Zeolite Imidazole Frame-67 (ZIF-67) and Its Derivatives for Pollutant Removal in Water: A Review
Abstract
:1. Introduction
Adsorbent | Pollutant | Adsorption Capacity (mg/g) | Ref. |
---|---|---|---|
Stalk corn activated carbon | Rhodamine B | 5.3 | [59] |
Rumex abyssinicus activated carbon | Methylene blue | 322 | [60] |
Wheat straw activated carbon | Pb2+ | 139.44 | [61] |
Wheat straw activated carbon | Cd2+ | 52.92 | [61] |
Wheat straw activated carbon | Cu2+ | 31.25 | [61] |
Powdered activated carbon | Norflkoxacin (NOR) | 124 | [62] |
Powdered activated carbon | Ciprofloxacin monohydrohloride (CIP) | 127 | [62] |
Powdered activated carbon | Lomefloxacin hydrochloride (LOM) | 190 | [62] |
Powdered activated carbon | Sarafloxacin hydrochloride (SAR) | 120 | [62] |
Powdered activated carbon | Enrofloxacin (ENR) | 93.5 | [62] |
Powdered activated carbon | Ofloxacin (OPL) | 104 | [62] |
IGS-300 ion exchange resin | Cr (VI) | 294.11 | [63] |
Amberlite IRC-748 ion exchange resin | Malachite green | 480.6 | [64] |
Diaion CR-11 ion exchange resin | Malachite green | 102.1 | [64] |
2. Synthesis Method of ZIF-67
2.1. Solvothermal Method
2.2. Surfactant-Assisted Method
2.3. Microwave/Ultrasonic-Assisted Method
2.4. Hydrothermal Process
3. ZIF-67 Removes Contaminants from Water Bodies
3.1. Adsorption Mechanism
3.2. Removal of Dyes from Wastewater Using ZIF-67
3.3. Removal of Antibiotics from Wastewater Using ZIF-67
3.4. Removal of Heavy Metal Ions from Wastewater Using ZIF-67
3.5. Research and Analysis of the ZIF-67 Adsorption Isotherm
4. Desorption and Reusability
5. Conclusions and Prospect
5.1. Greening and Scale of Synthesis Process
5.2. Enhancement of Material Stability
5.3. Selective Adsorption in Complex Water Bodies
5.4. Optimization and Low Energy Consumption of Regenerative Technology
5.5. Environmental and Health Risk Assessment
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Pouramini, Z. The VOCs catalytic combustion by perovskite catalysts: A mini-review. Adv. Appl. NanoBio-Technol. 2022, 3, 23–30. [Google Scholar]
- Khan, N.A.; Salma, S.; Tayyaba, N.; Ahmad, S.S.S.; Sufyan, J.M.; Altaf, N.M.; Ejaz, H.; Asma, S.; Shahid, H.; Ashfaq, M. Efficient removal of norfloxacin by MOF@GO composite: Isothermal, kinetic, statistical, and mechanistic study. Toxin Rev. 2021, 40, 915–927. [Google Scholar] [CrossRef]
- Nazir, M.A.; Bashir, M.A.; Najam, T.; Javed, M.S.; Suleman, S.; Hussain, S.; Kumar, O.P.; Shah, S.S.A.; ur Rehman, A. Combining structurally ordered intermetallic nodes: Kinetic and isothermal studies for removal of malachite green and methyl orange with mechanistic aspects. Microchem. J. 2021, 164, 105973. [Google Scholar] [CrossRef]
- Onaizi, S.A. Statistical analyses of the effect of rhamnolipid biosurfactant addition on the enzymatic removal of Bisphenol A from wastewater. Biocatal. Agric. Biotechnol. 2021, 32, 101929. [Google Scholar] [CrossRef]
- Al-Sakkaf, M.K.; Basfer, I.; Iddrisu, M.; Bahadi, S.A.; Nasser, M.S.; Abussaud, B.; Drmosh, Q.A.; Onaizi, S.A. An up-to-date review on the remediation of dyes and phenolic compounds from wastewaters using enzymes immobilized on emerging and nanostructured materials: Promises and challenges. Nanomaterials 2023, 13, 2152. [Google Scholar] [CrossRef]
- Massé, D.I.; Cata Saady, N.M.; Gilbert, Y. Potential of biological processes to eliminate antibiotics in livestock manure: An overview. Animals 2014, 4, 146–163. [Google Scholar] [CrossRef]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef]
