Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (882)

Search Parameters:
Keywords = metal spinning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1331 KiB  
Proceeding Paper
Tailoring the Optical and Sensing Properties of Sol–Gel Niobia Coatings via Doping with Silica and Noble Metal Nanoparticles
by Tsvetanka Babeva, Venelin Pavlov, Georgi Zlatinov, Biliana Georgieva, Penka Terziyska, Gergana Alexieva, Katerina Lazarova and Rosen Georgiev
Eng. Proc. 2025, 105(1), 4; https://doi.org/10.3390/engproc2025105004 - 14 Aug 2025
Viewed by 151
Abstract
Nb2O5 (niobia) coatings were prepared by spin coating of niobium sol, synthesized using niobium chloride as the precursor and ethanol and water as solvents, followed by high-temperature annealing. Doping of the films was achieved by incorporating commercially available SiO2 [...] Read more.
Nb2O5 (niobia) coatings were prepared by spin coating of niobium sol, synthesized using niobium chloride as the precursor and ethanol and water as solvents, followed by high-temperature annealing. Doping of the films was achieved by incorporating commercially available SiO2 (Ludox) and noble metal nanoparticles (NPs) into the sol prior to its deposition. Various sizes of Pt (5 and 30 nm), Ag (10, 20, and 40 nm), and Au (5, 10, and 20 nm) NPs were used to enhance sensing behavior of coatings. After annealing, films were subjected to chemical etching to remove the silica phase. This process generated porosity within the films, which in turn enabled the tailoring of both their optical and sensing properties. It was demonstrated that both the type and size of the incorporated nanoparticles significantly influenced the sensing behavior. The most effective enhancement was observed with the addition of 10 nm AuNPs. Optical characterization indicated that 10 nm AuNPs had a minimal effect on the optical properties. In contrast, doping with 20 nm AuNPs led to a reduction in the refractive index and an increase in Urbach energy. No significant alteration in the optical band gap due to doping was observed. Full article
Show Figures

Figure 1

8 pages, 1944 KiB  
Proceeding Paper
Fabrication of Thin-Film Composite Nanofiltration Membrane Employing Polyelectrolyte and Metal–Organic Framework (MOF) via Spin-Spray-Assisted Layer-by-Layer Assembly
by Farid Fadhillah
Eng. Proc. 2025, 105(1), 3; https://doi.org/10.3390/engproc2025105003 - 11 Aug 2025
Viewed by 224
Abstract
Spin-spray-assisted layer-by-layer (LbL) assembly is an innovative method for producing nanostructured thin films due to its rapid assembly and extensive coverage of substrates. In this study, a nanofiltration (NF) membrane consisting of multilayers of polyethyleneimine (PEI) and poly(sodium-4-styrene sulfonate) (PSS) was fabricated on [...] Read more.
Spin-spray-assisted layer-by-layer (LbL) assembly is an innovative method for producing nanostructured thin films due to its rapid assembly and extensive coverage of substrates. In this study, a nanofiltration (NF) membrane consisting of multilayers of polyethyleneimine (PEI) and poly(sodium-4-styrene sulfonate) (PSS) was fabricated on a polysulfone (PSF) support. The resulting membrane was further coated with a metal–organic framework (MOF303). The resulting (PEI/PSS)5-MOF303 showed a rejection rate of 18.94 ± 1.58% and a permeability of 0.91 ± 0.13 L/(h·bar·m2)while also showing enhanced antifouling properties. This work explores the possibility of spin-spray-assisted LbL assembly as a promising method for fabricating membranes. Full article
Show Figures

