Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (139)

Search Parameters:
Keywords = metal oxide nanofibers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4829 KiB  
Article
Development of a Flexible and Conductive Heating Membrane via BSA-Assisted Electroless Plating on Electrospun PVDF-HFP Nanofibers
by Mun Jeong Choi, Dae Hyeob Yoon, Yoo Sei Park, Hyoryung Nam and Geon Hwee Kim
Appl. Sci. 2025, 15(14), 8023; https://doi.org/10.3390/app15148023 - 18 Jul 2025
Viewed by 287
Abstract
Planar heaters are designed to deliver uniform heat across broad surfaces and serve as critical components in applications requiring energy efficiency, safety, and mechanical flexibility, such as wearable electronics and smart textiles. However, conventional metal-based heaters are limited by poor adaptability to curved [...] Read more.
Planar heaters are designed to deliver uniform heat across broad surfaces and serve as critical components in applications requiring energy efficiency, safety, and mechanical flexibility, such as wearable electronics and smart textiles. However, conventional metal-based heaters are limited by poor adaptability to curved or complex surfaces, low mechanical compliance, and susceptibility to oxidation-induced degradation. To overcome these challenges, we applied a protein-assisted electroless copper (Cu) plating strategy to electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofiber substrates to fabricate flexible, conductive planar heating membranes. For interfacial functionalization, a protein-based engineering approach using bovine serum albumin (BSA) was employed to facilitate palladium ion coordination and seed formation. The resulting membrane exhibited a dense, continuous Cu coating, low sheet resistance, excellent durability under mechanical deformation, and stable heating performance at low voltages. These results demonstrate that the BSA-assisted strategy can be effectively extended to complex three-dimensional fibrous membranes, supporting its scalability and practical potential for next-generation conformal and wearable planar heaters. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

20 pages, 4689 KiB  
Article
Novel Core–Shell Metal Oxide Nanofibers with Advanced Optical and Magnetic Properties Deposited by Co-Axial Electrospinning
by Roman Viter, Viktor Zabolotnii, Martin Sahul, Mária Čaplovičová, Iryna Tepliakova, Viesturs Sints and Ambra Fioravanti
Nanomaterials 2025, 15(13), 1026; https://doi.org/10.3390/nano15131026 - 2 Jul 2025
Viewed by 418
Abstract
Co-axial electrospinning is one of the facile methods for the fabrication of core–shell metal oxides for environmental applications. Indeed, core–shell architectures featuring a magnetic core and a photocatalytic shell represent a novel approach to catalytic nanostructures in applications such as water treatment and [...] Read more.
Co-axial electrospinning is one of the facile methods for the fabrication of core–shell metal oxides for environmental applications. Indeed, core–shell architectures featuring a magnetic core and a photocatalytic shell represent a novel approach to catalytic nanostructures in applications such as water treatment and pollutant removal via magnetic separation. This study focuses on the fabrication of novel Fe3O4-Fe2NiO4/NiO core–shell nanofibers with enhanced optical and magnetic properties using co-axial electrospinning. The aim is to optimize the fabrication parameters, particularly the amount of metal precursor in the starting solutions, to achieve well-defined core and shell structures (rather than single-phase spinels), and to investigate phase transitions, structural characteristics, as well as the optical and magnetic properties of the resulting nanofibers. Raman, XRD, and XPS results show several phases and high defect concentration in the NiO shell. The Fe3O4-Fe2NiO4/NiO core–shell nanofibers exhibit strong visible-light absorption and significant magnetization. These advanced properties highlight their potential in photocatalytic applications. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Fibers and Textiles)
Show Figures

