Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = metal–nitrate precursor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 946 KB  
Article
Dual-Function Bare Copper Oxide (Photo)Catalysts for Selective Phenol Production via Benzene Hydroxylation and Low-Temperature Hydrogen Generation from Formic Acid
by Antonietta Mancuso, Matteo Diglio, Salvatore Impemba, Vincenzo Venditto, Vincenzo Vaiano, Antonio Buonerba and Olga Sacco
Catalysts 2025, 15(9), 866; https://doi.org/10.3390/catal15090866 - 9 Sep 2025
Viewed by 644
Abstract
In this work, bare copper oxide-based catalysts were synthesized and evaluated for their dual (photo)catalytic activity in two model reactions: hydrogen generation via formic acid decomposition (FAD) and the photocatalytic hydroxylation of benzene to phenol. Catalysts were prepared from copper nitrate and copper [...] Read more.
In this work, bare copper oxide-based catalysts were synthesized and evaluated for their dual (photo)catalytic activity in two model reactions: hydrogen generation via formic acid decomposition (FAD) and the photocatalytic hydroxylation of benzene to phenol. Catalysts were prepared from copper nitrate and copper acetate precursors and calcined for either 10 min or 2 h. Their structural and surface properties were characterized by wide-angle X-ray diffraction (WAXD), Raman spectroscopy, and BET surface area analysis. FAD was conducted under mild thermal conditions and monitored via 1H NMR spectroscopy. At the same time, benzene hydroxylation was performed under UV irradiation and analyzed by gas chromatography (GC) and high-performance liquid chromatography (HPLC). All synthesized catalysts outperformed commercial CuO in the selective oxidation of benzene. The nitrate-derived sample calcined for 10 min (NCuO 10 min) achieved the best performance, with a phenol yield of ~10% and a selectivity of up to 19%, attributed to improved surface properties and the presence of Cu(I) domains, as indicated by Raman spectroscopy. For FAD, complete conversion of formic acid was achieved at low temperatures, with selective H2 and CO2 evolution and complete suppression of CO, even under short reaction times and low catalyst loadings. These results demonstrate the potential of nitrate-derived CuO catalysts as versatile, dual-function materials for sustainable applications in selective aromatic oxidation and low-temperature hydrogen generation, without the need for noble metals or harsh conditions. Full article
(This article belongs to the Special Issue 15th Anniversary of Catalysts—Recent Advances in Photocatalysis)
Show Figures

Graphical abstract

16 pages, 2901 KB  
Article
SiO2-Al2O3-ZrO2-Ag Composite and Its Signal Enhancement Capacity on Raman Spectroscopy
by Jesús Alberto Garibay-Alvarado, Pedro Pizá-Ruiz, Armando Erasto Zaragoza-Contreras, Francisco Espinosa-Magaña and Simón Yobanny Reyes-López
Chemosensors 2025, 13(7), 266; https://doi.org/10.3390/chemosensors13070266 - 21 Jul 2025
Viewed by 533
Abstract
A ceramic–metal composite was synthesized using sol–gel and electrospinning methods to serve as a SERS substrate. The precursors used were tetraethyl orthosilicate, aluminum nitrate, and zirconium, and polyvinylpyrrolidone was added to electrospun nonwoven fibrous membranes. The membranes were sintered, decorated with silver nanoparticles. [...] Read more.
A ceramic–metal composite was synthesized using sol–gel and electrospinning methods to serve as a SERS substrate. The precursors used were tetraethyl orthosilicate, aluminum nitrate, and zirconium, and polyvinylpyrrolidone was added to electrospun nonwoven fibrous membranes. The membranes were sintered, decorated with silver nanoparticles. The enhancement substrates were made of fibers of cylindric morphology with an average diameter of approximately 190 nm, a smooth surface, and 9 nm spherical particles decorating the surface of the fibers. The enhancement capacity of the substrates was tested using pyridine, methyl orange, methylene blue, crystal violet, and Eriochrome black T at different concentrations with Raman spectroscopy to determine whether the size and complexity of the analyte has an impact on the enhancement capacity. Enhancement factors of 2.53 × 102, 3.06 × 101, 2.97 × 103, 4.66 × 103, and 1.45 × 103 times were obtained for the signal of pyridine, methyl orange, methylene blue, crystal violet, and Eriochrome black T at concentrations of 1 nM. Full article
(This article belongs to the Special Issue Spectroscopic Techniques for Chemical Analysis)
Show Figures

