Synthesis of Green Brucite [NixMg1−x(OH)2] by Incorporation of Nickel Ions in the Periclase Phase (MgO) Applied as Pigments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of MgO from Cassava Starch
2.2. Synthesis of [NixMg1−x(OH)2] Pigments
2.3. Dispersion of Pigments in Paint
2.4. Characterization of Compounds
2.5. Microbiological Testing
2.5.1. Minimal Inhibitory Concentration (MIC) Determination
2.5.2. Minimal Bactericidal or Fungicidal Concentration (MBC/MFC) Determination
3. Results
3.1. Characterization of Periclase and Green Brucite
3.1.1. Chemical Analysis of Samples by EDXRF
3.1.2. Structural Analysis by X-ray Diffraction (XRD)
3.1.3. Morphological Behavior by Scanning Electronic Microscopy (SEM)
3.1.4. Fourier Transform Infrared Spectroscopy (FTIR)
3.1.5. Colorimetric Analysis and Visible-NIR Spectroscopy
3.2. Microbiological Tests (MIC, MBC and MFC)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pilarska, A.A.; Klapiszewski, Ł.; Jesionowski, T. Recent Development in the Synthesis, Modification and Application of Mg(OH)2 and MgO: A Review. Powder Technol. 2017, 319, 373–407. [Google Scholar] [CrossRef]
- Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman, S. Microwave-Assisted MgO NP Catalyzed One-Pot Multicomponent Synthesis of Polysubstituted Steroidal Pyridines. New J. Chem. 2018, 42, 184–197. [Google Scholar] [CrossRef]
- Yin, J.; Zhou, G.; Gao, X.; Chen, J.; Zhang, L.; Xu, J.; Zhao, P.; Gao, F. α- and β-Phase Ni-Mg Hydroxide for High Performance Hybrid Supercapacitors. Nanomaterials 2019, 9, 1686. [Google Scholar] [CrossRef] [PubMed]
- Balaba, N.; Jaerger, S.; Horsth, D.F.L.; Primo, J.d.O.; Correa, J.d.S.; Bittencourt, C.; Zanette, C.M.; Anaissi, F.J. Polysaccharides as Green Fuels for the Synthesis of MgO: Characterization and Evaluation of Antimicrobial Activities. Molecules 2023, 28, 142. [Google Scholar] [CrossRef]
- Tang, Z.-X.; Lv, B.-F. MgO Nanoparticles as Antibacterial Agent: Preparation and Activity. Braz. J. Chem. Eng. 2014, 31, 591–601. [Google Scholar] [CrossRef]
- Ohira, T.; Yamamoto, O. Correlation between Antibacterial Activity and Crystallite Size on Ceramics. Chem. Eng. Sci. 2012, 68, 355–361. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, F.; Tao, Z.; Gao, F.; Chen, J. Removal of Nickel Ions from Wastewater by Mg(OH)2/MgO Nanostructures Embedded in Al2O3 Membranes. J. Alloys Compd. 2006, 426, 281–285. [Google Scholar] [CrossRef]
- Nobre, J.; Ahmed, H.; Bravo, M.; Evangelista, L.; de Brito, J. Magnesia (MgO) Production and Characterization, and Its Influence on the Performance of Cementitious Materials: A Review. Materials 2020, 13, 4752. [Google Scholar] [CrossRef] [PubMed]
- Kumari, L.; Li, W.Z.; Vannoy, C.H.; Leblanc, R.M.; Wang, D.Z. Synthesis, Characterization and Optical Properties of Mg(OH)2 Micro-/Nanostructure and Its Conversion to MgO. Ceram. Int. 2009, 35, 3355–3364. [Google Scholar] [CrossRef]
- Navarro, A.; Martínez da Matta, M.I. Application of Magnesium Oxide for Metal Removal in Mine Water Treatment. Sustainability 2022, 14, 15857. [Google Scholar] [CrossRef]
- Dakroury, G.A.; Abo-Zahra, S.F.; Hassan, H.S. Utilization of Olive Pomace in Nano MgO Modification for Sorption of Ni(II) and Cu(II) Metal Ions from Aqueous Solutions. Arab. J. Chem. 2020, 13, 6510–6522. [Google Scholar] [CrossRef]