Graphical abstract

22 pages, 5233 KiB  
Article
A Novel Green In Situ Amine-Functionalized Aerogel UiO-66-NH2/TOCNF for the Removal of Azo Anionic Dyes
by Rabia Amen, Islam Elsayed, Yunsang Kim, Gregory T. Schueneman, Emad M. El-Giar and El Barbary Hassan
Gels 2025, 11(5), 365; https://doi.org/10.3390/gels11050365 - 15 May 2025
Viewed by 1072
Abstract
UiO-66-NH2 is a metal–organic framework (MOF) with open metal sites, making it a promising candidate for adsorption and catalysis. However, the powdery texture of MOFs and the use of toxic solvents during synthesis limit their application. A novel solution to this issue [...] Read more.
UiO-66-NH2 is a metal–organic framework (MOF) with open metal sites, making it a promising candidate for adsorption and catalysis. However, the powdery texture of MOFs and the use of toxic solvents during synthesis limit their application. A novel solution to this issue is to create a layered porous composite by encasing the MOF within a flexible and structurally robust aerogel substrate using safe, eco-friendly, and green solvents such as ethanol. The fibrous MOF aerogels, characterized by a desirable macroscopic shape of cylindrical block and hierarchical porosity, were synthesized by two approaches: in situ growth of amine-functionalized UiO-66-NH2 crystals on a TEMPO-oxidized cellulose nanofiber (TOCNF) and ex situ crosslinking of UiO-66-NH2 crystals onto a TOCNF network to form UiO-66-NH2/TOCNF. The incorporation of MOF into the cellulose nanofibrils via the in situ method reduces their aggregation potential, alters the nucleation/growth balance to produce smaller MOF crystals, and enhances mechanical flexibility, as evidenced by SEM images. The three adsorbents, including UiO-66-NH2, ex situ UiO-66-NH2/TOCNF, and in situ UiO-66-NH2/TOCNF, were synthesized and used in this study. The effects of pH, time, temperature, and initial concentration were studied. A maximum adsorption capacity (Qmax) of 549.45 mg/g for Congo Red (CR) and 171.23 mg/g for Orange II (ORII) was observed at pH 6, using 10 mg of in situ UiO-66-NH2/TOCNF at 40 °C with a contact time of 75 min for CR and 2 h for ORII. The adsorption of both dyes primarily occurs through monolayer chemisorption on the in situ UiO-66-NH2/TOCNF. The main removal mechanisms were hydrogen bonding and surface complexation. The noteworthy adsorption capacity of in situ UiO-66-NH2/TOCNF coupled with environment-friendly fabrication techniques indicates its potential applications on a large scale in real wastewater systems. Full article
(This article belongs to the Special Issue Cellulose-Based Gels: Synthesis, Properties, and Applications)
Show Figures

Figure 1

32 pages, 6990 KiB  
Review
Graphitic Carbon Nitride Nanomaterials-Based Electrochemical Sensing Interfaces for Monitoring Heavy Metal Ions in Aqueous Environments
by Cheng Yin, Yao Liu, Tingting Hu and Xing Chen
Nanomaterials 2025, 15(7), 564; https://doi.org/10.3390/nano15070564 - 7 Apr 2025
Cited by 1 | Viewed by 959
Abstract
The persistent threat of heavy metal ions (e.g., Pb2+, Hg2+, Cd2+) in aqueous environments to human health underscores an urgent need for advanced sensing platforms capable of rapid and precise pollutant monitoring. Graphitic carbon nitride (g-C3 [...] Read more.
The persistent threat of heavy metal ions (e.g., Pb2+, Hg2+, Cd2+) in aqueous environments to human health underscores an urgent need for advanced sensing platforms capable of rapid and precise pollutant monitoring. Graphitic carbon nitride (g-C3N4), a metal-free polymeric semiconductor, has emerged as a revolutionary material for constructing next-generation environmental sensors due to its exceptional physicochemical properties, including tunable electronic structure, high chemical/thermal stability, large surface area, and unique optical characteristics. This review systematically explores the integration of g-C3N4 with functional nanomaterials (e.g., metal nanoparticles, metal oxide nanomaterials, carbonaceous materials, and conduction polymer) to engineer high-performance sensing interfaces for heavy metal detection. The structure-property relationship is critically analyzed, emphasizing how morphology engineering (nanofibers, nanosheets, and mesoporous) and surface functionalization strategies enhance sensitivity and selectivity. Advanced detection mechanisms are elucidated, including electrochemical signal amplification, and photoinduced electron transfer processes enabled by g-C3N4’s tailored bandgap and surface active sites. Furthermore, this review addresses challenges in real-world deployment, such as scalable nanomaterial synthesis, matrix interference mitigation, and long-term reliable detection. This work provides valuable insights for advancing g-C3N4-based electrochemical sensing technologies toward sustainable environmental monitoring and intelligent pollution control systems. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