Graphical abstract

10 pages, 1697 KB  
Communication
Enhanced Reduction of Nitrate to Ammonia at the Co-N Heteroatomic Interface in MOF-Derived Porous Carbon
by Jing Liu, Shuo Du, Zibin Huang, Ning Liu, Zhichao Shao, Na Qin, Yanjie Wang, Hongfang Wang, Zhihui Ni and Liping Yang
Materials 2025, 18(13), 2976; https://doi.org/10.3390/ma18132976 - 23 Jun 2025
Viewed by 601
Abstract
The electrocatalytic reduction of nitrate is an efficient and green method for NH3 production. In this study, a Co-containing MOF with a stable three-dimensional carbon framework that offers abundant metal active sites is prepared as a precursor to a Co-N-C electrocatalyst. Facile [...] Read more.
The electrocatalytic reduction of nitrate is an efficient and green method for NH3 production. In this study, a Co-containing MOF with a stable three-dimensional carbon framework that offers abundant metal active sites is prepared as a precursor to a Co-N-C electrocatalyst. Facile pyrolysis of the three-dimensional MOF affords the desired Co-N-C electrocatalyst, which exhibits excellent stability, an NH3 yield of 1.12 mmol h−1 mg−1, and faradaic efficiency of 86.7% at −0.23 V in a 0.1 M KOH/0.1 M KNO3. The excellent activity and durability are ascribed to the highly exposed active centres, large surface area, and high porosity structure. N doping allows the electronic properties to be modulated and provides outstanding stability owing to the strong interaction between the nitrogen-doped carbon support and Co nanoparticles. This study presents a simple and efficient synthesis strategy for the production of non-noble-metal electrocatalysts with abundant active sites for the nitrate reduction reaction. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

14 pages, 3790 KB  
Article
In Situ Formation of FeNi Nanoparticles on Polypyrrole Hydrogel for Efficient Electrocatalytic Nitrate Reduction to Ammonia
by Lixia Li, Paihao Yan, Qinkai Guo, Dongxu Zhang, Chunliang Mao, Quan Yuan, Hongtao Sun, Mingze Liu, Yanhong Liu and Baodong Mao
Molecules 2025, 30(6), 1271; https://doi.org/10.3390/molecules30061271 - 12 Mar 2025
Cited by 1 | Viewed by 1030
Abstract
The electrocatalytic reduction of nitrate to ammonia (NH3) under mild environmental conditions is attracting increasing attention, in which efficient and inexpensive transition metal catalysts, with the advantages of abundancy and low cost, play a key role. However, synergistic activity and selectivity [...] Read more.
The electrocatalytic reduction of nitrate to ammonia (NH3) under mild environmental conditions is attracting increasing attention, in which efficient and inexpensive transition metal catalysts, with the advantages of abundancy and low cost, play a key role. However, synergistic activity and selectivity promotion are still highly challenging. Herein, we developed a hydrogel-assisted strategy to prepare FeNi nanoparticles via the in situ adsorption and reduction of Fe/Ni precursors on a polypyrrole hydrogel. After optimization, the maximum NH3 yield reached 0.166 mmol h−1 cm−2, with a Faradaic efficiency of 88.9% and a selectivity of 86.6%. This excellent electrochemical performance was attributed to the mesoporous hydrophilic structure of the polypyrrole hydrogel, which facilitates the homogeneous loading of FeNi nanoparticles and provides a channel for both charge and mass transfer during nitrate reduction, which is important for the conversion of NO3 to NH3. Electrochemical active surface area determination and impedance spectroscopy showed that the introduction of hydrogel increased the active sites and improved the charge transfer. This study provides an effective strategy for improving the selectivity and yield of NH3 in transition metal electrocatalysts by utilizing the three-dimensional hydrogel network and electrical conductivity. Full article
Show Figures

