect of pyrolysis temperature on the biochar nutrient and water retention capacity. J. Purity Util. React. Environ. 2012, 1, 293–307. [Google Scholar]
- Leng, L.; Huang, H. An overview of the effect of pyrolysis process parameters on biochar stability. Bioresour. Technol. 2018, 270, 627–642. [Google Scholar] [CrossRef]
- Maljaee, H. Sustainable lightweight mortar using biochar as sand replacement. Eur. J. Environ. Civ. Eng. 2022, 26, 124358. [Google Scholar] [CrossRef]
- Aneja, A.; Sharma, R.L.; Singh, H. Mechanical and durability properties of biochar concrete. Mater. Today Proc. 2022, 65, 3724–3730. [Google Scholar] [CrossRef]
- Aziz, M.A.; Zubair, M.; Saleem, M.; Alharthi, Y.M.; Ashraf, N.; Alotaibi, K.S.; Aga, O.; Al Eid, A.A.A. Mechanical, non-destructive, and thermal characterization of biochar-based mortar composite. Biomass Convers. Biorefinery 2023, 13, 1856–1867. [Google Scholar] [CrossRef]
- Abdulkareem, O.A.; Ramli, M.; Matthews, J.C. Production of geopolymer mortar system containing high calcium biomass wood ash as a partial substitution to fly ash: An early age evaluation. Compos. Part B Eng. 2019, 174, 106941. [Google Scholar] [CrossRef]
- Rihan, M.A.M.; Onchiri, R.O.; Gathimba, N.; Sabuni, B. Assessing the durability performance of geopolymer concrete utilizing fly ash and sugarcane bagasse ash as sustainable binders. Open Ceram. 2024, 20, 100687. [Google Scholar] [CrossRef]
- Venkatesan, R.P.; Pazhani, K.C. Strength and durability properties of geopolymer concrete made with Ground Granulated Blast Furnace Slag and Black Rice Husk Ash. KSCE J. Civ. Eng. 2016, 20, 2384–2391. [Google Scholar] [CrossRef]
- Jia, Y.; Li, H.; He, X.; Li, P.; Wang, Z. Effect of biochar from municipal solid waste on mechanical and freeze–thaw properties of concrete. Constr. Build. Mater. 2023, 368, 130374. [Google Scholar] [CrossRef]
- Wang, W.; Wang, B. Pore Structure Characteristics and Reaction Mechanism of Fly Ash Geopolymer. J. Mater. Civ. Eng. 2024, 36, 04024249. [Google Scholar] [CrossRef]
- Mehta, A.; Siddique, R. Sustainable geopolymer concrete using ground granulated blast furnace slag and rice husk ash: Strength and permeability properties. J. Clean. Prod. 2018, 205, 49–57. [Google Scholar] [CrossRef]
- Sirico, A.; Bernardi, P.; Sciancalepore, C.; Vecchi, F.; Malcevschi, A.; Belletti, B.; Milanese, D. Biochar from wood waste as additive for structural concrete. Constr. Build. Mater. 2021, 303, 124500. [Google Scholar] [CrossRef]
- Boumaaza, M.; Belaadi, A.; Bourchak, M.; Juhany, K.A.; Jawaid, M.; Marvila, M.T.; de Azevedo, A.R.G. Optimization of flexural properties and thermal conductivity of Washingtonia plant biomass waste biochar reinforced bio-mortar. J. Mater. Res. Technol. 2023, 23, 3515–3536. [Google Scholar] [CrossRef]
- Han, L.; Ro, K.S.; Wang, Y.; Sun, K.; Sun, H.; Libra, J.A.; Xing, B. Oxidation resistance of biochars as a function of feedstock and pyrolysis condition. Sci. Total Environ. 2018, 616–617, 335–344. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Zhu, X.; Wang, L.; Mašek, O.; Sarmah, A.K.; Tsang, D.C. Enhanced thermal insulation of biochar-gypsum composites. Cem. Concr. Compos. 2025, 159, 106013. [Google Scholar] [CrossRef]
- Cuthbertson, D.; Berardi, U.; Briens, C.; Berruti, F. Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties. Biomass Bioenergy 2019, 120, 77–83. [Google Scholar] [CrossRef]
- Rodríguez de Sensale, G. Effect of rice-husk ash on durability of cementitious materials. Cem. Concr. Compos. 2010, 32, 718–725. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, B.; Duan, H. Effect of rice husk ash on properties of slag based geopolymer pastes. J. Build. Eng. 2023, 76, 107035. [Google Scholar] [CrossRef]
- Matalkah, F. Characterization of Alkali-Activated Nonwood Biomass Ash–Based Geopolymer Concrete. J. Mater. Civ. Eng. 2016, 29, 119704. [Google Scholar] [CrossRef]