23 pages, 2792 KiB  
Article
Enhanced Electrocatalytic Performance of Nickel-Cobalt-Titanium Dioxide-Embedded Carbon Nanofibers for Direct Alcohol Fuel Cells
by Wael M. Mohammed, Mahmoud A. Mohamed, Mohamed O. Abdel-Hamed and Esam E. Abdel-Hady
J. Compos. Sci. 2025, 9(3), 125; https://doi.org/10.3390/jcs9030125 - 10 Mar 2025
Cited by 1 | Viewed by 1498
Abstract
This study focuses on making non-precious electrocatalysts for improving the performance of Direct Alcohol Fuel Cells (DAFCs). Specifically, it examines the oxidation of ethanol and methanol. Conventional platinum-based catalysts are expensive and suffer from problems such as degradation and poisoning. To overcome these [...] Read more.
This study focuses on making non-precious electrocatalysts for improving the performance of Direct Alcohol Fuel Cells (DAFCs). Specifically, it examines the oxidation of ethanol and methanol. Conventional platinum-based catalysts are expensive and suffer from problems such as degradation and poisoning. To overcome these challenges, we fabricated tri-metallic catalysts composed of nickel, cobalt, and titanium dioxide (TiO2) embedded in carbon nanofibers (CNFs). The synthesis included electrospinning and subsequent carbonization as well as optimization of parameters to achieve uniform nanofiber morphology and high surface area. Electrochemical characterization revealed that the incorporation of TiO2 significantly improved electrocatalytic activity for ethanol and methanol oxidation, with current densities increasing from 57.8 mA/cm2 to 74.2 mA/cm2 for ethanol and from 38.69 mA/cm2 to 60.39 mA/cm2 for methanol as the TiO2 content increased. The catalysts showed excellent stability, with the TiO2-enriched sample (T2) showing superior performance during longer cycling tests. Chronoamperometry and electrochemical impedance spectroscopy are used to examine the stability of the catalysts and the dynamics of the charge carriers. Impedance spectroscopy indicated reduced charge transfer resistance, confirming enhanced activities. These findings suggest that the synthesized non-precious electrocatalysts can serve as effective alternatives to platinum-based materials, offering a promising pathway for the development of cost-efficient and durable fuel cells. Research highlights non-precious metal catalysts for sustainable fuel cell technologies. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Graphical abstract