Figure 1

5 pages, 1127 KB  
Proceeding Paper
The Synthesis of the System SiO2-Gd2O3-Eu2O3 and Research on the Acid-Base Properties and Kinetics of Particle Formation in This System
by Sabukhi I. Niftaliev, Irina V. Kuznetsova and Nhat Anh Tran
Mater. Proc. 2025, 21(1), 2; https://doi.org/10.3390/materproc2025021002 - 13 Feb 2025
Viewed by 803
Abstract
This study investigates the synthesis and characterization of SiO2-Gd2O3-Eu2O3 nanomaterials. The sol–gel method was employed using tetraethoxysilane (TEOS), gadolinium nitrate, and europium nitrate as precursors. The influence of rare earth oxide concentration on the [...] Read more.
This study investigates the synthesis and characterization of SiO2-Gd2O3-Eu2O3 nanomaterials. The sol–gel method was employed using tetraethoxysilane (TEOS), gadolinium nitrate, and europium nitrate as precursors. The influence of rare earth oxide concentration on the hydrolysis kinetics and activation energy was evaluated. Additionally, the acid-base properties of the synthesized materials were examined using the Hammett indicator adsorption method. The results revealed that the addition of Gd2O3 and Eu2O3 oxides to the system accelerated the hydrolysis process and reduced the activation energy. The formation of a layered structure, consisting of a central Si(OH)4 nucleus, a Si-O-Si polymer layer, and hydrated metal ion layers, was observed. The acid-base properties of the synthesized nanomaterials were influenced by the drying method and the composition of the system. The findings provide valuable insights into the synthesis and properties of SiO2-Gd2O3-Eu2O3 nanomaterials, which have potential applications in various fields such as optoelectronics and catalysis. Full article
(This article belongs to the Proceedings of The International Conference on Advanced Nano Materials)
Show Figures

Figure 1

14 pages, 4269 KB  
Article
Insights into HKUST-1 Metal-Organic Framework’s Morphology and Physicochemical Properties Induced by Changing the Copper(II) Salt Precursors
by Joanna Klęba, Kun Zheng, Dorota Duraczyńska, Mateusz Marzec, Monika Fedyna and Jakub Mokrzycki
Materials 2025, 18(3), 676; https://doi.org/10.3390/ma18030676 - 3 Feb 2025
Viewed by 3943
Abstract
The HKUST-1 metal-organic framework was synthesized using four different copper(II) salt precursors, namely copper nitrate, copper sulphate, copper acetate, and copper chloride, via the solvothermal method with no mixing. Syntheses were conducted without using the N,N-dimethylformamide to allow for a greener synthesis of [...] Read more.
The HKUST-1 metal-organic framework was synthesized using four different copper(II) salt precursors, namely copper nitrate, copper sulphate, copper acetate, and copper chloride, via the solvothermal method with no mixing. Syntheses were conducted without using the N,N-dimethylformamide to allow for a greener synthesis of MOFs. The selected physicochemical properties of the obtained metal-organic frameworks were determined. The yield of the obtained products changed in the order acetate>nitrate>sulfate, while no product was obtained in the synthesis with copper(II) chloride. The obtained materials were characterized by means of XRD, nitrogen adsorption–desorption at −196 °C, FTIR, XPS, TGA, SEM, and DLS. The morphology of crystallites and their physicochemical properties were significantly affected when different copper(II) salt precursors were used. The comparison of the obtained results with already published works allows for the correlation of the synthesis parameters like synthesis temperature, time, mixing, and copper(II) salt precursor used on selected properties of the final product. Full article
(This article belongs to the Special Issue Advanced Nanoporous and Mesoporous Materials)
Show Figures