Figure 1

15 pages, 2944 KiB  
Article
High-Responsivity UV–Blue Photodetector Based on Nanostructured CdS and Prepared by Solution Processing
by Jian-Ru Lai, Fang-Hsing Wang, Han-Wen Liu and Tsung-Kuei Kang
Nanomaterials 2025, 15(16), 1212; https://doi.org/10.3390/nano15161212 - 8 Aug 2025
Viewed by 294
Abstract
Ultraviolet (UV) and blue-light photodetectors are vital in environmental monitoring, medical and biomedical applications, optical communications, and security and anti-counterfeiting technologies. However, conventional silicon-based devices suffer from limited sensitivity to short-wavelength light due to their narrow indirect bandgap. In this study, we investigate [...] Read more.
Ultraviolet (UV) and blue-light photodetectors are vital in environmental monitoring, medical and biomedical applications, optical communications, and security and anti-counterfeiting technologies. However, conventional silicon-based devices suffer from limited sensitivity to short-wavelength light due to their narrow indirect bandgap. In this study, we investigate the influence of precursor concentration on the structural, optical, and photoresponse characteristics of nanostructured CdS thin films synthesized via chemical bath deposition. Among the CdS samples prepared at different precursor concentrations, the best photoresponsivity of 21.1 mA/W was obtained at 2 M concentration. Subsequently, a p–n heterojunction photodetector was fabricated by integrating a spin-coated CuSCN layer with the optimized CdS nanostructure. The resulting device exhibited pronounced rectifying behavior with a rectification ratio of ~750 and an ideality factor of 1.39. Under illumination and a 5 V bias, the photodetector achieved an exceptional responsivity exceeding 104 A/W in the UV region—over six orders of magnitude higher than that of CdS-based metal–semiconductor–metal devices. This remarkable enhancement is attributed to the improved light absorption, efficient charge separation, and enhanced hole transport enabled by CuSCN incorporation and heterojunction formation. These findings present a cost-effective, solution-processed approach to fabricating high-responsivity nanostructured photodetectors, promising for future applications in smart healthcare, environmental surveillance, and consumer electronics. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

13 pages, 4117 KiB  
Article
Spin-Polarized DFT+U Study of Surface-Functionalized Cr3C2 MXenes: Tunable Electronic and Magnetic Behavior for Spintronics
by Zixiang Tong, Yange Suo, Shaozheng Zhang and Jianhui Yang
Materials 2025, 18(15), 3709; https://doi.org/10.3390/ma18153709 - 7 Aug 2025
Viewed by 280
Abstract
Surface functionalization is key for tuning the electronic and magnetic properties essential in spintronics, yet its impact on chromium-based MXenes (Cr3C2T2) is not fully understood. Using spin-polarized DFT+U, this study investigates how O, F, and [...] Read more.
Surface functionalization is key for tuning the electronic and magnetic properties essential in spintronics, yet its impact on chromium-based MXenes (Cr3C2T2) is not fully understood. Using spin-polarized DFT+U, this study investigates how O, F, and OH groups modify the magnetic state, electronic structure, and Curie temperature. Functionalization dramatically changes magnetism: O termination gives ferromagnetism, while F and OH yield ferrimagnetism. Our results show surface functionalization effectively adjusts the Curie temperature, critical for spintronic materials. The electronic character is highly functional group dependent: pristine Cr3C2 is half-metallic, Cr3C2O2 metallic, and Cr3C2F2/Cr3C2(OH)2 semiconducting with narrow gaps. Structures with dynamic stability are analyzed through phonon spectroscopy. These findings provide fundamental insights into controlling MXene properties via surface functionalization, guiding the design of next-generation spintronic materials. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