- Reardon, S. Antibiotic resistance sweeping developing world: Bacteria are increasingly dodging extermination as drug availability outpaces regulation. Nature 2014, 509, 141–143. [Google Scholar] [CrossRef]
- Zeng, G.; Chen, M.; Zeng, Z. Risks of neonicotinoid pesticides. Science 2013, 340, 1403. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Shen, X.; Jia, L.; Zhou, T.; Ma, T.; Xu, Z.; Cao, J.; Ge, Z.; Bi, N.; Zhu, T.; et al. A novel visual ratiometric fluorescent sensing platform for highly-sensitive visual detection of tetracyclines by a lanthanide- functionalized palygorskite nanomaterial. J. Hazard. Mater. 2018, 342, 158–165. [Google Scholar] [CrossRef]
- Buonomenna, M.G.; Mousavi, S.M.; Hashemi, S.A.; Lai, C.W. Water Cleaning Adsorptive Membranes for Efficient Removal of Heavy Metals and Metalloids. Water 2022, 14, 2718. [Google Scholar] [CrossRef]
- Sharma, B.M.; Bečanová, J.; Scheringer, M.; Sharma, A.; Bharat, G.K.; Whitehead, P.G.; Klánová, J.; Nizzetto, L. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Sci. Total Environ. 2019, 646, 1459–1467. [Google Scholar] [CrossRef]
- Jurado, A.; Walther, M.; Díaz-Cruz, M.S. Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the Watch Lists set by EU Decisions 2015/495 and 2018/840 in the groundwater of Spain. Sci. Total Environ. 2019, 663, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Vickers, N.J. Animal Communication: When I’m Calling You, Will You Answer Too? Curr. Biol. 2017, 27, R713–R715. [Google Scholar] [PubMed]
- TaheriAshtiani, N.; Ayati, B. Using chitosan-based heterogeneous catalyst for degradation of Acid Blue 25 in the effective electro-Fenton process with rotating cathodes. J. Electroanal. Chem. 2022, 905, 115983. [Google Scholar] [CrossRef]
- Yang, Z.-h.; Cao, J.; Chen, Y.-p.; Li, X.; Xiong, W.-p.; Zhou, Y.-y.; Zhou, C.-y.; Xu, R.; Zhang, Y.-r. Mn-doped zirconium metal-organic framework as an effective adsorbent for removal of tetracycline and Cr(VI) from aqueous solution. Microporous Mesoporous Mater. 2019, 277, 277–285. [Google Scholar] [CrossRef]
- Hu, H.; Liu, J.; Xu, Z.; Zhang, L.; Cheng, B.; Ho, W. Hierarchical porous Ni/Co-LDH hollow dodecahedron with excellent adsorption property for Congo red and Cr(VI) ions. Appl. Surf. Sci. 2019, 478, 981–990. [Google Scholar] [CrossRef]
- Ismail, U.M.; Onaizi, S.A.; Vohra, M.S. Aqueous Pb (II) removal using ZIF-60: Adsorption studies, response surface methodology and machine learning predictions. Nanomaterials 2023, 13, 1402. [Google Scholar] [CrossRef]
- Bahadi, S.A.; Iddrisu, M.; Al-Sakkaf, M.K.; Elgzoly, M.A.A.; Al-Amrani, W.A.; Ahmed, U.; Zahid, U.; Drmosh, Q.A.; Onaizi, S.A. Chemically versus thermally reduced graphene oxide: Effects of reduction methods and reducing agents on the adsorption of phenolic compounds from wastewater. Emergent Mater. 2024, 7, 533–545. [Google Scholar] [CrossRef]
- Ismail, U.M.; Onaizi, S.A.; Vohra, M.S. Novel MgCuAl-layered triple hydroxide for aqueous selenite and selenate treatment. Emergent Mater. 2024, 7, 521–532. [Google Scholar] [CrossRef]
- Cheng, Y.; He, H.; Yang, C.; Zeng, G.; Li, X.; Chen, H.; Yu, G. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnol. Adv. 2016, 34, 1091–1102. [Google Scholar] [CrossRef]
- Aoudj, S.; Khelifa, A.; Drouiche, N.; Belkada, R.; Miroud, D. Simultaneous removal of chromium(VI) and fluoride by electrocoagulation–electroflotation: Application of a hybrid Fe-Al anode. Chem. Eng. J. 2015, 267, 153–162. [Google Scholar] [CrossRef]