Figure 1

18 pages, 5352 KB  
Article
Facile Synthesis of Bioactive Silver Nanocomposite Hydrogels with Electro-Conductive and Wound-Healing Properties
by Solaiman, Tahmina Foyez, Syed Abdul Monim, Aminur Rahman and Abu Bin Imran
Gels 2025, 11(2), 84; https://doi.org/10.3390/gels11020084 - 22 Jan 2025
Cited by 4 | Viewed by 2144
Abstract
Bioactive metal and metal oxide-based nanocomposite hydrogels exhibit significant antibacterial properties by interacting with microbial DNA and preventing bacterial replication. They offer potential applications as coating materials for human or animal skin injuries to prevent microbial growth and promote healing. In this study, [...] Read more.
Bioactive metal and metal oxide-based nanocomposite hydrogels exhibit significant antibacterial properties by interacting with microbial DNA and preventing bacterial replication. They offer potential applications as coating materials for human or animal skin injuries to prevent microbial growth and promote healing. In this study, silver nanoparticles (AgNPs) were synthesized using a chemical reduction method and incorporated into a polymer network to fabricate silver nanocomposite hydrogels (AgNCHGs) through a simple free radical polymerization method. N-isopropylacrylamide (NIPA), which has lower critical solution temperature (LCST) at about body temperature, or acrylamide (AAm) was used as the main monomer, while one or more ionic co-monomers, such as acrylic acid (AAc) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS), were incorporated to obtain AgNCHGs. AgNPs were introduced into the hydrogel network via three different approaches. In the first method, the synthesized hydrogel was immersed in a silver nitrate (AgNO3) solution and reduced in situ using sodium borohydride (NaBH4) as a reducing agent. The second method involved mixing AgNO3 with gel precursors before reduction with NaBH4 to form AgNPs within the hydrogel. The final approach synthesized the AgNCHGs directly in a dispersion of pre-fabricated AgNPs. The incorporation of AgNPs in different AgNCHGs was confirmed through various characterization techniques. Varying temperature and pH conditions can trigger the release of bioactive AgNPs from the hydrogels. Furthermore, the antimicrobial and wound-healing properties of the AgNCHGs were evaluated against bacteria and fungi, demonstrating their potential in biomedical applications. In addition, AgNCHGs exhibit excellent electrical conductivity. The electrical conductivity of the hydrogels can be finely tuned by adjusting the concentration of AgNPs, making these materials promising candidates for energy, sensor, and stretchable electronics applications. This study presents facile synthesis methods of AgNCHGs, which integrate bioactivity, wound healing, and electrical conductivity in the same matrix, addressing a significant challenge in designing multifunctional hydrogels for next-generation technologies. Full article
(This article belongs to the Special Issue Conductive Gels: Preparation, Properties and Applications)
Show Figures

Figure 1

26 pages, 4828 KB  
Article
Temperature-Dependent FTIRS Study of Manganese Oxide Spinel Obtained by Solution Combustion Synthesis (SCS) for Supercapacitor Applications
by Taylan Karakoç, Sécou Sall and Sergey N. Pronkin
Batteries 2025, 11(2), 39; https://doi.org/10.3390/batteries11020039 - 21 Jan 2025
Cited by 2 | Viewed by 1495
Abstract
Solution combustion synthesis (SCS) is often utilized to prepare crystalline nanoparticles of transition metal oxides, in particular Mn oxides. The structure and composition of the final product depend on the conditions of the synthesis, in particular on the composition of metal precursors, its [...] Read more.
Solution combustion synthesis (SCS) is often utilized to prepare crystalline nanoparticles of transition metal oxides, in particular Mn oxides. The structure and composition of the final product depend on the conditions of the synthesis, in particular on the composition of metal precursors, its molar ratio to the fuel component, and the mode of heating. In the present work, the study of chemical phenomena that may occur in the SCS process has been studied for the conventional nitrate–glycine synthesis of Mn oxide, as well as for nitrate–citrate–glycine and nitrate–citrate–urea synthesis. In the case of nitrate–glycine synthesis at a 1:1 fuel-to-salt ratio, the formation of a weak complex of Mn(II) and glycine provides the conditions for an instantaneous SCS reaction upon heating, resulting in slight sintering of final oxide nanoparticles. Partial hydrolysis of the Mn precursor during slow solvent evaporation results in the formation of a mixture of oxides, namely MnO and Mn3O4. Formation of MnO is completely suppressed when ammonium citrate is added into the initial mixture. Pure Mn2O3 oxide is obtained from nitrate–citrate synthesis, while the pure Mn3O4 phase is obtained in the case of nitrate–citrate–glycine and nitrate–citrate–urea synthesis, due to the higher temperature generated in the presence of additional fuel. In the presence of citrate, the SCS reaction is slower, resulting in stronger sintering of the nanoparticles. The study of the electrochemical properties of synthesized oxides demonstrates that SCS with the nitrate–citrate–urea mixture provides the highest charge capacitance in 1 M NaOH: 130 F/g at 2 A/g. The impedance characterization of materials allows us to propose a tentative mechanism of degradation of electrode materials during galvanostatic cycling. Full article
Show Figures

