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Abstract: Porous pure SnO2 nanofibers (NFs) and La2O3 nanoparticles (NPs)-embedded porous
SnO2 NFs were successfully synthesized via electrospinning followed by calcination. These materials
were systematically evaluated as gas-sensing elements in metal-oxide-semiconductor (MOS) sensors.
The La2O3 NPs embedded in porous SnO2 NFs demonstrated superior gas-sensing performance com-
pared to pure SnO2 NFs. Specifically, the incorporation of La2O3 resulted in a 12-fold enhancement
in gas-sensing response towards ethanol, significantly improving both sensitivity and selectivity
by tuning the carrier concentration and modifying oxygen deficiencies and chemisorbed oxygen
levels. Thus, La2O3 NPs embedded in SnO2 NFs present a promising strategy for the development of
high-performance ethanol gas sensors.

Keywords: SnO2; La2O3; heterojunction; ethanol; gas sensor; metal oxide semiconductor

1. Introduction

Ethanol is a widely utilized volatile organic compound (VOC) with a broad spectrum
of applications across various industries. Beyond its well-known role as an alternative fuel,
ethanol is integral to sectors such as pharmaceuticals, chemical synthesis, and fermentation-
based processes. Its significance is not only rooted in its extensive use but also in the
need for precise monitoring of ethanol concentrations. Accurate detection is critical for
ensuring product quality, maintaining safety standards, optimizing production efficiency,
and complying with environmental regulations. As ethanol continues to play a pivotal
role in both energy and industrial applications, the development of advanced sensing tech-
nologies for its effective monitoring has become increasingly important to fully harness its
potential [1–3]. In the automotive industry, the use of ethanol as a biofuel is crucial for low-
ering greenhouse gas emissions and promoting sustainable energy. Accurate measurement
of ethanol concentrations is vital for ensuring the quality of fuel blends and optimizing
combustion efficiency. This precision is essential to advancing the global transition towards
greener, more sustainable transportation solutions [4,5].

In pharmaceutical and chemical manufacturing, ethanol is a versatile solvent crucial
for the extraction and synthesis of various compounds. Precise control of ethanol con-
centrations is essential to ensure the quality, consistency, and safety of pharmaceutical
formulations and chemical processes. Accurate and selective ethanol gas sensors play a
vital role in maintaining operational integrity, ensuring product standards, and minimizing
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potential hazards [6,7]. Detecting elevated alcohol levels in the breath of individuals who
have consumed alcoholic beverages is vital for public safety, particularly in preventing
drunk driving. Real-time monitoring of ethanol levels in both ambient air and a driver’s
breath is essential to address this concern. Gas sensors that are simple to manufacture,
easy to integrate, portable, and sufficiently sensitive are the preferred choice in this field.
These advantages make them an effective solution for enhancing road safety by helping
to monitor and prevent alcohol-impaired driving [8,9]. Given ethanol’s wide range of
applications, the development of highly sensitive and selective gas sensors specifically
for ethanol detection is essential. These sensors not only enhance safety and regulatory
compliance but also improve process efficiency, reduce environmental impact, and support
sustainable industrial practices.

MOSs have emerged as highly promising candidates for gas-sensing applications,
owing to their exceptional sensitivity to alterations in the surrounding atmosphere [10,11].
Among these semiconductors, SnO2 and La2O3 have garnered substantial attention due to
their distinctive properties. SnO2 is well-known as an n-type semiconductor, exhibiting
remarkable gas-sensing properties, particularly in the detection of reducing gases [12].
Conversely, La2O3, recognized as a p-type semiconductor, stands out for its stability and
distinctive electronic characteristics [13,14]. Recent research endeavors have delved into the
synergistic advantages that arise from combining SnO2 and La2O3 in gas-sensing applica-
tions. A novel approach involves embedding La2O3 NPs within porous SnO2 NWs, aiming
to augment the sensitivity and selectivity of ethanol gas sensors. The integration of SnO2
and La2O3 into a p-n junction establishes a platform that enhances the overall gas-sensing
performance. SnO2 boasts several advantages, including a high surface area, excellent
chemical stability, and sensitivity to a wide range of gases, making it an ideal candidate for
the detection of ethanol vapors. Its capability to undergo significant changes in electrical
conductivity in response to various gases further solidifies its suitability for gas-sensing ap-
plications [15,16]. Traditional ethanol sensors often face several key challenges that hinder
their performance and practical applications. One of the primary issues is their requirement
for high operating temperatures, typically above 300 ◦C, to achieve sufficient sensitivity.
This not only increases energy consumption but also shortens the lifespan of the sensor,
making it unsuitable for portable or low-power applications. Furthermore, conventional
sensors often exhibit poor selectivity, struggling to distinguish ethanol from other VOCs
such as acetone, methanol, and formaldehyde, which can lead to false readings or reduced
accuracy in mixed gas environments. Additionally, many ethanol sensors have limited
long-term stability due to factors such as material degradation, surface contamination, or
drift in sensor response over time. This instability affects their reliability and necessitates
frequent recalibration or replacement, which increases operational costs and limits their
usability in long-term monitoring applications [17–19]. Complementarily, La2O3 introduces
p-type conductivity to the semiconductor ensemble, contributing to the formation of a
p-n junction. This particular junction structure enhances sensitivity and selectivity, as the
presence of ethanol induces substantial alterations in the material’s electrical conductivity.
The combined attributes of SnO2 and La2O3, integrated into a p-n junction, offer a robust
foundation for achieving heightened performance in ethanol gas sensing, paving the way
for advancements in gas sensing technology.