21 pages, 8997 KiB  
Article
Cellulose Nanofiber Aerogel from Banana Peduncle Modified with Graphene Oxide as Bio-Adsorbent for Lead and Chromium Ions
by Anjar Priyatmojo, Riza Wirawan, Husaini Ardy, Dita Puspitasari, Putri P. P. Asri and Lia A. T. W. Asri
Gels 2025, 11(2), 95; https://doi.org/10.3390/gels11020095 - 28 Jan 2025
Viewed by 1422
Abstract
Textile industry waste contains high concentrations of heavy metals such as Pb(II) and Cr(VI) that must be reduced before they are released to the environment. The adsorption method is one way to reduce the heavy metal content. In this work, we develop a [...] Read more.
Textile industry waste contains high concentrations of heavy metals such as Pb(II) and Cr(VI) that must be reduced before they are released to the environment. The adsorption method is one way to reduce the heavy metal content. In this work, we develop a porous cellulose nanofiber (CNF) aerogel modified with graphene oxide (GO) as an alternative aerogel adsorbent for Pb(II) and Cr(VI). Cellulose was extracted from banana peduncle, a biomass waste that remains largely underutilized. The addition of GO aims to increase the adsorption properties. The aerogel adsorbents were synthesized by varying the ultrasonication time to 45 min for CNF 45 and 60 min for CNF 60, and the amount of GO added to 1 mL and 2 mL. The aerogel adsorbents were successfully prepared using the freeze-drying method with CNF45, CNF60, CNF45/GO1, CNF45/GO2, CNF60/GO1, and CNF60/GO2 variations. CNF was successfully isolated from a banana peduncle with an average diameter of 44.16 nm for 45 min (CNF 45) and an average diameter of 14.6 nm for 60 min (CNF 60) of ultrasonication. Chemical treatment and ultrasonication reduced the crystallinity index value of cellulose by 73% and 61% for CNF 45 and CNF 60, respectively. CNF aerogel has a very low shrinkage rate (<7%), resulting in a larger surface area. CNF60/GO2 obtained the optimum adsorption ability for Pb(II) metal at a concentration of 100 ppm and 27.27 mg/g at 30 min. On the other hand, the adsorption ability of Cr(VI) metal was obtained by CNF60/GO2 at a concentration of 100 ppm and 13.48 mg/g at 30 min. SEM images show that all aerogel adsorbents are porous, with a porosity value range of 96–98%. In conclusion, CNF60/GO2 proved to be the most effective aerogel adsorbent, offering the potential for heavy metal removal from industrial wastewater. Full article
(This article belongs to the Special Issue Advanced Hydrogel for Water Treatment (2nd Edition))
Show Figures

Graphical abstract

28 pages, 7293 KiB  
Article
Integration of p-Type PdPc and n-Type SnZnO into Hybrid Nanofibers Using Simple Chemical Route for Enhancement of Schottky Diode Efficiency
by A. Al-Sayed, Miad Ali Siddiq and Elsayed Elgazzar
Physics 2025, 7(1), 4; https://doi.org/10.3390/physics7010004 - 23 Jan 2025
Viewed by 2410
Abstract
Palladium phthalocyanine (PdPc) and palladium phthalocyanine integrated with tin–zinc oxide (PdPc:SnZnO) were prepared using a simple chemical approach, and their structural and morphological properties were identified using X-ray diffraction, energy dispersive X-ray analysis, scanning electron microscopy, and transmission electron microscopy techniques. The PdPc:SnZnO [...] Read more.
Palladium phthalocyanine (PdPc) and palladium phthalocyanine integrated with tin–zinc oxide (PdPc:SnZnO) were prepared using a simple chemical approach, and their structural and morphological properties were identified using X-ray diffraction, energy dispersive X-ray analysis, scanning electron microscopy, and transmission electron microscopy techniques. The PdPc:SnZnO nanohybrid revealed a polycrystalline structure combining n-type metal oxide SnZnO nanoparticles with p-type organic PdPc molecules. The surface morphology exhibited wrinkled nanofibers decorated with tiny spheres and had a large aspect ratio. The thin film revealed significant optical absorption within the ultraviolet and visible spectra, with narrow band gaps measured at 1.52 eV and 2.60 eV. The electronic characteristics of Al/n-Si/PdPc/Ag and Al/n-Si/PdPc:SnZnO/Ag Schottky diodes were investigated using the current–voltage dependence in both the dark conditions and under illumination. The photodiodes displayed non-ideal behavior with an ideality factor greater than unity. The hybrid diode showed considerably high rectification ratio of 899, quite a low potential barrier, substantial specific photodetectivity, and high enough quantum efficiency, found to be influenced by dopant atoms and the unique topological architecture of the nanohybrid. The capacitance/conductance–voltage dependence measurements revealed the influence of alternative current signals on trapped centers at the interface state, leading to an increase in charge carrier density. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