Graphical abstract

19 pages, 10529 KB  
Article
One-Pot Synthesis and Enhanced Vis-NIR Photocatalytic Activity of NiTiO3/TiO2 Templated by Waste Tobacco Stem-Silks
by Weidong Yuan, Xiaohong Chen, Yi Zhao, Ying Fang, Han Zhang, Daomei Chen and Jiaqiang Wang
Nanomaterials 2025, 15(2), 80; https://doi.org/10.3390/nano15020080 - 7 Jan 2025
Viewed by 1074
Abstract
Synthesis of the photocatalysts with near-infrared light response usually involves upconversion materials or plasmon-assisted noble metals. Herein, NiTiO3/TiO2 was synthesized by using waste tobacco stem-silks as biotemplates and tetra-tert-butyl orthotitanate and nickel nitrate as precursors in a one-pot procedure. NiTiO [...] Read more.
Synthesis of the photocatalysts with near-infrared light response usually involves upconversion materials or plasmon-assisted noble metals. Herein, NiTiO3/TiO2 was synthesized by using waste tobacco stem-silks as biotemplates and tetra-tert-butyl orthotitanate and nickel nitrate as precursors in a one-pot procedure. NiTiO3(1.0)/TiO2(TSS) with a mass percent of Ni 1.0% exhibited very high visible-light photocatalytic efficiency in photodegradation of tetracycline hydrochloride (TC), which is 8.0 and 2.3 times higher than TiO2 prepared without templates and TiO2(TSS) prepared without Ni, respectively. Interestingly, NiTiO3(1.5)/TiO2(TSS) even exhibited good activity under NIR light (λ = 840~850 nm) without upconversion materials or plasmon-assisted noble metals, which is 2.8 and 2.2 times than TiO2 prepared without templates and TiO2(TSS), respectively. The boosting photocatalytic activity has been shown to be attributed to efficient charge separation and transfer across a direct Z-scheme heterojunction between NiTiO3 and TiO2 and enhanced light-harvesting ability of special flaky structure reduplicated from tobacco stem-silks. This reported strategy provides a new idea for the multifunctional utilization of waste tobacco stem-silks and the synthesis of novel photocatalysts for the potential application in wastewater treatment. Full article
(This article belongs to the Special Issue Porous Materials for Wastewater Treatment (2nd Edition))
Show Figures

Figure 1

12 pages, 3818 KB  
Article
Optimizing the Ratio of Metallic and Single-Atom Co in CoNC via Annealing Temperature Modulation for Enhanced Bifunctional Oxygen Evolution Reaction/Oxygen Reduction Reaction Activity
by Hengxu Cheng, Haojie Sun, Meizhen Dai, Yucai Li, Jian Wang, Shiwei Song, Dong Zhang and Depeng Zhao
Molecules 2024, 29(23), 5721; https://doi.org/10.3390/molecules29235721 - 4 Dec 2024
Cited by 1 | Viewed by 1110
Abstract
Developing low-cost, efficient alternatives to catalysts for bifunctional oxygen electrode catalysis in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is critical for advancing the practical applications of alkaline fuel cells. In this study, Co particles and single atoms co-loaded on [...] Read more.
Developing low-cost, efficient alternatives to catalysts for bifunctional oxygen electrode catalysis in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is critical for advancing the practical applications of alkaline fuel cells. In this study, Co particles and single atoms co-loaded on nitrogen-doped carbon (CoNC) were synthesized via pyrolysis of a C3N4 and cobalt nitrate mixture at varying temperatures (900, 950, and 1000 °C). The pyrolysis temperature and precursor ratios were found to significantly influence the ORR/OER performance of the resulting catalysts. The optimized CoNC-950 catalyst demonstrated exceptional ORR (E1/2 = 0.85 V) and OER (Ej10 = 320 mV) activities, surpassing commercial Pt/C + RuO2-based devices when used in a rechargeable zinc–air battery. This work presents an effective strategy for designing high-performance non-precious metal bifunctional electrocatalysts for alkaline environments. Full article
Show Figures