- Jiang, Y.; Shen, Z.; Tang, C.-S.; Shi, B. Synthesis and Application of Waste-Based Layered Double Hydroxide: A Review. Sci. Total Environ. 2023, 903, 166245. [Google Scholar] [CrossRef] [PubMed]
- Shireesha, K.; Kumar, T.R.; Rajani, T.; Chakra, C.S.; Kumari, M.M.; Divya, V.; Raghava Reddy, K. Novel NiMgOH-RGO-Based Nanostructured Hybrids for Electrochemical Energy Storage Supercapacitor Applications: Effect of Reducing Agents. Crystals 2021, 11, 1144. [Google Scholar] [CrossRef]
- Llusar, M.; Gargori, C.; Cerro, S.; Badenes, J.A.; Monrós, G. New Ceramic Pigments for the Coloration of Ceramic Glazes. Adv. Sci. Technol. 2014, 92, 148–158. [Google Scholar]
- Pfaff, G. The World of Inorganic Pigments. Chem. Texts 2022, 8, 15. [Google Scholar] [CrossRef]
- Monrós, G.; Llusar, M.; García, A.; Gargori, C.; Galindo, R. Development of New Ceramic Dyes. Adv. Sci. Technol. 2010, 68, 182–193. [Google Scholar]
- Ianoş, R.; Barvinschi, P. Characterization of Mg1−xNixAl2O4 Solid Solutions Prepared by Combustion Synthesis. J. Eur. Ceram. Soc. 2011, 31, 739–743. [Google Scholar] [CrossRef]
- El Jabbar, Y.; Lakhlifi, H.; El Ouatib, R.; Er-Rakho, L.; Guillemet-Fritsch, S.; Durand, B. Preparation and Characterisation of Green Nano-Sized Ceramic Pigments with the Spinel Structure AB2O4 (A = Co, Ni and B = Cr, Al). Solid State Commun. 2021, 334–335, 114394. [Google Scholar] [CrossRef]
- Zou, J.; Chen, Y.; Zhang, P. Influence of Crystallite Size on Color Properties and NIR Reflectance of TiO2@NiTiO3 Inorganic Pigments. Ceram. Int. 2021, 47, 12661–12666. [Google Scholar] [CrossRef]
- Supreetha, R.; Bindya, S.; Deepika, P.; Vinusha, H.M.; Hema, B.P. Characterization and Biological Activities of Synthesized Citrus Pectin-MgO Nanocomposite. Results Chem. 2021, 3, 100156. [Google Scholar] [CrossRef]
- Dabhane, H.; Ghotekar, S.; Zate, M.; Kute, S.; Jadhav, G.; Medhane, V. Green Synthesis of MgO Nanoparticles Using Aqueous Leaf Extract of Ajwain (Trachyspermum Ammi) and Evaluation of Their Catalytic and Biological Activities. Inorg. Chem. Commun. 2022, 138, 109270. [Google Scholar] [CrossRef]
- Haritha, V.; Gowri, S.; Janarthanan, B.; Faiyazuddin, M.; Karthikeyan, C.; Sharmila, S. Biogenic Synthesis of Nickel Oxide Nanoparticles Using Averrhoa Bilimbi and Investigation of Its Antibacterial, Antidiabetic and Cytotoxic Properties. Inorg. Chem. Commun. 2022, 144, 109930. [Google Scholar] [CrossRef]
- Shah, A.; Tauseef, I.; Arfat Yameen, M.; Ben Ali, M.; Haq, S.; Elmnasri, K.; AL-Harbi, M.S.; Kashif Haleem, S.; Hedfi, A.; Ben-Attia, M. Histopathological and Hematological Investigations of Mice Model Inoculated with Nickel Oxide Nanoparticles and Bacterial Pathogens: In-Vitro and in-Vivo Antibacterial Studies. J. King Saud Univ. Sci. 2023, 35, 102456. [Google Scholar] [CrossRef]
- WHO. E. coli. Available online: https://www.who.int/news-room/fact-sheets/detail/e-coli (accessed on 24 April 2024).
- WHO. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; WHO: Geneva, Switzerland, 2022; ISBN 978-92-4-006024-1. [Google Scholar]
- WHO Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: 2022. Available online: https://www.who.int/publications/i/item/9789240062702 (accessed on 24 April 2024).