42 pages, 7458 KiB  
Review
Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration
by Nazim Uddin Emon, Lu Zhang, Shelby Dawn Osborne, Mark Allen Lanoue, Yan Huang and Z. Ryan Tian
Nanomaterials 2025, 15(15), 1198; https://doi.org/10.3390/nano15151198 - 5 Aug 2025
Viewed by 711
Abstract
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses [...] Read more.
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses and prospects of current and next-generation nanomaterials in designing bioactive bone scaffolds, emphasizing hierarchical architecture, mechanical resilience, and regenerative precision. Mainly, this review elucidated the innovative findings, new capabilities, unmet challenges, and possible future opportunities associated with biocompatible inorganic ceramics (e.g., phosphates, metallic oxides) and the United States Food and Drug Administration (USFDA) approved synthetic polymers, including their nanoscale structures. Furthermore, this review demonstrates the newly available approaches for achieving customized standard porosity, mechanical strengths, and accelerated bioactivity to construct an optimized nanomaterial-oriented scaffold. Numerous strategies including three-dimensional bioprinting, electro-spinning techniques and meticulous nanomaterials (NMs) fabrication are well established to achieve radical scientific precision in BTR engineering. The contemporary research is unceasingly decoding the pathways for spatial and temporal release of osteoinductive agents to enhance targeted therapy and prompt healing processes. Additionally, successful material design and integration of an osteoinductive and osteoconductive agents with the blend of contemporary technologies will bring radical success in this field. Furthermore, machine learning (ML) and artificial intelligence (AI) can further decode the current complexities of material design for BTR, notwithstanding the fact that these methods call for an in-depth understanding of bone composition, relationships and impacts on biochemical processes, distribution of stem cells on the matrix, and functionalization strategies of NMs for better scaffold development. Overall, this review integrated important technological progress with ethical considerations, aiming for a future where nanotechnology-facilitated bone regeneration is boosted by enhanced functionality, safety, inclusivity, and long-term environmental responsibility. Therefore, the assimilation of a specialized research design, while upholding ethical standards, will elucidate the challenge and questions we are presently encountering. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Graphical abstract

14 pages, 3571 KiB  
Article
Thermal Modulation of Photonic Spin Hall Effect in Vortex Beam Based on MIM-VO2 Metasurface
by Li Luo, Jiahui Huo, Yuanyuan Lv, Jie Li, Yu He, Xiao Liang, Sui Peng, Bo Liu, Ling Zhou, Yuxin Zou, Yuting Wang, Jingjing Bian and Yuting Yang
Surfaces 2025, 8(3), 55; https://doi.org/10.3390/surfaces8030055 - 3 Aug 2025
Viewed by 306
Abstract
The photon spin Hall effect (PSHE) arises from the spin–orbit interaction of light. Metasurfaces enable precise control over the PSHE through their influence. Using electromagnetic simulations as its foundation, this work engineers a metal–insulator–metal (MIM) metasurface for generating vortex beams in the near-infrared [...] Read more.
The photon spin Hall effect (PSHE) arises from the spin–orbit interaction of light. Metasurfaces enable precise control over the PSHE through their influence. Using electromagnetic simulations as its foundation, this work engineers a metal–insulator–metal (MIM) metasurface for generating vortex beams in the near-infrared band, targeting enhanced modulation of the PSHE. Electromagnetic simulations embed vanadium dioxide (VO2)—a thermally responsive phase-change material—within the MIM metasurface architecture. Numerical evidence confirms that harnessing VO2’s insulator–metal-transition-mediated optical switching dynamically tailors spin-dependent splitting in the illuminated MIM-VO2 hybrid, thereby achieving a significant amplification of the PSHE displacement. Electromagnetic simulations determine the reflection coefficients for both VO2 phase states in the MIM-VO2 structure. Computed spin displacements under vortex beam incidence reveal that VO2’s phase transition couples to the MIM’s top metal and dielectric layers, modifying reflection coefficients and producing phase-dependent PSHE displacements. The simulation results show that the displacement change of the PSHE before and after the phase transition of VO2 reaches 954.7 µm, achieving a significant improvement compared with the traditional layered structure. The dynamic modulation mechanism of the PSHE based on the thermal–optical effect has been successfully verified. Full article
Show Figures