Figure 1

15 pages, 2394 KB  
Article
Structures and Luminescent Sensing Properties of Terbium Metal–Organic Frameworks with Methyl-Decorated Phenanthroline Ligand
by Anna A. Ovchinnikova, Pavel A. Demakov, Alexey A. Ryadun, Vladimir P. Fedin and Danil N. Dybtsev
Crystals 2024, 14(12), 1026; https://doi.org/10.3390/cryst14121026 - 27 Nov 2024
Cited by 1 | Viewed by 1383
Abstract
Two new Tb(III) metal–organic frameworks based on 4,7-dimethylphenanthroline (dmphen) and flexible ligand trans-1,4-cyclohexanedicarboxylate (chdc2−) were synthesized and characterized. Their crystallographic formulae are [Tb2(dmphen)2(H2O)2(chdc)3]·2DMF (1; DMF = N,N-dimethylformamide) and [...] Read more.
Two new Tb(III) metal–organic frameworks based on 4,7-dimethylphenanthroline (dmphen) and flexible ligand trans-1,4-cyclohexanedicarboxylate (chdc2−) were synthesized and characterized. Their crystallographic formulae are [Tb2(dmphen)2(H2O)2(chdc)3]·2DMF (1; DMF = N,N-dimethylformamide) and [Tb2(dmphen)2(NO3)2(chdc)2]·2DMF (2). Among some differences in their synthetic conditions, the most important one is apparently the using of terbium(III) nitrate instead of terbium(III) chloride as a metal precursor in the synthesis of 2, providing a nitrate coordination to Tb3+, and its subsequent notable structural differences to 1. Compound 1 was found to have a layered hcb structure with intralayer windows ca. 10 × 8 Å2 in size. Its layer-to-layer packing leaves narrow channels running across these windows, with 18% as a total solvent-accessible volume in the coordination structure. Compound 2 was found to have a layered sql structure with smaller intralayer windows of ca. 8 × 6 Å2 in size. Methyl substituents on the phen ligands do not affect the topology of the framework but seem to have a substantial effect on the packing density, as well as the pore volume of the resulting MOF. A high 18.4% luminescence quantum yield was found for 2. Its emission lifetime of 0.695(12) ms belongs to a typical range for phosphorescent Tb(III)-carboxylate complexes. A quenching of its emission by different nitroaromatic molecules was found. A linear concentration dependence on 3-nitrotoluene and 4-nitro-m-xylene at micromolar concentrations was found during luminescent titration experiments (LOD values ca. 350 nM), suggesting this MOF to be a viable and highly sensitive luminescent sensor for such substrates. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Figure 1

16 pages, 2857 KB  
Article
Impact of Inverse Manganese Promotion on Silica-Supported Cobalt Catalysts for Long-Chain Hydrocarbons via Fischer–Tropsch Synthesis
by Ntebogang Thibanyane, Joshua Gorimbo and Yali Yao
Reactions 2024, 5(3), 607-622; https://doi.org/10.3390/reactions5030030 - 9 Sep 2024
Cited by 1 | Viewed by 1646
Abstract
One of the challenges in Fischer–Tropsch synthesis (FTS) is the high reduction temperatures, which cause sintering and the formation of silicates. These lead to pore blockages and the coverage of active metals, particularly in conventional catalyst promotion. To address the challenge, this article [...] Read more.
One of the challenges in Fischer–Tropsch synthesis (FTS) is the high reduction temperatures, which cause sintering and the formation of silicates. These lead to pore blockages and the coverage of active metals, particularly in conventional catalyst promotion. To address the challenge, this article investigates the effects of the preparation method, specifically the inverse promotion of SiO2-supported Co catalysts with manganese (Mn), and their reduction in H2 for FTS. The catalysts were prepared using stepwise incipient wetness impregnation of a cobalt nitrate precursor into a promoted silica support. The properties of the catalysts were characterized using XRD, XPS, TPR, and BET techniques. The structure–performance relationship of the inversely promoted catalysts in FTS was studied using a fixed-bed reactor to obtain the best performing catalysts for heavy hydrocarbons (C5+). XRD and XPS results indicated that Co3O4 is the dominant cobalt phase in oxidized catalysts. It was found that with increase in Mn loading, the reduction temperature increased in the following sequence 10%Co/SiO2 < 10%Co/0.25%Mn-SiO2 < 10%Co/0.5%Mn-SiO2 < 10%Co/3.0%Mn-SiO2. The catalyst with the lowest Mn loading, 10%Co/0.25%Mn-SiO2, exhibited higher C5+ selectivity, which can be attributed to less MSI and higher reducibility. This catalyst showed the lowest CH4 selectivity possibly due to lower H2 uptake and higher CO chemisorption. Full article
(This article belongs to the Special Issue Fischer-Tropsch Synthesis: Bridging Carbon Sustainability)
Show Figures