In this study, we synthesized La2O3 NPs-embedded porous SnO2 NFs using the
electrospinning process, with a focus on investigating the effects of La2O3 doping on the
ethanol-gas-sensing properties of SnO2 NFs. The incorporation of La2O3 as a dopant in the
SnO2 matrix was systematically examined to understand its influence on key performance
parameters, including sensitivity, detection limit, and response/recovery time. By carefully
controlling the doping levels during the electrospinning process, we aimed to optimize
the synergistic effects between La2O3 and SnO2, with the goal of significantly improving
sensitivity, selectivity, and response/recovery times for ethanol detection. These improve-
ments are essential for enhancing the practical application of ethanol sensors, particularly
in environments requiring high sensitivity and fast response times at room temperature.
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2. Materials and Methods
2.1. Materials

Tin(IV) chloride pentahydrate (SnCl4·5H2O, 98%), Lanthanum(III) nitrate hydrate
(La(NO3)3·xH2O, 99.9%), and polyvinylpyrrolidone (PVP, Mw = 1,300,000) were sourced
from Sigma-Aldrich (Saint Louis, MO, USA). N,N-Dimethylformamide (DMF) was sup-
plied by DUKSAN PURE CHEMICALS (Ansan, Republic of Korea), while citric acid
(C6H8O7, 99+%) was obtained from Alfa Aesar (Haverhill, MA, USA). Ethanol (99.5%) was
purchased from Deajung Chemical (Siheung, Republic of Korea). Various gases (99.99%)
used for sensing performance measurements were provided by Samjung Special Gas (In-
cheon, Republic of Korea). All other chemicals and reagents were used as received, without
further purification unless specified otherwise.

2.2. Preparation

Pure porous SnO2 NFs and La2O3 NPs-embedded porous SnO2 NFs with varying
La2O3 concentrations were synthesized through a meticulous electrospinning process,
followed by calcination. To begin, a solution was prepared by dissolving 0.3 g of citric
acid, 0.7 g of SnCl4·5H2O, and specific amounts of La(NO3)3·xH2O (0, 0.016, 0.032, and
0.048 g) in a solvent mixture of 7 mL absolute ethanol and 3 mL DMF. This mixture was
stirred magnetically at room temperature for 30 min. Next, 0.75 g of PVP was gradually
added, followed by an additional 30 min of stirring at room temperature. The prepared
solution was loaded into a 7 mL plastic syringe for electrospinning, as shown in Figure 1.
A DC voltage of 12 kV was applied between the syringe needle and a collector positioned
20 cm apart, with a feed rate maintained at 0.005 mL/min. The resulting white fibers
were collected and calcined in a tube furnace at 500 ◦C for 4 h. The samples were labeled
0La/SnO2, 16La/SnO2, 32La/SnO2, and 48La/SnO2, corresponding to the respective
La(NO3)3·xH2O ratios (0, 0.016, 0.032, and 0.048 g).
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2.3. Characterization