- Crini, G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 2005, 30, 38–70. [Google Scholar] [CrossRef]
- Alshabib, M.; Onaizi, S.A. Enzymatic Remediation of Bisphenol A from Wastewaters: Effects of Biosurfactant, Anionic, Cationic, Nonionic, and Polymeric Additives. Water Air Soil Pollut. 2020, 231, 428. [Google Scholar] [CrossRef]
- Kumar, O.P.; Shahzad, K.; Nazir, M.A.; Farooq, N.; Malik, M.; Ahmad Shah, S.S.; Rehman, A.u. Photo-Fenton activated C3N4x/AgOy@Co1−xBi0.1−yO7 dual s-scheme heterojunction towards degradation of organic pollutants. Opt. Mater. 2022, 126, 112199. [Google Scholar] [CrossRef]
- Hezam, A.; Drmosh, Q.; Ponnamma, D.; Bajiri, M.A.; Qamar, M.; Namratha, K.; Zare, M.; Nayan, M.; Onaizi, S.A.; Byrappa, K. Strategies to enhance ZnO photocatalyst’s performance for water treatment: A comprehensive review. Chem. Rec. 2022, 22, e202100299. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel, N.C.; Ifeoma, O.P.; Gaya, U.I.; Nazir, M.A.; Ahmad Shah, S.S. Fabrication of zinc incorporated magnetic iron oxide nanoparticles for photocatalytic degradation of methylene blue. Iran. J. Chem. Chem. Eng. Int. Engl. Ed. 2023, 42, 3590–3600. [Google Scholar]
- Onaizi, S.A.; Alshabib, M. The degradation of bisphenol A by laccase: Effect of biosurfactant addition on the reaction kinetics under various conditions. Sep. Purif. Technol. 2021, 257, 117785. [Google Scholar] [CrossRef]
- Eleryan, A.; Hassaan, M.; Nazir, M.A.; Shah, S.S.A.; Ragab, S.; El Nemr, A. Isothermal and kinetic screening of methyl red and methyl orange dyes adsorption from water by Delonix regia biochar-sulfur oxide (DRB-SO). Sci. Rep. 2024, 14, 13585. [Google Scholar] [CrossRef] [PubMed]
- Aghajani, M.; Torabi, S.A.; Heydari, J. A novel option contract integrated with supplier selection and inventory prepositioning for humanitarian relief supply chains. Socio-Econ. Plan. Sci. 2020, 71, 100780. [Google Scholar] [CrossRef]
- Wang, J.; Dong, S.; Yu, C.; Han, X.; Guo, J.; Sun, J. An efficient MoO3 catalyst for in-practical degradation of dye wastewater under room conditions. Catal. Commun. 2017, 92, 100–104. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef]
- Zhang, J.; Si, M.; Jiang, L.; Yuan, X.; Yu, H.; Wu, Z.; Li, Y.; Guo, J. Core-shell Ag@nitrogen-doped carbon quantum dots modified BiVO4 nanosheets with enhanced photocatalytic performance under Vis-NIR light: Synergism of molecular oxygen activation and surface plasmon resonance. Chem. Eng. J. 2021, 410, 128336. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Esmaeili, H.; Amani, A.; Mojoudi, F. Synthesis of Fe3O4 Nanoparticles Modifed by Oak Shell for Treatment of Wastewater Containing Ni(II). Acta Chim. Slov. 2018, 65, 750–756. [Google Scholar] [CrossRef]
- Zango, Z.U.; Jumbri, K.; Sambudi, N.S.; Ramli, A.; Abu Bakar, N.H.H.; Saad, B.; Rozaini, M.N.H.; Isiyaka, H.A.; Jagaba, A.H.; Aldaghri, O. A critical review on metal-organic frameworks and their composites as advanced materials for adsorption and photocatalytic degradation of emerging organic pollutants from wastewater. Polymers 2020, 12, 2648. [Google Scholar] [CrossRef]
- Cao, J.; Sun, S.; Li, X.; Yang, Z.; Xiong, W.; Wu, Y.; Jia, M.; Zhou, Y.; Zhou, C.; Zhang, Y. Efficient charge transfer in aluminum-cobalt layered double hydroxide derived from Co-ZIF for enhanced catalytic degradation of tetracycline through peroxymonosulfate activation. Chem. Eng. J. 2020, 382, 122802. [Google Scholar] [CrossRef]
- Ismail, U.M.; Onaizi, S.A.; Vohra, M.S. Crystal violet removal using ZIF-60: Batch adsorption studies, mechanistic & machine learning modeling. Environ. Technol. Innov. 2024, 33, 103456. [Google Scholar]