Figure 1

14 pages, 6742 KB  
Article
Synthesis of Green Brucite [NixMg1−x(OH)2] by Incorporation of Nickel Ions in the Periclase Phase (MgO) Applied as Pigments
by Cássio Siqueira, Aline B. Schons, Patricia Appelt, Weslei D. Silva, Nayara Balaba, Mário A. A. Cunha and Fauze J. Anaissi
Colorants 2024, 3(2), 138-151; https://doi.org/10.3390/colorants3020011 - 20 May 2024
Cited by 1 | Viewed by 1290
Abstract
Magnesium oxide is typically white and can be colorized with transition metal insertion by doping. We present the preparation of a green-colored hydroxide by the exchange of Mg2+ on the crystalline lattice with Ni2+ in MgO, using three nickel salts. MgO [...] Read more.
Magnesium oxide is typically white and can be colorized with transition metal insertion by doping. We present the preparation of a green-colored hydroxide by the exchange of Mg2+ on the crystalline lattice with Ni2+ in MgO, using three nickel salts. MgOst was prepared by the colloidal starch suspension method, using cassava starch. The oxides and hydroxides, before and after, were characterized by X-ray diffraction (XRD), and show that a phase change occurs: a transition from periclase (MgO) to brucite (Mg(OH)2) due to the incorporation of nickel ions from different salts (acetate, chloride, and nitrate), resulting in the solid solution [NixMg1−x(OH)2]. The FTIR spectrum corroborates the crystallographic structure identified through XRD patterns, confirming the formation of a crystal structure resembling brucite. The new samples present a green color, indicative of the incorporation of the Ni2+ ions. The antimicrobial activity of products resulting from the doping of magnesium oxide with nickel and the precursor MgOst was assessed through the minimum inhibitory concentration (MIC) test. The evaluation included three bacterial strains: Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Salmonella gallinarum (ATCC 9184), and a yeast strain, Candida albicans (ATCC 10231). The obtained results were promising; the tested samples exhibited antimicrobial activity, with a MIC ranging from 0.312 to 0.625 μg.μL−1. The nickel compound, derived from the precursor chloride salt, demonstrated superior MIC activity. Notably, all tested samples displayed bactericidal activity against the S. aureus strain and exhibited a broad spectrum of inhibition, encompassing both Gram-positive and Gram-negative strains. Only the nickel compounds derived from precursors with acetate and nitrate anions demonstrated antimicrobial activity against C. albicans, exhibiting a fungistatic behavior. Based on the conducted studies, [NixMg1−x(OH)2] has emerged as a promising antimicrobial agent, suitable for applications requiring the delay or inhibition of bacterial growth. Full article
Show Figures