15 pages, 4355 KiB  
Article
The Bi-Modified (BiO)2CO3/TiO2 Heterojunction Enhances the Photocatalytic Degradation of Antibiotics
by Yue Gao, Tieping Cao, Jinfeng Du, Xuan Qi, Hao Yan and Xuefeng Xu
Catalysts 2025, 15(1), 56; https://doi.org/10.3390/catal15010056 - 9 Jan 2025
Cited by 3 | Viewed by 950
Abstract
The increasing concentration of antibiotics in natural water poses a significant threat to society’s sustainable development due to water pollution. Photocatalytic technology is an efficient and environmentally friendly approach to environmental purification, offering great potential for addressing pollution and attracting significant attention from [...] Read more.
The increasing concentration of antibiotics in natural water poses a significant threat to society’s sustainable development due to water pollution. Photocatalytic technology is an efficient and environmentally friendly approach to environmental purification, offering great potential for addressing pollution and attracting significant attention from scholars worldwide. TiO2, as a representative semiconductor photocatalytic material, exhibits strong oxidation ability and excellent biocompatibility. However, its wide band gap and the rapid recombination of photo-generated electron–hole pairs significantly limit its photocatalytic applications. Recent studies indicate that constructing heterojunctions with synergistic plasmonic effects is an effective strategy for developing high-performance photocatalysts. In this study, Bi metal nanoparticles and (BiO)2CO3 nanosheets were simultaneously grown on TiO2 nanofibers via an in situ hydrothermal method, successfully forming a Bi@(BiO)2CO3/TiO2 composite fiber photocatalyst with synergistic plasmonic effects. The surface plasmon resonance (SPR) effect of Bi nanoparticles combined with the (BiO)2CO3/TiO2 heterojunction enhances sunlight absorption, facilitates efficient separation of photo-generated carriers, and significantly strengthens the photo-oxidation and reduction abilities. This system effectively generates abundant hydroxyl (·OH) and superoxide (·O2−) radicals under sunlight excitation. Consequently, Bi@(BiO)2CO3/TiO2 exhibited outstanding photocatalytic performance. Under simulated sunlight for 60 min, the photodegradation efficiencies of the quinolone antibiotics lomefloxacin, ciprofloxacin, and norfloxacin reached 93.2%, 97.5%, and 100%, respectively. Bi@(BiO)2CO3/TiO2 also demonstrates excellent stability and reusability. This study represents a significant step toward the application of TiO2-based photocatalyst materials in environmental purification. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

13 pages, 2744 KiB  
Article
Growth of MoS2 Nanosheets on Brush-Shaped PI–ZnO Hybrid Nanofibers and Study of the Photocatalytic Performance
by Zhenjun Chang, Zhengzheng Liao, Jie Han, Qiang Liu and Xiaoling Sun
Nanomaterials 2025, 15(1), 44; https://doi.org/10.3390/nano15010044 - 30 Dec 2024
Viewed by 883
Abstract
The design and preparation of advanced hybrid nanofibers with controllable microstructures will be interesting because of their potential high-efficiency applications in the environmental and energy domains. In this paper, a simple and efficient strategy was developed for preparing hybrid nanofibers of zinc oxide–molybdenum [...] Read more.
The design and preparation of advanced hybrid nanofibers with controllable microstructures will be interesting because of their potential high-efficiency applications in the environmental and energy domains. In this paper, a simple and efficient strategy was developed for preparing hybrid nanofibers of zinc oxide–molybdenum disulfide (ZnO–MoS2) grown on polyimide (PI) nanofibers by combining electrospinning, a high-pressure hydrothermal process, and in situ growth. Unlike simple composite nanoparticles, the structure is shown in PI–ZnO to be like the skeleton of a tree for the growth of MoS2 “leaves” as macro-materials with controlled microstructures. The surface morphology, structure, composition, and photocatalytic properties of these structures were characterized using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and UV–vis spectroscopy. The ultra high-volume fraction of MoS2 can be grown on the brush-shaped PI–ZnO. Decorating ZnO with nanosheets of MoS2 (a transition metal dichalcogenide with a relatively narrow band gap) is a promising way to increase the photocatalytic activity of ZnO. The hybrid nanofibers exhibited high photocatalytic properties, which decomposed about 92% of the methylene blue in 90 min under visible light irradiation. The combination of MoS2 and ZnO with more abundant surface-active sites significantly increases the spectral absorption range, promotes the separation and migration of carriers, and improves the photocatalytic characteristics. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