The morphologies of the samples were carefully analyzed using field emission-
scanning electron microscopy (FE-SEM, Hitachi S8010, HITACHI, Tokyo, Japan). The
crystal structures were characterized by X-ray diffraction (XRD) patterns obtained at a
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5◦ glancing angle with a high-resolution X-ray diffractometer (D/Max-2500/PC, Rigaku,
Tokyo, Japan) using CuKα radiation (λ = 1.5418 Å) over a scattering angle range of 20◦

to 80◦. For more detailed analysis of the samples’ morphology and crystal structure,
field-emission transmission electron microscopy (FE-TEM, Jeol 2100F, JEOL, Tokyo, Japan)
equipped with energy-dispersive X-ray spectroscopy (EDS) was employed for qualitative
chemical composition analysis of the nanofibers. X-ray photoelectron spectroscopy (XPS,
PHI 5000 Versa Probe II, ULVAC-PHI, Chigasaki, Japan) was used to accurately determine
the binding energies of the samples. Additionally, the specific surface area and pore size
distribution were measured through N2 gas adsorption using Brunauer–Emmett–Teller
(BET, BELSORP-max, MicrotracBEL Corp., Osaka, Japan) and Barrett–Joyner–Halenda
(BJH) surface analysis techniques.

2.4. Fabrication and Measurement of Gas Sensor

In this study, a gas sensor device was used to assess gas-sensing performance within
a dedicated system, as shown in Figure S1. Interdigitated Electrode (IDE) chips were
fabricated through a lift-off process, involving the sequential deposition of a Ti adhesion
layer and an Au conduction layer on a SiO2/Si wafer, with a 10 µm gap between electrodes.
The material was dispersed in ethanol and sonicated, after which the suspension was
applied to the IDE chip and air-dried. This process was repeated three times to ensure
sufficient sample deposition on the chip. Gas-sensing performance was evaluated using a
custom-designed system featuring a quartz tube as the sensing chamber. The IDE chip was
placed at the center of the chamber and connected to a source-meter unit (SMU, Keithley
2450). Before testing, the gas was dried to 0.7% humidity using a DRIERITE gas drying
unit (W.A. Hammond Drierite Co. Ltd., Xenia, OH, USA). The response performance
of the target gas was tested under varying relative humidity (RH) conditions; the RH of
the air was set to 0%, 20%, 40%, and 80%, with specific humidity control referenced in
Figure S2. During the experiments, the gas concentration was adjusted to five levels: 0.5,
1, 2, 5, 10, and 20 ppm. The controlled gas injection rate of 20 sccm maintained stable
pressure conditions, effectively minimizing the impact of pressure fluctuations on resistance
measurements. After each introduction of the target gas, synthetic air was used as the
purging gas and systematically delivered to the IDE chips. The target gas and purging gas
were supplied to the sensors for 200 s and 1000 s, respectively. Resistance data from the
sensors were recorded by the source-meter at one-second intervals throughout the process.
Sensor response was defined as Ra/Rg, where Ra is the sensor resistance in air and Rg in the
target gas [20]. Response and recovery times were measured when the resistance reached
90% of its total shift during adsorption and desorption.

3. Results
3.1. Characterization of La2O3 NPs-Embedded Porous SnO2 NFs

Figure 2 shows the XRD patterns for 0La/SnO2, 16La/SnO2, 32La/SnO2, and
48La/SnO2, representing the composites of SnO2 and La2O3. The XRD pattern of 0La/SnO2
corresponds to the tetragonal structure of SnO2 (JCPDS No. 88–0287), with no additional
peaks, confirming the purity of the SnO2 NFs. In the other samples, the XRD patterns
exhibit additional peaks attributed to the body-centered cubic structure of La2O3 (JCPDS
No. 89–4016), indicating the successful incorporation of La2O3. However, due to the
relatively low concentration of La2O3 compared to SnO2, most characteristic La2O3 peaks
are not prominent, and only the (110) peak of La2O3 is observed in the samples. The inten-
sity of these La2O3 peaks increases proportionally with the concentration of La2O3 NPs,
while the SnO2 peaks remain nearly constant across all samples, confirming the structural
stability of SnO2. Notably, no peaks corresponding to any secondary phases or impurities
were observed. A high-resolution XRD figure has been provided to clearly illustrate these
peak characteristics.
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Figure 2. XRD patterns of the samples synthesized in this study.