Figure 1

9 pages, 1953 KiB  
Article
Planar Hall Effect and Magnetoresistance Effect in Pt/Tm3Fe5O12 Bilayers at Low Temperature
by Yukuai Liu, Jingming Liang, Zhiyong Xu, Jiahui Li, Junhao Ruan, Sheung Mei Ng, Chuanwei Huang and Chi Wah Leung
Electronics 2025, 14(15), 3060; https://doi.org/10.3390/electronics14153060 - 31 Jul 2025
Viewed by 309
Abstract
Spin transport behaviors in heavy metal/ferromagnetic insulator (HM/FI) bilayers have attracted considerable attention due to various novel phenomena and applications in spintronic devices. Herein, we investigate the planar Hall effect (PHE) in Pt/Tm3Fe5O12 (Pt/TmIG) heterostructures at low temperatures; [...] Read more.
Spin transport behaviors in heavy metal/ferromagnetic insulator (HM/FI) bilayers have attracted considerable attention due to various novel phenomena and applications in spintronic devices. Herein, we investigate the planar Hall effect (PHE) in Pt/Tm3Fe5O12 (Pt/TmIG) heterostructures at low temperatures; moment switching in the ferrimagnetic insulator TmIG is detected by using electrical measurements. Double switching hysteresis PHE curves are found in Pt/TmIG bilayers, closely related to the magnetic moment of Tm3+ ions, which makes a key contribution to the total magnetic moment of TmIG film at low temperature. More importantly, a magnetoresistance (MR) curve with double switching is found, which has not been reported in this simple HM/FI bilayer, and the sign of this MR effect is sensitive to the angle between the magnetic field and current directions. Our findings of these effects in this HM/rare earth iron garnet (HM/REIG) bilayer provide insights into tuning the spin transport properties of HM/REIG by changing the rare earth. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

13 pages, 1132 KiB  
Review
M-Edge Spectroscopy of Transition Metals: Principles, Advances, and Applications
by Rishu Khurana and Cong Liu
Catalysts 2025, 15(8), 722; https://doi.org/10.3390/catal15080722 - 30 Jul 2025
Viewed by 462
Abstract
M-edge X-ray absorption spectroscopy (XAS), which probes 3p→3d transitions in first-row transition metals, provides detailed insights into oxidation states, spin-states, and local electronic structure with high element and orbital specificity. Operating in the extreme ultraviolet (XUV) region, this technique provides [...] Read more.
M-edge X-ray absorption spectroscopy (XAS), which probes 3p→3d transitions in first-row transition metals, provides detailed insights into oxidation states, spin-states, and local electronic structure with high element and orbital specificity. Operating in the extreme ultraviolet (XUV) region, this technique provides sharp multiplet-resolved features with high sensitivity to ligand field and covalency effects. Compared to K- and L-edge XAS, M-edge spectra exhibit significantly narrower full widths at half maximum (typically 0.3–0.5 eV versus >1 eV at the L-edge and >1.5–2 eV at the K-edge), owing to longer 3p core-hole lifetimes. M-edge measurements are also more surface-sensitive due to the lower photon energy range, making them particularly well-suited for probing thin films, interfaces, and surface-bound species. The advent of tabletop high-harmonic generation (HHG) sources has enabled femtosecond time-resolved M-edge measurements, allowing direct observation of ultrafast photoinduced processes such as charge transfer and spin crossover dynamics. This review presents an overview of the fundamental principles, experimental advances, and current theoretical approaches for interpreting M-edge spectra. We further discuss a range of applications in catalysis, materials science, and coordination chemistry, highlighting the technique’s growing impact and potential for future studies. Full article
(This article belongs to the Special Issue Spectroscopy in Modern Materials Science and Catalysis)
Show Figures

Graphical abstract

19 pages, 4549 KiB  
Article
Synthesis, Structure, and Magnetic Properties of (Co/Eu) Co-Doped ZnO Nanoparticles
by Adil Guler
Coatings 2025, 15(8), 884; https://doi.org/10.3390/coatings15080884 - 29 Jul 2025
Viewed by 374
Abstract
Transition-metal and rare-earth element co-doped ZnO nanoparticles have attracted significant attention due to their potential applications in spintronics and optoelectronics. In this study, Zn0.95Co0.01EuxO (x = 0.01–0.05) nanoparticles were synthesized using the sol–gel technique. The estimated stress, strain, and [...] Read more.
Transition-metal and rare-earth element co-doped ZnO nanoparticles have attracted significant attention due to their potential applications in spintronics and optoelectronics. In this study, Zn0.95Co0.01EuxO (x = 0.01–0.05) nanoparticles were synthesized using the sol–gel technique. The estimated stress, strain, and crystallite sizes of the synthesized Co/Eu co-doped ZnO nanoparticles were calculated using the Williamson–Hall method, and their electron spin resonance (ESR) properties were investigated to examine the effect on their magnetic and structural properties. X-ray diffraction (XRD) analysis confirmed the presence of a single-phase structure. Surface morphology, elemental composition, crystal quality, defect types, density, and magnetic behavior were characterized using scanning electron microscope (SEM), electron-dispersive spectroscopy (EDS), and ESR techniques, respectively. The effect of Eu concentration on the linewidth (ΔBpp) and g-factor in the ESR spectra was studied. By correlating ESR results with the obtained structural properties, room-temperature ferromagnetic behavior was identified. Full article
Show Figures