- Lanjwani, M.F.; Tuzen, M.; Khuhawar, M.Y.; Saleh, T.A. Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: A review. Inorg. Chem. Commun. 2024, 159, 111613. [Google Scholar] [CrossRef]
- Samavati, Z.; Samavati, A.; Goh, P.S.; Ismail, A.F.; Abdullah, M.S. A comprehensive review of recent advances in nanofiltration membranes for heavy metal removal from wastewater. Chem. Eng. Res. Des. 2023, 189, 530–571. [Google Scholar] [CrossRef]
- Razzak, S.A.; Faruque, M.O.; Alsheikh, Z.; Alsheikhmohamad, L.; Alkuroud, D.; Alfayez, A.; Hossain, S.M.Z.; Hossain, M.M. A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environ. Adv. 2022, 7, 100168. [Google Scholar] [CrossRef]
- Alshabib, M.; Onaizi, S.A. A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: Current status and potential challenges. Sep. Purif. Technol. 2019, 219, 186–207. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Zhao, G.; Chen, C.; Chai, Z.; Alsaedi, A.; Hayat, T.; Wang, X. Metal–organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 2018, 47, 2322–2356. [Google Scholar] [CrossRef]
- Maurin, G.; Serre, C.; Cooper, A.; Férey, G. The new age of MOFs and of their porous-related solids. Chem. Soc. Rev. 2017, 46, 3104–3107. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Li, Y.; Liang, F.; Li, L.; Lan, Y.; Li, Z.; Lu, X.; Yang, M.; Ma, D. A microporous 2D cobalt-based MOF with pyridyl sites and open metal sites for selective adsorption of CO2. Microporous Mesoporous Mater. 2022, 341, 112098. [Google Scholar] [CrossRef]
- Li, L.; Zou, J.; Han, Y.; Liao, Z.; Lu, P.; Nezamzadeh-Ejhieh, A.; Liu, J.; Peng, Y. Recent advances in Al (iii)/In (iii)-based MOFs for the detection of pollutants. New J. Chem. 2022, 46, 19577–19592. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, F.; Luo, D.; Huang, J.; Ouyang, J.; Nezamzadeh-Ejhieh, A.; Khan, M.S.; Liu, J.; Peng, Y. Recent advances in Ti-based MOFs in biomedical applications. Dalton Trans. 2022, 51, 14817–14832. [Google Scholar] [CrossRef]
- Pouramini, Z.; Mousavi, S.M.; Babapoor, A.; Hashemi, S.A.; Lai, C.W.; Mazaheri, Y.; Chiang, W.-H. Effect of Metal Atom in Zeolitic Imidazolate Frameworks (ZIF-8 & 67) for Removal of Dyes and Antibiotics from Wastewater: A Review. Catalysts 2023, 13, 155. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Bahrani, S.; Mosleh, S.; Chiang, W.-H.; Yousefi, K.; Ramakrishna, S.; Wei, L.C.; Omidifar, N. Hybrid of sodium polytungstate polyoxometalate supported by the green substrate for photocatalytic degradation of auramine-O dye. Environ. Sci. Pollut. Res. 2022, 29, 56055–56067. [Google Scholar] [CrossRef]
- Zhong, G.; Liu, D.; Zhang, J. The application of ZIF-67 and its derivatives: Adsorption, separation, electrochemistry and catalysts. J. Mater. Chem. A 2018, 6, 1887–1899. [Google Scholar] [CrossRef]
- Cheng, N.; Ren, L.; Xu, X.; Du, Y.; Dou, S.X. Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts. Adv. Energy Mater. 2018, 8, 1801257. [Google Scholar] [CrossRef]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef]
- Zhang, W.; Ye, G.; Liao, D.; Chen, X.; Lu, C.; Nezamzadeh-Ejhieh, A.; Khan, M.S.; Liu, J.; Pan, Y.; Dai, Z. Recent Advances of Silver-Based Coordination Polymers on Antibacterial Applications. Molecules 2022, 27, 7166. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cheng, H.; Cheng, M.; Liu, Z.; Huang, D.; Zhang, G.; Shao, B.; Liang, Q.; Luo, S.; Wu, T.; et al. The application of Zeolitic imidazolate frameworks (ZIFs) and their derivatives based materials for photocatalytic hydrogen evolution and pollutants treatment. Chem. Eng. J. 2021, 417, 127914. [Google Scholar] [CrossRef]