The NF structure underwent significant changes due to thermal calcination, which
removed the PVP and transformed the embedded salts within the polymer matrix into
metal oxide grains through oxidation and crystallization. SEM images with detailed
magnifications of the synthesized samples are shown in Figure 3. A low-magnification
SEM image of the PVP NFs before calcination is presented in Figure 3a, while post-
calcination images for 0La/SnO2, 16La/SnO2, 32La/SnO2, and 48La/SnO2 are dis-
played in Figure 3c, Figure 3e, Figure 3g, and Figure 3i, respectively. Corresponding
high-magnification images are provided in Figure 3b,d,f,h,j. These images indicate that
the smooth NFs, initially around 300 nm in diameter, transitioned into porous, uneven
structures composed of small sub-grains after calcination. These sub-grains, containing
both SnO2 and La2O3, were difficult to distinguish due to their similar appearances. After
calcination, the NF diameter reduced to approximately 250 nm, primarily due to the re-
moval of the polymer matrix. Despite varying La2O3 NPs concentrations, the morphologies
of the calcined NFs remained largely consistent across all samples.
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Figure 4a–f present the TEM images and corresponding EDS elemental mapping
profiles for 32La/SnO2. In the low-magnification image (Figure 4a), the overall morphology
of the NF is visible, consistent with the SEM analysis, showing numerous sub-grains and a
porous structure. The high-resolution TEM image in Figure 4b reveals sub-grains varying in
size from 5 to 30 nm, with clear fringe patterns visible within the grains. Two distinct fringe
spacings, 2.63 Å and 3.19 Å, correspond to the (101) lattice plane of SnO2 and the (110)
lattice plane of La2O3, respectively, indicating interconnected nanoparticles across grain
boundaries. The STEM image of the NF is shown in Figure 4c, while Figure 4d–f provide
the EDS elemental mapping profiles for Sn, La, and O based on the STEM image. These
profiles demonstrate a uniform distribution of elements throughout the sample, indicating
that La2O3 nanoparticles are evenly dispersed within the SnO2 NFs, highlighting their
high dispersibility.
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The surface chemical composition and chemical states of the NFs were elucidated using
XPS, as depicted in Figure 5. The fully scanned survey spectra for 0La/SnO2, 16La/SnO2,
32La/SnO2, and 48La/SnO2 are showcased in Figure 5a. These spectra utilized the C 1s
peak at a binding energy of 284.6 eV for calibration [21]. In all samples, distinct peaks
corresponding to Sn 3d and O 1s were observed. Furthermore, La 3d peaks appeared in the
16La/SnO2, 32La/SnO2, and 48La/SnO2, affirming the incorporation of lanthanum. The
absence of La 3d peaks in 0La/SnO2 indicates a lack of lanthanum in this sample. Figure 5b
highlights the Sn 3d peaks, which are prominently positioned at approximately 486 eV
and 494 eV, corresponding to the Sn 3d5/2 and Sn 3d3/2 energy levels, respectively, with a
consistent energy separation of 8.4 eV between them. This separation is consistent with the
values associated with Sn4+ in SnO2, confirming the complete oxidation state of Sn4+ in
these samples, as reported in the literature [22,23]. The slight shift in peak positions can
be attributed to the electronic interaction between SnO2 and La2O3, which significantly
influences the local chemical environment and binding energies. The difference in work
functions between these two materials induces electron transfer at the interface, thereby
modifying the electronic structure and resulting in the observed shifts in the XPS spectra.
This electronic interaction further confirms the successful incorporation of La2O3 into the
composite and supports the formation of a heterojunction between SnO2 and La2O3. The
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heterojunction not only alters the electronic structure but also enhances charge carrier
separation at the interface, reducing recombination rates. Moreover, the potential barrier
created by the heterojunction affects the mobility of charge carriers, which is critical for
improving the sensing performance of the composite. This enhanced charge separation and
mobility contribute directly to the superior gas-sensing properties of the material [24,25].
In Figure 5c, the high-resolution XPS spectra for La 3d in the 16La/SnO2, 32La/SnO2, and
48La/SnO2 reveal peaks corresponding to La 3d5/2 at 836 eV and La 3d3/2 at 853 eV, with a
consistent energy gap of 16.78 eV between these levels. This gap substantiates the presence
of the La3+ oxidation state [26–28].
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Figure 6 presents the broad and asymmetric spectra of O 1s for the series of samples:
0La/SnO2, 16La/SnO2, 32La/SnO2, and 48La/SnO2. The O 1s peak is differentiated
into three distinct components: lattice oxygen (Olattice), oxygen vacancies (Ovac), and
chemisorbed oxygen species (Oads) [29]. The Olattice component, representing oxygen ions
within the metal ion framework, exhibits remarkable stability and shows no reactivity
towards reducing gases [30]. The Ovac component, associated with dissociative oxygen
species, offers active sites for gas adsorption and catalytic reactions on the surface of
the sensing materials, indicating that an increase in Ovac enhances the participation of
chemisorbed oxygen in surface oxidation-reduction reactions, thereby amplifying the gas-
sensing response. This component is particularly crucial due to its role in interacting
with the target gas [31]. Oads, often linked to chemisorbed oxygen species, is directly
involved in the surface redox reactions with target molecules on the sensitive materials [32].
Figure 6 details the relative proportions and distributions of Olattice, Ovac, and Oads across
the samples, highlighting that the ratio of (Ovac + Oads) in 32La/SnO2 is superior, rendering
it more effective for gas-sensing purposes. The rise in Ovac is attributed to the generation of
oxygen vacancies and deficiency regions, which are induced by the incorporation of La2O3
into SnO2, thereby enhancing gas-sensing capabilities [33,34].