Figure 1

19 pages, 7965 KiB  
Article
The Influence of Light Rare-Earth Substitution on Electronic and Magnetic Properties of CoFe2O4 Nanoparticles
by Rareș Bortnic, Adam Szatmari, Tiberiu Dragoiu, Radu George Hategan, Roman Atanasov, Lucian Barbu-Tudoran, Coriolan Tiusan, Raluca Lucacel-Ciceo, Roxana Dudric and Romulus Tetean
Nanomaterials 2025, 15(15), 1152; https://doi.org/10.3390/nano15151152 - 25 Jul 2025
Viewed by 414
Abstract
Co0.95R0.05Fe2O4 nanoparticles with R = La, Pr, Nd, Sm, and Eu were synthesized via an environmentally friendly sol–gel method. The prepared samples were studied using X-ray diffraction measurements (XRD), transmission electron microscopy (TEM), X-ray photoelectron microscopy [...] Read more.
Co0.95R0.05Fe2O4 nanoparticles with R = La, Pr, Nd, Sm, and Eu were synthesized via an environmentally friendly sol–gel method. The prepared samples were studied using X-ray diffraction measurements (XRD), transmission electron microscopy (TEM), X-ray photoelectron microscopy (XPS), and magnetic measurements. All compounds were found to be single phases adopting a cubic Fd-3m structure. EDS analysis confirmed the presence of Co, Fe, R, and oxygen in all cases. The XPS measurements reveal that the Co 2p core-level spectra are characteristic for Co3+ ions, as indicated by the 2p3/2 and 2p1/2 binding energies and spin–orbit splitting values. The analysis of the Fe 2p core-level spectra reveals the presence of both Fe3+ and Fe2+ ions in the investigated samples. The doped samples exhibit lower saturation magnetizations than the pristine sample. Very good agreement with the saturation magnetization values was obtained if we assumed that the light rare-earth ions occupy octahedral sites and their magnetic moments align parallel to those of the 3d transition metal ions. The ZFC-FC curves indicate that some nanoparticles remain superparamagnetic, while others exhibit ferrimagnetic ordering at room temperature, suggesting the presence of interparticle interactions. The Mr/Ms ratio at room temperature reflects the dominance of magnetostatic interactions. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

17 pages, 4225 KiB  
Article
Comparative Nitrene-Transfer Chemistry to Olefins Mediated by First-Row Transition Metal Catalysts Supported by a Pyridinophane Macrocycle with N4 Ligation
by Himanshu Bhatia, Lillian P. Adams, Ingrid Cordsiemon, Suraj Kumar Sahoo, Amitava Choudhury, Thomas R. Cundari and Pericles Stavropoulos
Molecules 2025, 30(15), 3097; https://doi.org/10.3390/molecules30153097 - 24 Jul 2025
Viewed by 452
Abstract
A 12-membered pyridinophane scaffold containing two pyridine and two tertiary amine residues is examined as a prototype ligand (tBuN4) for supporting nitrene transfer to olefins. The known [(tBuN4)MII(MeCN)2]2+ (M = Mn, Fe, Co, and [...] Read more.
A 12-membered pyridinophane scaffold containing two pyridine and two tertiary amine residues is examined as a prototype ligand (tBuN4) for supporting nitrene transfer to olefins. The known [(tBuN4)MII(MeCN)2]2+ (M = Mn, Fe, Co, and Ni) and [(tBuN4)CuI(MeCN)]+ cations are synthesized with the hexafluorophosphate counteranion. The aziridination of para-substituted styrenes with PhI=NTs (Ts = tosyl) in various solvents proved to be high yielding for the Cu(I) and Cu(II) reagents, in contrast to the modest efficacy of all other metals. For α-substituted styrenes, aziridination is accompanied by products of aziridine ring opening, especially in chlorinated solvents. Bulkier β-substituted styrenes reduce product yields, largely for the Cu(II) reagent. Aromatic olefins are more reactive than aliphatic congeners by a significant margin. Mechanistic studies (Hammett plots, KIE, and stereochemical scrambling) suggest that both copper reagents operate via sequential formation of two N–C bonds during the aziridination of styrene, but with differential mechanistic parameters, pointing towards two distinct catalytic manifolds. Computational studies indicate that the putative copper nitrenes derived from Cu(I) and Cu(II) are each associated with closely spaced dual spin states, featuring high spin densities on the nitrene N atom. The computed electrophilicity of the Cu(I)-derived nitrene reflects the faster operation of the Cu(I) manifold. Full article
Show Figures