- Tan, Y.-X.; Wang, F.; Zhang, J. Design and synthesis of multifunctional metal–organic zeolites. Chem. Soc. Rev. 2018, 47, 2130–2144. [Google Scholar] [CrossRef]
- Duan, C.; Yu, Y.; Hu, H. Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis. Green Energy Environ. 2022, 7, 3–15. [Google Scholar] [CrossRef]
- Fard, N.E.; Ali, N.S.; Saady, N.M.C.; Albayati, T.M.; Salih, I.K.; Zendehboudi, S.; Harharah, H.N.; Harharah, R.H. A review on development and modification strategies of MOFs Z-scheme heterojunction for photocatalytic wastewater treatment, water splitting, and DFT calculations. Heliyon 2024, 10, e32861. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Kamarehie, B.; Almasi, A.; Darvishmotevalli, M.; Salari, M.; Moradnia, M.; Azimi, F.; Ghaderpoori, M.; Neyazi, Z.; Karami, M.A. Removal of Rhodamine B from aqueous solution by stalk corn activated carbon: Adsorption and kinetic study. Biomass Convers. Biorefinery 2023, 13, 7927–7936. [Google Scholar] [CrossRef]
- Fito, J.; Abewaa, M.; Mengistu, A.; Angassa, K.; Ambaye, A.D.; Moyo, W.; Nkambule, T. Adsorption of methylene blue from textile industrial wastewater using activated carbon developed from Rumex abyssinicus plant. Sci. Rep. 2023, 13, 5427. [Google Scholar] [CrossRef]
- Qi, G.; Pan, Z.; Zhang, X.; Chang, S.; Wang, H.; Wang, M.; Xiang, W.; Gao, B. Microwave biochar produced with activated carbon catalyst: Characterization and adsorption of heavy metals. Environ. Res. 2023, 216, 114732. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Li, X.; Wang, J.; Lin, P.; Chen, C.; Zhang, X.; Suffet, I.M. Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling. J. Environ. Sci. 2017, 56, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Leonard, J.; Sivalingam, S.; Srinadh, R.V.; Mishra, S. Efficient removal of hexavalent chromium ions from simulated wastewater by functionalized anion exchange resin: Process optimization, isotherm and kinetic studies. Environ. Chem. Ecotoxicol. 2023, 5, 98–107. [Google Scholar] [CrossRef]
- Yanardağ, D.; Edebali, S. Adsorptive removal of malachite green dye from aqueous solution by ion exchange resins. Biomass Convers. Biorefinery 2024, 14, 5699–5710. [Google Scholar] [CrossRef]
- Jadhav, H.S.; Bandal, H.A.; Ramakrishna, S.; Kim, H. Critical review, recent updates on zeolitic imidazolate framework-67 (ZIF-67) and its derivatives for electrochemical water splitting. Adv. Mater. 2022, 34, 2107072. [Google Scholar] [CrossRef]
- Ethiraj, J.; Palla, S.; Reinsch, H. Insights into high pressure gas adsorption properties of ZIF-67: Experimental and theoretical studies. Microporous Mesoporous materials 2020, 294, 109867. [Google Scholar] [CrossRef]
- Nazir, M.A.; Bashir, M.S.; Jamshaid, M.; Anum, A.; Najam, T.; Shahzad, K.; Imran, M.; Shah, S.S.A.; ur Rehman, A. Synthesis of porous secondary metal-doped MOFs for removal of Rhodamine B from water: Role of secondary metal on efficiency and kinetics. Surf. Interfaces 2021, 25, 101261. [Google Scholar] [CrossRef]
- Lin, D.; Duan, P.; Yang, W.; Liu, Y.; Pan, Q. Facile controlled synthesis of core–shell/yolk–shell/hollow ZIF-67@ Co-LDH/SiO2 via a self-template method. Inorg. Chem. Front. 2020, 7, 1643–1650. [Google Scholar] [CrossRef]
- Saghir, S.; Fu, E.; Xiao, Z. Synthesis of CoCu-LDH nanosheets derived from zeolitic imidazole framework-67 (ZIF-67) as an efficient adsorbent for azo dye from waste water. Microporous Mesoporous Mater. 2020, 297, 110010. [Google Scholar] [CrossRef]