Figure 7a presents the nitrogen adsorption and desorption isotherms for PVP NFs
and a series of La-doped SnO2 samples, including 0La/SnO2, 16La/SnO2, 32La/SnO2,
and 48La/SnO2. Based on BET analysis, all samples, except for PVP NFs, exhibit type
IV nitrogen adsorption–desorption isotherms with H2 hysteresis loops, characteristic of a
mesoporous structure. The specific surface areas, calculated using the BET method, were
found to be 9.83 m2/g for PVP NFs, and 59.23, 65.25, 58.41, and 57.32 m2/g for 0La/SnO2,
16La/SnO2, 32La/SnO2, and 48La/SnO2, respectively. Notably, following calcination, the
surface areas of the SnO2-based samples increased more than sixfold compared to the
uncalcined PVP NFs. This significant rise in surface area can be attributed to the formation
of pores during calcination, which enhances the surface reactivity by providing numerous
active sites for chemical interactions. The increase in active sites significantly boosts the
sensor’s performance by enabling more efficient interactions with target gases, thereby
improving both sensitivity and specificity. Additionally, pore size distribution, determined
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from the desorption branch using the Barrett–Joyner–Halenda (BJH) method (as depicted
in Figure 7b), revealed an almost negligible average pore size for the nonporous PVP
NFs. In contrast, the pore sizes for 0La/SnO2, 16La/SnO2, 32La/SnO2, and 48La/SnO2
were calculated to be 9.45, 9.20, 6.42, and 6.69 nm, respectively. These results from the
BET and BJH analyses are consistent with the observations from SEM and TEM imaging,
further confirming the porous structure of the calcined nanofibers. The enhanced sensing
performance of the calcined samples can be primarily attributed to the increased volume of
mesopores, which facilitates better gas diffusion and interaction.
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3.2. Gas-Sensing Properties