Graphical abstract

36 pages, 2856 KiB  
Review
Intertwined Orders and the Physics of High Temperature Superconductors
by Eduardo Fradkin
Particles 2025, 8(3), 70; https://doi.org/10.3390/particles8030070 - 23 Jul 2025
Viewed by 313
Abstract
Complex phase diagrams are a generic feature of quantum materials that display high-temperature superconductivity. In addition to d-wave superconductivity (or other unconventional states), these phase diagrams typically include various forms of charge-ordered phases, including charge-density waves and/or spin-density waves, as well as electronic [...] Read more.
Complex phase diagrams are a generic feature of quantum materials that display high-temperature superconductivity. In addition to d-wave superconductivity (or other unconventional states), these phase diagrams typically include various forms of charge-ordered phases, including charge-density waves and/or spin-density waves, as well as electronic nematic states. In most cases, these phases have critical temperatures comparable in magnitude to that of the superconducting state and appear in a “pseudo-gap” regime. In these systems, the high temperature state does not produce a good metal with well-defined quasiparticles but a ”strange metal”. These states typically arise from doping a strongly correlated Mott insulator. With my collaborators, I have identified these behaviors as a problem with “Intertwined Orders”. A pair-density wave is a type of superconducting state that embodies the physics of intertwined orders. Here, I discuss the phenomenology of intertwined orders and the quantum materials that are known to display these behaviors. Full article
Show Figures

Figure 1

12 pages, 11870 KiB  
Article
Structural, Elastic, Electronic, Magnetic, and Half-Metallic Properties of Full-Heusler Compounds Fe2LiZ (Z = Ge and Si): A First-Principles Study
by Yufeng Wen, Yanlin Yu, Zhangli Lai and Xianshi Zeng
Metals 2025, 15(7), 808; https://doi.org/10.3390/met15070808 - 18 Jul 2025
Viewed by 267
Abstract
The structural, elastic, electronic, magnetic, and half-metallic properties of full-Heusler Fe2LiSi and Fe2LiGe compounds were investigated using first-principles calculations. Among the studied configurations, the cubic XA structures in the ferromagnetic state for both compounds are the most stable. They [...] Read more.
The structural, elastic, electronic, magnetic, and half-metallic properties of full-Heusler Fe2LiSi and Fe2LiGe compounds were investigated using first-principles calculations. Among the studied configurations, the cubic XA structures in the ferromagnetic state for both compounds are the most stable. They exhibit mechanical stability, elastic anisotropy, and ductility. Compared to Fe2LiGe, Fe2LiSi demonstrates higher stability, stronger anisotropy, greater brittleness, higher Debye and melting temperatures, and a smaller Grüneisen parameter. Both compounds exhibit metallic majority-spin channels and semiconducting minority-spin channels. At the equilibrium lattice constant, Fe2LiSi and Fe2LiGe exhibit half-metallic gaps of 0.141 eV and 0.179 eV, respectively. Both compounds exhibit 100% spin-polarization ratio in specific lattice constant ranges. The total magnetic moment per formula unit (3.000 μB) follows the generalized Slater–Pauling rule and depends on Fe atomic magnetic moments. These properties indicate that Fe2LiSi and Fe2LiGe hold promise for spintronic applications. Full article
Show Figures