- Li, W.; Wang, K.; Yang, X.; Zhan, F.; Wang, Y.; Liu, M.; Qiu, X.; Li, J.; Zhan, J.; Li, Q.; et al. Surfactant-assisted controlled synthesis of a metal-organic framework on Fe2O3 nanorod for boosted photoelectrochemical water oxidation. Chem. Eng. J. 2020, 379, 122256. [Google Scholar] [CrossRef]
- Nazir, M.A.; Najam, T.; Zarin, K.; Shahzad, K.; Javed, M.S.; Jamshaid, M.; Bashir, M.A.; Shah, S.S.A.; Rehman, A.U. Enhanced adsorption removal of methyl orange from water by porous bimetallic Ni/Co MOF composite: A systematic study of adsorption kinetics. Int. J. Environ. Anal. Chem. 2023, 103, 4841–4856. [Google Scholar] [CrossRef]
- Nazir, M.A.; Khan, N.A.; Cheng, C.; Shah, S.S.A.; Najam, T.; Arshad, M.; Sharif, A.; Akhtar, S.; ur Rehman, A. Surface induced growth of ZIF-67 at Co-layered double hydroxide: Removal of methylene blue and methyl orange from water. Appl. Clay Sci. 2020, 190, 105564. [Google Scholar] [CrossRef]
- Campos, R.D.; de Oliveira, A.L.M.; Rostas, A.M.; Kuncser, A.C.; Negrila, C.C.; Galca, A.-C.; Félix, C.; Castellano, L.; da Silva, F.F.; dos Santos, I.M.G. TiO2/ZIF-67 nanocomposites synthesized by the microwave-assisted solvothermal method: A correlation between the synthesis conditions and antimicrobial properties. New J. Chem. 2023, 47, 2177–2188. [Google Scholar] [CrossRef]
- Alamgholiloo, H.; Hashemzadeh, B.; Pesyan, N.N.; Sheikhmohammadi, A.; Asgari, E.; Yeganeh, J.; Hashemzadeh, H. A facile strategy for designing core-shell nanocomposite of ZIF-67/Fe3O4: A novel insight into ciprofloxacin removal from wastewater. Process Saf. Environ. Prot. 2021, 147, 392–404. [Google Scholar] [CrossRef]
- Bradshaw, D.; El-Hankari, S.; Lupica-Spagnolo, L. Supramolecular templating of hierarchically porous metal–organic frameworks. Chem. Soc. Rev. 2014, 43, 5431–5443. [Google Scholar] [CrossRef]
- Sarawade, P.; Tan, H.; Polshettiwar, V. Shape-and morphology-controlled Sustainable synthesis of Cu, Co, and in metal organic frameworks with high CO2 capture capacity. ACS Sustain. Chem. Eng. 2013, 1, 66–74. [Google Scholar] [CrossRef]
- Zhong, M.; Kong, L.; Zhao, K.; Zhang, Y.H.; Li, N.; Bu, X.H. Recent progress of nanoscale metal-organic frameworks in synthesis and battery applications. Adv. Sci. 2021, 8, 2001980. [Google Scholar] [CrossRef]
- Qian, J.; Sun, F.; Qin, L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater. Lett. 2012, 82, 220–223. [Google Scholar] [CrossRef]
- Guo, X.; Xing, T.; Lou, Y.; Chen, J. Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution. J. Solid State Chem. 2016, 235, 107–112. [Google Scholar] [CrossRef]
- Hasan, Z.; Khan, N.A.; Jhung, S.H. Adsorptive removal of diclofenac sodium from water with Zr-based metal–organic frameworks. Chem. Eng. J. 2016, 284, 1406–1413. [Google Scholar] [CrossRef]
- Tchinsa, A.; Hossain, M.F.; Wang, T.; Zhou, Y. Removal of organic pollutants from aqueous solution using metal organic frameworks (MOFs)-based adsorbents: A review. Chemosphere 2021, 284, 131393. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Devi, N.; Siwal, S.S.; Alsanie, W.F.; Thakur, M.K.; Thakur, V.K. Metal–organic framework-based materials for wastewater treatment: Superior adsorbent materials for the removal of hazardous pollutants. ACS Omega 2023, 8, 9004–9030. [Google Scholar] [CrossRef] [PubMed]