Figure 1

12 pages, 1759 KB  
Article
Influence of a Precursor Catalyst on the Composition of Products in Catalytic Cracking of Heavy Oil
by Khoshim Kh. Urazov, Nikita N. Sviridenko, Yulia A. Sviridenko and Veronika R. Utyaganova
Energies 2024, 17(9), 2016; https://doi.org/10.3390/en17092016 - 24 Apr 2024
Cited by 1 | Viewed by 1528
Abstract
Heavy oils are characterized by a high content of resins and asphaltenes, which complicates refining and leads to an increase in the cost of refinery products. These components can be strongly adsorbed on the acid sites of a supported catalyst, leading to its [...] Read more.
Heavy oils are characterized by a high content of resins and asphaltenes, which complicates refining and leads to an increase in the cost of refinery products. These components can be strongly adsorbed on the acid sites of a supported catalyst, leading to its deactivation. Currently, various salts of group 8 metals are being considered for such processes to act as catalysts during oil cracking. At the same time, the nature of the precursor often has a significant impact on the process of refining heavy oil. In this work, catalytic cracking of heavy oil from the Ashalchinskoye field using different precursors (nanodispersed catalysts formed in situ based on NiO) has been studied. The cracking was carried out at 450 °C with a catalyst content from 0.1 to 0.5 wt.%. The catalytic cracking products were analyzed via SARA, GC, XRD and SEM. Nickel acetate and nitrate promote similar yields of by-products, while formate promotes higher yields of gaseous products. Formate and nickel acetate were shown to produce 1.8 and 2.8 wt.% more light fractions than nickel nitrate. When heavy oil is cracked in the presence of Ni(NO3)2∙6H2O, the maximum decrease in sulfur content (2.12 wt.%) is observed compared to other precursors. It has been found that the composition and morphology of the resulting nickel sulfides and compaction products are influenced by the nature of the catalyst precursor. XRD and SEM analyses of coke-containing catalysts indicate the formation of Ni9S8 and Ni0.96S phases during cracking when nickel nitrate is used and the formation of NiS and Ni9S8 when nickel acetate and formate are used. Full article
(This article belongs to the Special Issue Development of Unconventional Oil and Gas Fields)
Show Figures

Figure 1

20 pages, 2834 KB  
Article
Biological Synthesis and Characterization of Silver-Doped Nanocomposites: Antibacterial and Mechanistic Studies
by Franklin Loic Tchinda Taghu, Boniface Pone Kamdem, Vincent Ngouana, Zuriatou Yajeh Tanka, Victorine Lorette Yimgang, Julius Nsami Ndi, Paul Keilah Lunga and Fabrice Fekam Boyom
Drugs Drug Candidates 2024, 3(1), 13-32; https://doi.org/10.3390/ddc3010002 - 26 Dec 2023
Cited by 1 | Viewed by 2244
Abstract
The development of antimicrobial resistance has increased the prevalence of infectious diseases, causing a global health problem that accounts for over 4.95 million deaths worldwide annually. The side effects associated with current antibiotics prompt a crucial need to search for effective and safe [...] Read more.
The development of antimicrobial resistance has increased the prevalence of infectious diseases, causing a global health problem that accounts for over 4.95 million deaths worldwide annually. The side effects associated with current antibiotics prompt a crucial need to search for effective and safe antimicrobial agents. In this study, silver nanoparticles (AgNPs) were prepared by chemical reduction method using silver nitrates as a metallic precursor and Croton macrostachyus bark aqueous extract as a reducing and capping agent. The nanoparticles were further functionalized using C. macrostachyus-based activated carbon (CAC) to generate nanocomposites (CAC-AgNPs). The nanomaterials were characterized by ultraviolet-visible (UV–vis) absorption spectra and Fourier transform infrared (FTIR) spectra. The antibacterial activity of the as-prepared nanomaterials was evaluated against an array of bacterial strains by microdilution method, whereas their cytotoxicity profile was evaluated using Vero cells (human mammalian cells). Antibacterial mechanistic studies of active nanomaterials were carried out through bacterial growth kinetics, nucleic acid leakage tests, and catalase inhibition assays. As a result, the as-prepared nanomaterials exhibited antibacterial activity against an array of bacterial strains (minimum inhibitory concentration (MIC) range: 62.5 to 500 µg/mL), the most susceptible being Escherichia coli and Staphylococcus aureus. Cytotoxicity studies of the nanomaterials on Vero cells revealed that the nanocomposite (median cytotoxic concentration (CC50): 213.6 µg/mL) was less toxic than its nanoparticle (CC50 value: 164.75 µg/mL) counterpart. Antibacterial mechanistic studies revealed that the nanomaterials induced (i) bacteriostatic activity vis à vis E. coli and S. aureus and (ii) inhibition of catalase in these bacteria. This novel contribution regarding the antibacterial mechanisms of action of silver nanocomposites from C. macrostachyus-based activated carbon may contribute to our understanding of the antibacterial action of these biomaterials. Nevertheless, more chemistry and in vivo experiments as well as in depth antibacterial mechanistic studies are warranted for the successful utilization of these antibacterial biomaterials. Full article
(This article belongs to the Section Drug Candidates from Natural Sources)
Show Figures

Figure 1

Back to TopTop