In this study, ethanol-sensing tests were conducted on La2O3/SnO2 composite ma-
terials to evaluate their optimal operating temperature, sensitivity, linear dependence on
ethanol concentration, and selectivity. Operating temperature plays a critical role in gas
sensor performance, as it significantly affects the surface reactions during gas sensing. To
identify the optimal temperature, the responses of the four sensor samples developed in
this study were analyzed across a temperature range of 175–300 ◦C, using 20 ppm ethanol
as the target gas. As shown in Figure 8a, the gas response varies with temperature for
all samples, exhibiting a typical rise and fall pattern. At lower temperatures, ethanol
molecules have difficulty reacting effectively with the oxygen adsorbed on the sensor
surface, leading to a reduced sensor response. As the temperature increases, the reaction
rate accelerates, enhancing the conversion of surface-adsorbed oxygen and improving the
sensor’s response. However, as the temperature rises beyond the optimal point, the sensor
response declines due to several factors. Firstly, ethanol molecules desorb more quickly at
higher temperatures, reducing their interaction with surface-adsorbed oxygen and limiting
the release of electrons back into the conduction band. Secondly, elevated temperatures
decrease oxygen adsorption, thinning the depletion layer and diminishing the sensor’s
sensitivity. Lastly, at very high temperatures, the rate of surface reactions can reach a satu-
ration point where further increases in temperature no longer enhance the reaction kinetics.
The surface reaction between ethanol and oxygen becomes less efficient as the temperature
increases, leading to a lower number of available electrons to be released back into the
conduction band, thus reducing the sensor’s response. An operating temperature of 250 ◦C
was identified as optimal, balancing the benefits of a higher reaction rate with sufficient
adsorption capacity. Figure 8b shows the variation in baseline resistance of the sensors over
the operating temperature range of 175 to 300 ◦C. The baseline resistance of 0La/SnO2,
16La/SnO2, 32La/SnO2, and 48La/SnO2 sensors followed a similar trend with increasing
temperature. As temperature rises, the concentration of charge carriers (electrons or holes)
in the material increases due to thermal excitation, leading to more electron-hole pair gener-
ation. In metal oxide semiconductors, this results in higher conductivity and consequently
lower resistance [35,36]. Figure 8c illustrates the dynamic response curves for the four
sensors at various ethanol concentrations, recorded at an operating temperature of 250 ◦C.
All sensors exhibit behavior characteristic of n-type semiconductor-based gas sensors.
Across ethanol concentrations ranging from 1 to 20 ppm, the sensors demonstrated optimal
response and recovery characteristics, indicating excellent reversibility and sensor stability.
Figure 8d presents the sensor responses as a function of ethanol concentration at 250 ◦C.
Notably, the response increases proportionally with ethanol concentration for all sensors
within the 1 to 20 ppm range. Among them, the 32La/SnO2 sensor exhibited a significantly
higher response than the others, with responses to 20 ppm ethanol at 250 ◦C measured at
7.4, 25.7, 89, and 26 for the 0La/SnO2, 16La/SnO2, 32La/SnO2, and 48La/SnO2 sensors,
respectively. The 32La/SnO2 sensor showed a response approximately 12 times greater
than that of 0La/SnO2, indicating its superior detection performance with high linearity
for ethanol concentrations as low as 1 ppm, without the need for noble metal catalysts such
as Au, Pd, or Pt. Furthermore, the sensitivity of the 0La/SnO2, 16La/SnO2, 32La/SnO2,
and 48La/SnO2 sensors to ethanol concentration was analyzed using linear fitting, result-
ing in the following equations: y = 0.0479x + 2.6997 (R2 = 0.7853), y = 0.2335x + 4.4205
(R2 = 0.9306), y = 0.8483x + 0.2012 (R2 = 0.983), and y = 0.243x + 0.3374 (R2 = 0.9481), re-
spectively. The coefficient of determination (R2) for the 32La/SnO2 sensor was close to
1.0, indicating excellent linearity. The standard deviation (S) was calculated using the
root-mean-square deviation (RMS) formula: RMSnoise = (S2/N)1/2, where N represents
the total number of data points. Based on the formula DL = 3.3 (RMSnoise/slope), the limit
of detection (LOD) for the 32La/SnO2 sensor was determined to be 58 ppb, significantly
lower than 0.5 ppm, underscoring its potential for detecting low concentrations of ethanol.
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Figure 8. For sensors based on 0La/SnO2, 16La/SnO2, 32La/SnO2, and 48La/SnO2: (a) response
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The response and recovery time curves of the 0La/SnO2, 16La/SnO2, 32La/SnO2, and
48La/SnO2 sensors at different ethanol concentrations, recorded at 250 ◦C, are presented in
Figure 9a. As the ethanol concentration increased from 1 to 20 ppm, the 32La/SnO2-based
sensor demonstrated superior performance compared to the other three sensors. Figure 9b
explores the selectivity of the gas sensors, a critical parameter for assessing their quality in
real-world applications. The responses of all sensors to 20 ppm of various volatile organic
compounds (VOCs), including ethanol, acetone, methanol, toluene, p-xylene, and benzene,
were measured. Notably, the 32La/SnO2 sensor exhibited the highest selectivity for ethanol
among the tested gases. Additionally, the selectivity of the 32La/SnO2 sensor for ethanol
in mixed gas environments was evaluated at the optimal operating temperature of 250 ◦C.
For binary gas mixtures, the responses of the 32La/SnO2 sensor to gases containing ethanol
were close to the original ethanol response (98, 89, 84, 90, and 80), demonstrating that
the sensor maintained high selectivity for ethanol even in the presence of other gases.
This indicates the sensor’s effectiveness in detecting ethanol amidst complex gas mixtures.
During the response time tests for binary gas mixtures, although the response times were
generally higher than for single ethanol gas, the overall difference was not significant. This
indicates that the sensor maintains excellent selectivity for ethanol even in the presence
of other gases. As shown in Figure 6c, the long-term stability of the 32La/SnO2 sensor
was tested with 20 ppm ethanol at 250 ◦C over a 30-day period. The sensor’s gas response
remained stable around 89, with fluctuations within 5%, which is well within the acceptable
range. This suggests that the 32La/SnO2 sensor exhibits outstanding long-term stability,
making it well-suited for practical applications. Finally, Figure 9d shows the results of
subjecting the 32La/SnO2 sensor to five cycles of exposure to 20 ppm ethanol. The sensor
displayed consistent response and recovery characteristics across all cycles, highlighting its
excellent repeatability and robustness in gas-sensing applications.