- Suresh, R.; Gnanasekaran, L.; Rajendran, S.; Jalil, A.A.; Soto-Moscoso, M.; Khoo, K.S.; Ma, Z.; Halimatul Munawaroh, H.S.; Show, P.L. Biomass waste as an alternative source of carbon and silicon-based absorbents for CO2 capturing application. Chemosphere 2023, 343, 140173. [Google Scholar] [CrossRef]
- Yang, B.; Liu, Y.; Liang, Q.; Chen, M.; Ma, L.; Li, L.; Liu, Q.; Tu, W.; Lan, D.; Chen, Y. Evaluation of activated carbon synthesized by one-stage and two-stage co-pyrolysis from sludge and coconut shell. Ecotoxicol. Environ. Saf. 2019, 170, 722–731. [Google Scholar] [CrossRef]
- Candamano, S.; Policicchio, A.; Conte, G.; Abarca, R.; Algieri, C.; Chakraborty, S.; Curcio, S.; Calabrò, V.; Crea, F.; Agostino, R.G. Preparation of foamed and unfoamed geopolymer/NaX zeolite/activated carbon composites for CO2 adsorption. J. Clean. Prod. 2022, 330, 129843. [Google Scholar] [CrossRef]
- Tayyab, S.; Ferdous, W.; Lokuge, W.; Siddique, R.; Manalo, A. Biochar in cementitious composites: A comprehensive review of properties, compatibility, and prospect of use in sustainable geopolymer concrete. Resour. Conserv. Recycl. Adv. 2025, 25, 200242. [Google Scholar] [CrossRef]
- Liu, W.; Li, K.; Xu, S. Utilizing bamboo biochar in cement mortar as a bio-modifier to improve the compressive strength and crack-resistance fracture ability. Constr. Build. Mater. 2022, 327, 126917. [Google Scholar] [CrossRef]
- Sikora, P.; Woliński, P.; Chougan, M.; Madraszewski, S.; Węgrzyński, W.; Papis, B.K.; Federowicz, K.; Ghaffar, S.H.; Stephan, D. A systematic experimental study on biochar-cementitious composites: Towards carbon sequestration. Ind. Crops Prod. 2022, 184, 115103. [Google Scholar] [CrossRef]
- Silvestro, L.; Scolaro, T.P.; Ruviaro, A.S.; Santos Lima, G.T.d.; Gleize, P.J.P.; Pelisser, F. Use of biomass wood ash to produce sustainable geopolymeric pastes. Constr. Build. Mater. 2023, 370, 130641. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, S.; Zhang, Y.; Noguchi, T.; Maruyama, I. Understanding the influence of slag fineness and water-to-binder ratio on the alkali-silica reaction in alkali-activated slag mortars. Cem. Concr. Compos. 2025, 157, 105907. [Google Scholar] [CrossRef]
- Tian, D.; Jiang, H.; Qiu, Z.; Lv, M.; Cong, X.; Wu, X.; Gong, J.; Yang, X.; Lu, S. Synergy effects of phosphogypsum on the hydration mechanism and mechanical properties of alkali-activated slag in polysilicon sludge solidification. Constr. Build. Mater. 2024, 456, 139386. [Google Scholar] [CrossRef]
- Chen, K.-y.; Lan, R.-y.; He, T.-q.; Heng, P.; Xia, J. Evaluation on reactivity of fly ash from different sources in alkali activated system-progressing environmentally construction through waste utilization. Constr. Build. Mater. 2024, 454, 139118. [Google Scholar] [CrossRef]
- Ragasamyuktha, S.A.; Angelin, M.H. Experimental Investigation of Biochar Additives in Geopolymer Concrete. Int. J. Adv. Eng. Manag. 2023, 5, 410–418. [Google Scholar]
- Duan, Z.; Zhao, W.; Ye, T.; Xiao, J. Performance optimization and environmental assessment of novel alkali-activated binders containing carbonated recycled concrete powder. J. Clean. Prod. 2024, 481, 144145. [Google Scholar] [CrossRef]
- Rajan, H.S.; Kathirvel, P. Sustainable development of geopolymer binder using sodium silicate synthesized from agricultural waste. J. Clean. Prod. 2021, 286, 124959. [Google Scholar] [CrossRef]
- Lee, H.; Yang, S.; Wi, S.; Kim, S. Thermal transfer behavior of biochar-natural inorganic clay composite for building envelope insulation. Constr. Build. Mater. 2019, 223, 668–678. [Google Scholar] [CrossRef]
- Wang, L.; Deng, J.; Yang, X.; Hou, R.; Hou, D. Role of biochar toward carbon neutrality. Carbon Res. 2023, 2, 2. [Google Scholar] [CrossRef]
- Praneeth, S.; Saavedra, L.; Zeng, M.; Dubey, B.K.; Sarmah, A.K. Biochar admixtured lightweight, porous and tougher cement mortars: Mechanical, durability and micro computed tomography analysis. Sci. Total Environ. 2021, 750, 142327. [Google Scholar] [CrossRef]