24 pages, 3624 KiB  
Review
Recent Advances in the Adsorption of Different Pollutants from Wastewater Using Carbon-Based and Metal-Oxide Nanoparticles
by Shahabaldin Rezania, Negisa Darajeh, Parveen Fatemeh Rupani, Amin Mojiri, Hesam Kamyab and Mohsen Taghavijeloudar
Appl. Sci. 2024, 14(24), 11492; https://doi.org/10.3390/app142411492 - 10 Dec 2024
Cited by 12 | Viewed by 3710
Abstract
In recent years, nanomaterials have gained special attention for removing contaminants from wastewater. Nanoparticles (NPs), such as carbon-based materials and metal oxides, exhibit exceptional adsorption capacity and antimicrobial properties for wastewater treatment. Their unique properties, including reactivity, high surface area, and tunable surface [...] Read more.
In recent years, nanomaterials have gained special attention for removing contaminants from wastewater. Nanoparticles (NPs), such as carbon-based materials and metal oxides, exhibit exceptional adsorption capacity and antimicrobial properties for wastewater treatment. Their unique properties, including reactivity, high surface area, and tunable surface functionalities, make them highly effective adsorbents. They can remove contaminants such as organics, inorganics, pharmaceuticals, medicine, and dyes by adsorption mechanisms. In this review, the effectiveness of different types of carbon-based NPs, including carbon nanotubes (CNTs), graphene-based nanoparticles (GNPs), carbon quantum dots (CQDs), carbon nanofibers (CNFs), and carbon nanospheres (CNSs), and metal oxides, including copper oxide (CuO), zinc oxide (ZnO), iron oxide (Fe2O3), titanium oxide (TiO2), and silver oxide (Ag2O), in the removal of different contaminants from wastewater has been comprehensively evaluated. In addition, their synthesis methods, such as physical, chemical, and biological, have been described. Based on the findings, CNPs can remove 75 to 90% of pollutants within two hours, while MONPs can remove 60% to 99% of dye in 150 min, except iron oxide NPs. For future studies, the integration of NPs into existing treatment systems and the development of novel nanomaterials are recommended. Hence, the potential of NPs is promising, but challenges related to their environmental impact and their toxicity must be considered. Full article
(This article belongs to the Special Issue Water Treatment: From Membrane Processes to Renewable Energies)
Show Figures

Figure 1

13 pages, 6595 KiB  
Article
Polyvinyl Alcohol Nanofibers with Embedded Two-Dimensional Nanomaterials and Metal Oxide Nanoparticles: Preparation, Structural Characterization, and Biological Activity
by Islam Gomaa, Haitham Kalil, Ahmed I. Abdel-Salam, Medhat A. Ibrahim and Mekki Bayachou
Appl. Nano 2024, 5(4), 245-257; https://doi.org/10.3390/applnano5040016 - 25 Nov 2024
Viewed by 1727
Abstract
Eco-friendly iron and manganese oxide nanoparticles (Fe2O3 and Mn2O3) were synthesized and integrated into graphene sheets to form uniform composites. These composites were then embedded in polyvinyl alcohol (PVA) fibers using electrospinning. Comprehensive characterization of the [...] Read more.
Eco-friendly iron and manganese oxide nanoparticles (Fe2O3 and Mn2O3) were synthesized and integrated into graphene sheets to form uniform composites. These composites were then embedded in polyvinyl alcohol (PVA) fibers using electrospinning. Comprehensive characterization of the composites and the final composite fibers was conducted using XRD, FE-SEM, and FTIR to analyze their structural complexity and morphological differences. The antibacterial efficacy of the resulting PVA nanofibers was evaluated against Escherichia coli, which is a common pathogen in hospital environments. The results show a significant bactericidal effect against these bacteria, which highlights their potential in medical applications, such as functional bandages and wound dressings. This study paves the way for potential commercial applications of these nanofibers in healthcare settings. Full article
Show Figures