For semiconductor oxide gas sensors, sensing performance is significantly affected
by RH. To investigate this, the response of the 32La/SnO2-based sensor to 20 ppm ethanol
under varying RH levels was studied, and the results are shown in Figure 10. The dynamic
response curves in Figure 10a demonstrate that both the response of the 32La/SnO2 sensor
to 20 ppm ethanol and its baseline resistance decrease as humidity increases. Figure 10b,c
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further illustrate that as RH rises from 0% to 80%, both the sensor’s response and baseline
resistance decrease in an approximately linear fashion. The reduction in the sensor’s
performance can be attributed to the diminished availability of adsorption sites on the
material’s surface, as water vapor competes with ethanol molecules for oxygen species.
Additionally, the observed decline in baseline resistance with increasing humidity is likely
due to the accumulation of water molecules on the sensor’s surface, which enhances
conductivity and reduces resistance [37–39].

Comparison and analysis using Table 1 of the reported ethanol gas-sensing charac-
teristics indicate that our device exhibits higher response values. This suggests significant
prospects for our device in ethanol gas detection.
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Table 1. Comparative analysis of ethanol-sensing performance among various oxide-based gas sensors.

Sensing Materials Con.
(ppm) Tem. (◦C) Res.

(Ra/Rg)
Res. Time

(s)
Rec. Time

(s) Ref.

Cr2O3/ZnS 200 300 13.84 23 20 [40]

In2O3/ZnO 100 225 32 3.7 52 [41]

WO3 200 300 32.5 6 8 [42]

In2O3/ZnS 100 300 15 40 225 [43]

In2O3 100 280 45 - - [44]

La2O3/SnO2 100 400 57.3 - - [45]

LaFeO3 143 300 14.5 23 39 [46]

NiO/LaFeO3 10 240 14.7 2 9 [47]

Au/La/In2O3 100 210 1.48 1 394 [48]

Au@Cr2O3-In2O3 5 180 4.4 135 618 [49]

La2O3/SnO2 20 250 111 150 742 This work

3.3. Gas-Sensing Mechanism

The chemisorption of analyte gases causes significant changes in the electrical prop-
erties, particularly the resistance, of MOS-based gas sensors [50]. SnO2, being an n-type
semiconductor, and La2O3, a p-type semiconductor metal oxide, form p-n heterojunctions
when La2O3 is incorporated into the SnO2 matrix. This leads to the migration of electrons
in SnO2 and holes in La2O3 in opposite directions as they seek equilibrium at similar Fermi
energy levels [51]. As observed in Figure 8c, the La2O3/SnO2-based sensor exhibits an n-
type response, suggesting that the sensitivity is primarily governed by changes in electron
concentration in SnO2. The ethanol-sensing mechanism, based on the surface space charge
layer model, can be explained more thoroughly through three distinct steps, as illustrated
in Figure 11. First, in the presence of air, oxygen molecules from the atmosphere adsorb
onto the active sites on the surface of the sensing material. These oxygen molecules then
dissociate and capture electrons from the conduction band of the semiconductor, forming
oxygen anion species such as O2−, O−, and O2−. This process creates a depletion layer
near the surface, where the electron concentration is reduced, leading to an increase in the
sensor’s resistance. The adsorption of oxygen is a dynamic and reversible process, where
the continuous adsorption and desorption of oxygen molecules occur until a steady state is
reached, which stabilizes the sensor’s baseline resistance (Equations (1)–(4)) [52]. When
the sensor is exposed to ethanol, the ethanol molecules interact with the surface-adsorbed
oxygen anions. Ethanol undergoes an oxidation reaction with the oxygen species, con-
verting to CO2 and H2O, and releasing the trapped electrons back into the conduction
band of the semiconductor. This process reduces the width of the depletion layer and
causes a decrease in the sensor’s resistance. The change in resistance is directly related to
the concentration of ethanol in the surrounding environment. However, this reaction is
opposed by the simultaneous re-adsorption of oxygen from the air, which competes for
the same active sites and tends to re-establish the depletion layer, moderating the sensor’s
overall response to ethanol (Equation (5)) [47]. Once the ethanol is removed from the
environment, oxygen from the air re-adsorbs onto the surface of the sensor, following the
same mechanism as in the first step. The oxygen molecules again capture electrons from
the conduction band, reforming the depletion layer and returning the sensor’s resistance to
its original state. This recovery phase is essential for demonstrating the sensor’s ability to
maintain repeatability and long-term stability over multiple cycles of exposure to ethanol
and subsequent recovery.