Figure 1

14 pages, 4651 KiB  
Article
Thermal-Induced Oxygen Vacancy Enhancing the Thermo-Chromic Performance of W-VO2−x@AA/PVP Nanoparticle Composite-Based Smart Windows
by Jiran Liang, Tong Wu, Chengye Zhang, Yunfei Bai, Dequan Zhang and Dangyuan Lei
Nanomaterials 2025, 15(14), 1084; https://doi.org/10.3390/nano15141084 - 12 Jul 2025
Viewed by 333
Abstract
Tungsten-doped vanadium dioxide (W-VO2) shows semiconductor-to-metal phase transition properties at room temperature, which is an ideal thermo-chromic smart window material. However, low visual transmittance and solar modulation limit its application in building energy saving. In this paper, a W-VO2−x@AA [...] Read more.
Tungsten-doped vanadium dioxide (W-VO2) shows semiconductor-to-metal phase transition properties at room temperature, which is an ideal thermo-chromic smart window material. However, low visual transmittance and solar modulation limit its application in building energy saving. In this paper, a W-VO2−x@AA core-shell nanoparticle is proposed to improve the thermo-chromic performance of W-VO2. Oxygen vacancies were used to promote the connection of W-VO2−x nanoparticles with L-ascorbic acid (AA) molecules. Oxygen vacancies were tuned in W-VO2 nanoparticles by thermal annealing temperatures in vacuum, and W-VO2−x@AA nanoparticles were synthesized by the hydrothermal method. A smart window was formed by dispersing W-VO2−x@AA core-shell nanoparticles into PVP evenly and spin-coating them on the surface of glass. The visual transmittance of this smart window reaches up to 67%, and the solar modulation reaches up to 12.1%. This enhanced thermo-chromic performance is related to the electron density enhanced by the AA surface molecular coordination effect through W dopant and oxygen vacancies. This work provides a new strategy to enhance the thermo-chromic performance of W-VO2 and its application in the building energy-saving field. Full article
(This article belongs to the Special Issue Nano Surface Engineering: 2nd Edition)
Show Figures

Figure 1

10 pages, 1113 KiB  
Proceeding Paper
Examination of Nanochannels in Diluted Magnetic Doped CoTiSb Semiconductor
by Yuehua Chang
Eng. Proc. 2025, 98(1), 36; https://doi.org/10.3390/engproc2025098036 - 11 Jul 2025
Viewed by 189
Abstract
The first-principles calculation method was used to study doping elements with atomic numbers in the range of 23–30 (V–Zn) to form a single-atomic-spin nanochannel in a CoTiSb matrix. In a Ni-Sb single-atomic chain with high spin polarization and hole electrical conductivity, V-Sb, Mn-Sb, [...] Read more.
The first-principles calculation method was used to study doping elements with atomic numbers in the range of 23–30 (V–Zn) to form a single-atomic-spin nanochannel in a CoTiSb matrix. In a Ni-Sb single-atomic chain with high spin polarization and hole electrical conductivity, V-Sb, Mn-Sb, Fe-Sb, and Co-Sb single-atom chains have 100% spin polarization, indicating that a supercell containing the central atom chain has typical half-metal characteristics, and in the CoTiSb matrix, is centered on very small single-spin nanochannel forms. Using doping elements with atomic numbers between 23 and 27 (V-Co), the total magnetic moment of the supercell is constantly increasing, but the total magnetic moment of the Ni-doped supercell (Ni-Ti supercell) reduces, and a Cr-Ti supercell has an equal total magnetic moment. Doping elements Cu and Zn have atomic numbers higher than the range. Although the material of the nanochannel retains ferromagnetic properties, the spin polarization rate is reduced, and the material no longer has half-metallic properties. Full article
Show Figures

Figure 1

Back to TopTop