Figure 1

19 pages, 8770 KiB  
Review
Innovative Carbonaceous Materials and Metal/Metal Oxide Nanoparticles for Electrochemical Biosensor Applications
by Keshavananda Prabhu Channabasavana Hundi Puttaningaiah
Nanomaterials 2024, 14(23), 1890; https://doi.org/10.3390/nano14231890 - 25 Nov 2024
Cited by 11 | Viewed by 1620
Abstract
Electrochemical biosensors have emerged as predominant devices for sensitive, rapid, and specific sensing of biomolecules, with significant applications in clinical diagnostics, environmental observation, and food processing. The improvement of inventive materials, especially carbon-based materials, and metal/metal oxide nanoparticles (M/MONPs), has changed the impact [...] Read more.
Electrochemical biosensors have emerged as predominant devices for sensitive, rapid, and specific sensing of biomolecules, with significant applications in clinical diagnostics, environmental observation, and food processing. The improvement of inventive materials, especially carbon-based materials, and metal/metal oxide nanoparticles (M/MONPs), has changed the impact of biosensing, improving the performance and flexibility of electrochemical biosensors. Carbon-based materials, such as graphene, carbon nanotubes, and carbon nanofibers, have excellent electrical conductivity, a high surface area, large pore size, and good biocompatibility, making them ideal electrocatalysts for biosensor applications. Furthermore, M and MONPs have highly effective synergistic, electronic, and optical properties that influence signal transduction, selectivity, and sensitivity. This study completely explored continuous progressions and upgrades in carbonaceous materials (CBN materials) and M/MONPs for electrochemical biosensor applications. It analyzed the synergistic effects of hybrid nanocomposites that combine carbon materials with metal nanoparticles (MNPs) and their part in upgrading sensor performance. The paper likewise incorporated the surface alteration procedures and integration of these materials into biosensor models. The study examined difficulties, requirements, and possibilities for executing these innovative materials in practical contexts. This overview aimed to provide specialists with insights into the most recent patterns in the materials study of electrochemical biosensors and advance further progressions in this dynamic sector. Full article
Show Figures

Figure 1

13 pages, 7956 KiB  
Article
Construction of Electrospun ZnO-NiO Nanofibers for Enhanced Ethanol Gas Sensing
by Maryam Bonyani, Seyed Mojtaba Zebarjad, Tae-Un Kim, Hyoun Woo Kim and Sang Sub Kim
Sensors 2024, 24(23), 7450; https://doi.org/10.3390/s24237450 - 22 Nov 2024
Cited by 3 | Viewed by 1073
Abstract
Semiconducting metal oxides with nanofiber (NF) morphologies are among the most promising materials for the realization of gas sensors. In this study, we have prepared electrospun ZnO-NiO composite NFs with different amounts of NiO (0, 20, 40, 60 and 80% wt%) for the [...] Read more.
Semiconducting metal oxides with nanofiber (NF) morphologies are among the most promising materials for the realization of gas sensors. In this study, we have prepared electrospun ZnO-NiO composite NFs with different amounts of NiO (0, 20, 40, 60 and 80% wt%) for the systematic study of ethanol gas sensing. The fabricated composite NFs were annealed at 600 °C for crystallization. Based on characterization studies, NFs were produced with desired morphologies, phases, and chemical compositions. Ethanol gas sensing studies revealed that the sensor with 40 wt% NiO had the highest response (3.6 to 10 ppm ethanol) at 300 °C among all gas sensors. The enhanced gas response was ascribed to the formation of sufficient amounts of p-n NiO-ZnO heterojunctions, NFs’ high surface areas due to their one-dimensional morphologies, and acid–base interactions between ZnO and ethanol. This research highlights the need for the optimization of ZnO-NiO composite NFs so that they achieve the highest sensing response, which can be extended to other similar metal oxides. Full article
Show Figures