- Amalina, F.; Razak, A.S.A.; Krishnan, S.; Sulaiman, H.; Zularisam, A.W.; Nasrullah, M. Biochar production techniques utilizing biomass waste-derived materials and environmental applications—A review. J. Hazard. Mater. Adv. 2022, 7, 100134. [Google Scholar] [CrossRef]
- He, T.; Zhang, M.; Jin, B. Co-pyrolysis of sewage sludge as additive with phytoremediation residue on the fate of heavy metals and the carbon sequestration potential of derived biochar. Chemosphere 2023, 314, 976–985. [Google Scholar] [CrossRef] [PubMed]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An overview on engineering the surface area and porosity of biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, J.; Nascimento, L.; Soares, M.; Valério, N.; Ribeiro, A.; Faria, L.; Silva, A.; Pacheco, N.; Araújo, J.; Vilarinho, C. Life Cycle Assessment (LCA) of Biochar Production from a Circular Economy Perspective. Processes 2022, 10, 2684. [Google Scholar] [CrossRef]
- Xia, F.; Zhang, Z.; Zhang, Q.; Huang, H.; Zhao, X. Life cycle assessment of greenhouse gas emissions for various feedstocks-based biochars as soil amendment. Sci. Total Environ. 2024, 911, 168734. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, W.; Lichtfouse, E.; Maurer, C.; Liu, H. Life cycle assessment of biochar for sustainable agricultural application: A review. Sci. Total Environ. 2024, 951, 175448. [Google Scholar] [CrossRef]
- Wen, J.; Wang, B.; Dai, Z.; Shi, X.; Jin, Z.; Wang, H.; Jiang, X. New insights into the green cement composites with low carbon footprint: The role of biochar as cement additive/alternative. Resour. Conserv. Recycl. 2023, 197, 107081. [Google Scholar] [CrossRef]
Biochar Dosage (%) | Compressive Strength | Durability | Workability | Thermal Conductivity |
---|---|---|---|---|
0–2 | Slight to moderate increase | Improved | Slight improvement | Moderate reduction |
2–10 | Significant increase | Enhanced | Optimal | Substantial reduction |
10–20 | Tendency to decrease | Still improved | Reduced | Further reduction |
>20 | Significant decrease | May decline | Poor | Very low |
Factor | Environmental Gains | Energy Input |
---|---|---|
Carbon Sequestration | Biochar acts as a long-term carbon sink, reducing atmospheric CO2 levels. | Energy is required for the pyrolysis process to produce biochar. |
Soil Improvement | Biochar enhances soil fertility and water retention, leading to better crop yields. | Higher pyrolysis temperatures increase energy consumption but improve biochar quality. |
Pollutant Adsorption | Biochar can absorb heavy metal ions and organic pollutants from water, improving environmental quality. | Energy input is necessary for the pyrolysis process, which can vary based on feedstock and technology used. |
Waste Management | Biochar production helps convert agricultural and municipal waste into a valuable product. | The energy efficiency of the pyrolysis process can be optimized to reduce overall energy consumption. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zheng, K.; Yang, L.; Li, H.; Liu, Y.; Xie, N.; Zhou, G. Alkali-Activated Materials Reinforced via Fibrous Biochar: Modification Mechanisms, Environmental Benefits, and Challenges. J. Compos. Sci. 2025, 9, 298. https://doi.org/10.3390/jcs9060298
Wang Y, Zheng K, Yang L, Li H, Liu Y, Xie N, Zhou G. Alkali-Activated Materials Reinforced via Fibrous Biochar: Modification Mechanisms, Environmental Benefits, and Challenges. Journal of Composites Science. 2025; 9(6):298. https://doi.org/10.3390/jcs9060298
Chicago/Turabian StyleWang, Yukai, Kai Zheng, Lilin Yang, Han Li, Yang Liu, Ning Xie, and Guoxiang Zhou. 2025. "Alkali-Activated Materials Reinforced via Fibrous Biochar: Modification Mechanisms, Environmental Benefits, and Challenges" Journal of Composites Science 9, no. 6: 298. https://doi.org/10.3390/jcs9060298
APA StyleWang, Y., Zheng, K., Yang, L., Li, H., Liu, Y., Xie, N., & Zhou, G. (2025). Alkali-Activated Materials Reinforced via Fibrous Biochar: Modification Mechanisms, Environmental Benefits, and Challenges. Journal of Composites Science, 9(6), 298. https://doi.org/10.3390/jcs9060298