- Hasan, Z.; Choi, E.-J.; Jhung, S.H. Adsorption of naproxen and clofibric acid over a metal–organic framework MIL-101 functionalized with acidic and basic groups. Chem. Eng. J. 2013, 219, 537–544. [Google Scholar] [CrossRef]
- Ibrahim, A.; Vohra, M.S.; Bahadi, S.A.; Onaizi, S.A.; Essa, M.H.; Mohammed, T. Heavy metals adsorption onto graphene oxide: Effect of mixed systems and response surface methodology modeling. Desalination Water Treat. 2022, 266, 78–90. [Google Scholar] [CrossRef]
- Ismail, U.M.; Vohra, M.S.; Onaizi, S.A. Adsorptive removal of heavy metals from aqueous solutions: Progress of adsorbents development and their effectiveness. Environ. Res. 2024, 251, 118562. [Google Scholar] [CrossRef]
- Saghir, S.; Zhang, S.; Wang, Y.; Fu, E.; Xiao, Z.; Zahid, A.H.; Pu, C. Review, recent advancements in zeolitic imidazole frameworks-67 (ZIF-67) and its derivatives for the adsorption of antibiotics. J. Environ. Chem. Eng. 2024, 12, 113166. [Google Scholar] [CrossRef]
- Ulrich, G.; Ziessel, R.; Harriman, A. The chemistry of fluorescent bodipy dyes: Versatility unsurpassed. Angew. Chem. Int. Ed. 2008, 47, 1184–1201. [Google Scholar] [CrossRef]
- Loudet, A.; Burgess, K. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chem. Rev. 2007, 107, 4891–4932. [Google Scholar] [CrossRef]
- Lin, K.-Y.A.; Chang, H.-A. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere 2015, 139, 624–631. [Google Scholar] [CrossRef]
- Kola, D.Y.; Edebali, S. Facile synthesis of zeolitic-imidazole framework-67 (ZIF-67) for the adsorption of indigo carmine dye. Can. J. Chem. Eng. 2024, 103, 2373–2385. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, M.; Li, S.; Zhou, Y.; Zeng, J.; Huang, M.; Sun, Q.; Le, T. Development of Recoverable Magnetic Bimetallic ZIF-67 (Co/Cu) Adsorbent and Its Enhanced Selective Adsorption of Organic Dyes in Wastewater. Molecules 2024, 29, 4860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, J.; Hou, B.; Yang, X.; Ren, J.; Shao, C. Efficient removal of oxytetracycline hydrochloride by ZIF-67 coated hollow spherical CuS (CuS-PVP@ ZIF-67) under the synergistic effect of adsorption and PMS activation. Appl. Surf. Sci. 2024, 643, 158663. [Google Scholar] [CrossRef]
- Yang, H.; Wang, S.; Liu, Y.; Hu, Y.; Shen, W. ZIF-67 grows in chitosan-rGO hydrogel beads for efficient adsorption of tetracycline and norfloxacin. Sep. Purif. Technol. 2024, 330, 125208. [Google Scholar] [CrossRef]
- Ghafil, A.J.; Mazloom, G.; Abdi, J.; Tamtaji, M.; Banisharif, F. Ti3C2Tx/ZIF-67 hybrid nanocomposite as a highly effective adsorbent for Pb (II) removal from water: Synthesis and DFT calculations. Appl. Surf. Sci. 2024, 643, 158642. [Google Scholar] [CrossRef]
- Vo, T.K.; Phuong, N.H.Y.; Nguyen, V.C.; Quang, D.T. ZIF-67 grafted-boehmite-PVA composite membranes with enhanced removal efficiency towards Cr (VI) from aqueous solutions. Chemosphere 2023, 341, 139996. [Google Scholar] [CrossRef]
- Mangla, D.; Annu; Sharma, A.; Ikram, S. Critical review on adsorptive removal of antibiotics: Present situation, challenges and future perspective. J. Hazard. Mater. 2022, 425, 127946. [Google Scholar] [CrossRef]
- Meng, L.; Zhao, C.; Wang, T.; Chu, H.; Wang, C.-C. Efficient ciprofloxacin removal over Z-scheme ZIF-67/V-BiOIO3 heterojunctions: Insight into synergistic effect between adsorption and photocatalysis. Sep. Purif. Technol. 2023, 313, 123511. [Google Scholar] [CrossRef]