Figure 1

42 pages, 49473 KiB  
Review
Electrospun Micro/Nanofiber-Based Electrocatalysts for Hydrogen Evolution Reaction: A Review
by Xiuhong Li, Youqi He, Kai Li, Shuailong Zhang, Xinyu Hu, Yi Li, Daode Zhang and Yong Liu
Polymers 2024, 16(22), 3155; https://doi.org/10.3390/polym16223155 - 13 Nov 2024
Cited by 3 | Viewed by 1971
Abstract
Hydrogen is regarded as an ideal energy carrier to cope with the energy crisis and environmental problems due to its high energy density, cleanliness, and renewability. Although there are several primary methods of industrial hydrogen production, hydrogen evolution reaction (HER) is an efficient, [...] Read more.
Hydrogen is regarded as an ideal energy carrier to cope with the energy crisis and environmental problems due to its high energy density, cleanliness, and renewability. Although there are several primary methods of industrial hydrogen production, hydrogen evolution reaction (HER) is an efficient, eco-friendly, and sustainably green method for the preparation of hydrogen which has attracted considerable attention. However, this technique is characterized by slow reaction kinetics and high energy potential owing to lack of electrocatalysts with cost-effective and high performance which impedes its scale-up. To address this issue, various studies have focused on electrospun micro/nanofiber-based electrocatalysts for HER due to their excellent electron and mass transport, high specific surface area, as well as high porosity and flexibility. To further advance their development, recent progress of highly efficient HER electrospun electrocatalysts is reviewed. Initially, the characteristics of potential high-performance electrocatalysts for HER are elucidated. Subsequently, the advantages of utilizing electrospinning technology for the preparation of electrocatalysts are summarized. Then, the classification of electrospun micro/nanofiber-based electrocatalysts for HER are analyzed, including metal-based electrospun electrocatalyst (noble metals and alloys, transition metals, and alloys), metal–non-metal electrocatalysts (metal sulfide-based electrocatalysts, metal oxide-based electrocatalysts, metal phosphide-based electrocatalysts, metal nitride-based electrocatalysts, and metal carbide-based electrocatalysts), metal-free electrospun micro/nanofiber-based electrocatalysts, and hybrid electrospun micro/nanofiber-based electrocatalysts. Following this, enhancement strategies for electrospun micro/nanofiber-based electrocatalysts are discussed. Finally, current challenges and the future research directions of electrospun micro/nanofiber-based electrocatalysts for HER are concluded. Full article
(This article belongs to the Special Issue Polymer Electrolyte: Recent Progress and Applications (2nd Edition))
Show Figures

Figure 1

17 pages, 6882 KiB  
Article
Development of High-Performance Ethanol Gas Sensors Based on La2O3 Nanoparticles-Embedded Porous SnO2 Nanofibers
by Gen Li, Jian Hou, Muhammad Hilal, Hyojung Kim, Zhiyong Chen, Yunhao Cui, Jun-Hyun Kim and Zhicheng Cai
Sensors 2024, 24(21), 6839; https://doi.org/10.3390/s24216839 - 24 Oct 2024
Cited by 9 | Viewed by 1818
Abstract
Porous pure SnO2 nanofibers (NFs) and La2O3 nanoparticles (NPs)-embedded porous SnO2 NFs were successfully synthesized via electrospinning followed by calcination. These materials were systematically evaluated as gas-sensing elements in metal-oxide-semiconductor (MOS) sensors. The La2O3 NPs [...] Read more.
Porous pure SnO2 nanofibers (NFs) and La2O3 nanoparticles (NPs)-embedded porous SnO2 NFs were successfully synthesized via electrospinning followed by calcination. These materials were systematically evaluated as gas-sensing elements in metal-oxide-semiconductor (MOS) sensors. The La2O3 NPs embedded in porous SnO2 NFs demonstrated superior gas-sensing performance compared to pure SnO2 NFs. Specifically, the incorporation of La2O3 resulted in a 12-fold enhancement in gas-sensing response towards ethanol, significantly improving both sensitivity and selectivity by tuning the carrier concentration and modifying oxygen deficiencies and chemisorbed oxygen levels. Thus, La2O3 NPs embedded in SnO2 NFs present a promising strategy for the development of high-performance ethanol gas sensors. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

Back to TopTop