O2 (gas) → O2 (ads) (1)

O2 (ads) + e− → O−
2 (ads) (2)
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O−
2 (ads) + e− → 2O− (ads) (3)

O− (ads) + e− → O2− (ads) (4)

C2H5OH (gas) + 6O− (ads) → 2CO2 (gas) + 3H2O (gas) + 6e− (5)
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The La2O3/SnO2 composites exhibit a significantly enhanced response to ethanol
sensing, primarily due to the formation of a p-n junction at the interface between SnO2 and
La2O3. This interface introduces several beneficial effects. The ethanol-sensing mechanism
for this heterojunction sensor is schematically illustrated in Figure 12. Initially, the band
diagrams of SnO2 and La2O3 show their majority carriers—electrons for SnO2 and holes for
La2O3—before the formation of the interface [53]. Upon the formation of the interface be-
tween SnO2 and La2O3, the difference in their energy band structures leads to band bending
at the junction. This band bending facilitates the migration of charge carriers—specifically,
electrons and holes—across the heterojunction, contributing to the formation of a depletion
region at the interface. The depletion region is characterized by a lower carrier concen-
tration and the establishment of a potential barrier, which impedes the free movement of
charge carriers. Consequently, the reduced carrier concentration in this region, coupled
with the potential barrier, significantly increases the resistance of the composite material
when compared to pure SnO2. The presence of La2O3 further enhances this effect due
to its catalytic properties and its role in increasing oxygen vacancies in the SnO2 matrix,
which improves the adsorption of oxygen species on the surface. These oxygen species
capture free electrons from SnO2, further expanding the depletion region and elevating the
potential barrier. As a result, the overall electric current is reduced, leading to an increase
in resistance. This combination of effects explains the enhanced sensing performance, as
the presence of La2O3 improves the material’s response to changes in gas concentration
by modulating the carrier dynamics and the depletion region at the heterojunction. This
is confirmed by the data in Figure 8c, where the resistance of the La2O3/SnO2 composite
ranges from 1.29 to 3.82 MΩ, significantly higher than the 0.188 MΩ observed for pure SnO2.
When ethanol is introduced into the sensing chamber, it interacts with the chemisorbed
oxygen species on the sensor’s surface, as described in Equation (5). This reaction leads to
the oxidation of ethanol, releasing electrons back into the conduction band of the sensing
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material, which increases the carrier concentration and consequently decreases the sensor’s
resistance. The presence of La2O3 in the SnO2 matrix significantly enhances this process
by creating a p-n heterojunction at the interface. The difference in lattice spacing between
SnO2 (n-type) and La2O3 (p-type) at the p-n junction introduces defects and vacancies near
the interface, which serve as additional active sites for gas adsorption and surface reactions.
This increased density of active sites allows for more ethanol molecules to participate in the
surface reaction, leading to a more pronounced reduction in the depletion layer’s width and
a sharper decrease in resistance. Moreover, the heterojunction at the SnO2/La2O3 interface
creates a potential barrier that modulates the flow of charge carriers, further enhancing the
sensitivity of the sensor. The defects and vacancies near the junction not only improve gas
adsorption but also facilitate faster electron transfer during the ethanol oxidation process.
As a result, the resistance change in the La2O3/SnO2 composite is significantly larger than
in pure SnO2, highlighting the critical role of the heterojunction in amplifying the sensor’s
response to ethanol. This enhanced sensitivity can be attributed to the synergistic effects of
the p-n heterojunction, increased active sites for gas adsorption, and the improved electron
mobility in the composite material. These factors together make the La2O3/SnO2 composite
highly effective for ethanol detection, offering superior sensitivity and faster response times
compared to undoped SnO2.
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4. Conclusions

In this study, La2O3 NPs were successfully incorporated into porous SnO2 NFs using
a simple two-step process of electrospinning followed by calcination. The SnO2 NFs doped
with an optimal amount of La2O3 NPs (32La/SnO2) demonstrated a significantly enhanced
response to 20 ppm ethanol, achieving a response value of 89—12 times higher than that of
undoped SnO2 NFs. This substantial improvement in ethanol detection can be attributed
to the combined effects of the porous structure, which provides a large specific surface
area, and the formation of p-n heterojunctions between La2O3 and SnO2. The increased
surface area offers a greater number of active sites for gas adsorption, maximizing the
utilization of the sensing material. Furthermore, the p-n heterojunctions formed at the
La2O3/SnO2 interfaces enhance electron transport, further boosting the material’s gas-
sensing capability. The synergistic effects of the high surface area and efficient electron
transfer through the heterojunctions collectively contribute to the significant enhancement
in gas-sensing performance observed in the La2O3/SnO2 composite.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/s24216839/s1, Figure S1: Schematic diagram of home-
made gas-sensing system. Figure S2: Relative humidity control system (Self-made system).
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