- Davies, K.M.; Mercer, J.F.; Chen, N.; Double, K.L. Copper dyshomoeostasis in Parkinson’s disease: Implications for pathogenesis and indications for novel therapeutics. Clin. Sci. 2016, 130, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Z.; Zhang, T.; Chen, J.; Ji, W.; Wei, Y. Fabrication of sodium alginate-melamine@ ZIF-67 composite hydrogel and its adsorption application for Pb (II) in wastewater. Environ. Sci. Pollut. Res. 2023, 30, 18364–18379. [Google Scholar] [CrossRef]
- Li, K.; Chen, M.; Chen, L.; Zhao, S.; Pan, W.; Li, P. Efficient removal of chlortetracycline hydrochloride and doxycycline hydrochloride from aqueous solution by ZIF-67. Heliyon 2024, 10, e36848. [Google Scholar] [CrossRef]
- Zhang, J.; Han, J.; Chen, X.; Xu, D.; Wen, X.; Zhao, Y.; Huang, Y.; Ding, X.; Chen, G.; Xu, D. Recent Advances in ZIF Membrane: Fabrication, Separation Ability and Its Application. Nanomaterials 2025, 15, 239. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shan, Y.; Zhang, S.; Kong, Q.; Pang, H. Application of metal organic framework in wastewater treatment. Green Energy Environ. 2023, 8, 698–721. [Google Scholar] [CrossRef]
- Seo, P.W.; Song, J.Y.; Jhung, S.H. Adsorptive removal of hazardous organics from water with metal-organic frameworks. Appl. Chem. Eng. 2016, 27, 358–365. [Google Scholar] [CrossRef]
- Saghir, S.; Xiao, Z. Synthesis of novel Ag@ ZIF-67 rhombic dodecahedron for enhanced adsorptive removal of antibiotic and organic dye. J. Mol. Liq. 2021, 328, 115323. [Google Scholar] [CrossRef]
ZIFs | Synthetic Reagents | Synthesis Methods | Ref. |
---|---|---|---|
ZIF-67 | Co(NO3)2·6H2O, Hmim, methanol | Solvothermal method | [66] |
Fe@ZIF-67 | Co(NO3)2·6H2O, Hmim, ferric nitrate, methanol | Solvothermal method | [67] |
ZIF-67@Co-LDH/SiO2 | Co(NO3)2·6H2O, Hmim, hexadecyltrimethylammonium bromide (CTAB), tetraethyl orthosilicate (TEOS) | Solvothermal method | [68] |
ZIF-67@CoCu-LDH | Co(NO3)2·6H2O, Hmim, Methanol, absolute ethanol | - | [69] |
Fe2O3@ZIF-67 | Co-ZIF-67, α-Fe2O3 | Surfactant assisted method | [70] |
Ni@ZIF-67 | Cobalt nitrate, nickel nitrate, methanol, Hmim | - | [71] |
ZIF-67@LDH | Hmim, layered double hydroxide (LDH), methanol, Co(NO3)2·6H2O | - | [72] |
ZIF-67/TiO2 | Co(NO3)2·6H2O, Ti[OCH(CH3)2]4, Hmim, chlorhexidine | Microwave-assisted solvothermal method | [73] |
ZIF-67/Fe3O4 | Co(NO3)2·6H2O, Hmim, FeCl3·6H2O, methanol | Sol–Gel | [74] |
Adsorbent | Pollutant | Adsorption Capacity (mg/g) | Ref. |
---|---|---|---|
ZIF-67 | Indigo carmine | 370 | [90] |
ZIF-67-Co/Cu | Methyl Orange | 39.02 | [91] |
CuS-PVP@ZIF-67 | Oxytetracycline | 94.82 | [92] |
rGO@ZIF-67@CS | Tetracycline | 1685.26 | [93] |
Ti3C2Tx/ZIF-67 | Lead | 526.3 | [94] |
ZIF-67/BOPOM | Chromium | 56.4 | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Li, P.; Li, K.; Zhao, S.; Chen, M.; Pan, W.; Liu, Y.; Li, Z. Zeolite Imidazole Frame-67 (ZIF-67) and Its Derivatives for Pollutant Removal in Water: A Review. Processes 2025, 13, 1724. https://doi.org/10.3390/pr13061724
Chen L, Li P, Li K, Zhao S, Chen M, Pan W, Liu Y, Li Z. Zeolite Imidazole Frame-67 (ZIF-67) and Its Derivatives for Pollutant Removal in Water: A Review. Processes. 2025; 13(6):1724. https://doi.org/10.3390/pr13061724
Chicago/Turabian StyleChen, Lei, Pan Li, Ke Li, Songying Zhao, Miaomiao Chen, Wenbo Pan, Yu Liu, and Zeyu Li. 2025. "Zeolite Imidazole Frame-67 (ZIF-67) and Its Derivatives for Pollutant Removal in Water: A Review" Processes 13, no. 6: 1724. https://doi.org/10.3390/pr13061724
APA StyleChen, L., Li, P., Li, K., Zhao, S., Chen, M., Pan, W., Liu, Y., & Li, Z. (2025). Zeolite Imidazole Frame-67 (ZIF-67) and Its Derivatives for Pollutant Removal in Water: A Review. Processes, 13(6), 1724. https://doi.org/10.3390/pr13061724