- Rocha, M.L.M.; Balaba, N.; Jaerger, S.; Primo, J.O.; Horsth, D.F.L.; Appelt, P.; Meneguzzi, D.; Cunha, M.A.A.; Anaissi, F.J. Raw Smectite from the Guarapuava–Parana–Brasil Saturated with Copper Ions and Its Properties. Minerals 2023, 13, 785. [Google Scholar] [CrossRef]
- Bible, B.B.; Singha, S. Canopy Position Influences CIELAB Coordinates of Peach Color. Hortscience 1993, 28, 992–993. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standarts Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd ed.; Clinical and Laboratory Standarts Institute (CLSI): Wayne, PA, USA, 2008; ISBN 1-56238-666-2. [Google Scholar]
- Clinical and Laboratory Standarts Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 6th ed.; NCCLS document M7-A6, Suite 1400; Clinical and Laboratory Standarts Institute (CLSI): Wayne, PA, USA, 2003; ISBN 610.688.0700. [Google Scholar]
- Haynes, W.M.; Lide, D.R.; Bruno, T.L. CRC Handbook of Chemistry and Physics, 95th ed.; (Section 4); Taylor & Francis Group: Abingdon, UK, 2014; ISBN 978-1-4822-0868-9. [Google Scholar]
- Vinokurov, S.E.; Kulikova, S.A.; Krupskaya, V.V.; Tyupina, E.A. Effect of Characteristics of Magnesium Oxide Powder on Composition and Strength of Magnesium Potassium Phosphate Compound for Solidifying Radioactive Waste. Russ. J. Appl. Chem. 2019, 92, 490–497. [Google Scholar] [CrossRef]
- Yousefi, S.; Ghasemi, B.; Nikolova, M.P. Opto-Structural Characterization of Mg(OH)2 and MgO Nanostructures Synthesized through a Template-Free Sonochemical Method. Appl. Phys. A 2021, 127, 549. [Google Scholar] [CrossRef]
- Kovalenko, V.; Kotok, V. Synthesis of Nickel Hydroxide in the Presence of Acetate Ion as a «soft» Ligand for Application in Chemical Power Sources. East.-Eur. J. Enterp. Technol. 2019, 6, 6–12. [Google Scholar] [CrossRef]
- de Oliveira, E.F.; Hase, Y. Infrared Study of Magnesium–Nickel Hydroxide Solid Solutions. Vib. Spectrosc. 2003, 31, 19–24. [Google Scholar] [CrossRef]
- Yousefi, S.; Ghasemi, B.; Tajally, M.; Asghari, A. Optical Properties of MgO and Mg(OH)2 Nanostructures Synthesized by a Chemical Precipitation Method Using Impure Brine. J. Alloys Compd. 2017, 711, 521–529. [Google Scholar] [CrossRef]
- Yu, J.C.; Xu, A.; Zhang, L.; Song, R.; Wu, L. Synthesis and Characterization of Porous Magnesium Hydroxide and Oxide Nanoplates. J. Phys. Chem. B 2004, 108, 64–70. [Google Scholar] [CrossRef]
- Hao, L.; Zhu, C.; Mo, X.; Jiang, W.; Hu, Y.; Zhu, Y.; Chen, Z. Preparation and Characterization of Mg(OH)2 Nanorods by Liquid–Solid Arc Discharge Technique. Inorg. Chem. Commun. 2003, 6, 229–232. [Google Scholar] [CrossRef]
- Ismail, M.; Jobara, A.; Bekouche, H.; Abd Allateef, M.; Ben Aissa, M.A.; Modwi, A. Impact of Cu Ions Removal onto MgO Nanostructures: Adsorption Capacity and Mechanism. J. Mater. Sci. Mater. Electron. 2022, 33, 12500–12512. [Google Scholar] [CrossRef]
- Sajilal, K.; Moses Ezhil Raj, A. Effect of Thickness on Physico-Chemical Properties of p-NiO (Bunsenite) Thin Films Prepared by the Chemical Spray Pyrolysis (CSP) Technique. Optik 2016, 127, 1442–1449. [Google Scholar] [CrossRef]
- Taibi, M.; Ammar, S.; Jouini, N.; Fiévet, F.; Molinié, P.; Drillon, M. Layered Nickel Hydroxide Salts: Synthesis, Characterization and Magnetic Behaviour in Relation to the Basal Spacing. J. Mater. Chem. 2002, 12, 3238–3244. [Google Scholar] [CrossRef]
- Hajjaji, W.; Costa, G.; Zanelli, C.; Ribeiro, M.J.; Seabra, M.P.; Dondi, M.; Labrincha, J.A. An Overview of Using Solid Wastes for Pigment Industry. J. Eur. Ceram. Soc. 2012, 32, 753–764. [Google Scholar] [CrossRef]
- de Andrade, T.M.; Mariani, F.Q.; Nunes Júnior, C.V.; Dalpasquale, M.; Danczuk, M.; Anaissi, F.J. Compreendendo as Propriedades (Estrutural, Espectroscópica, Colorimétrica e Térmica) de Sais de Níquel. Matéria 2018, 23, e-11976. [Google Scholar] [CrossRef]
- Qi, Y.; Qi, H.; Li, J.; Lu, C. Synthesis, Microstructures and UV–Vis Absorption Properties of β-Ni(OH)2 Nanoplates and NiO Nanostructures. J. Cryst. Growth 2008, 310, 4221–4225. [Google Scholar] [CrossRef]
- Gottardi, W.; Nagl, M. Chlorine Covers on Living Bacteria: The Initial Step in Antimicrobial Action of Active Chlorine Compounds. J. Antimicrob. Chemother. 2005, 55, 475–482. [Google Scholar] [CrossRef]
- Brackett, R.E. Antimicrobial Effect of Chlorine on Listeria Monocytogenes. J. Food Prot. 1987, 50, 999–1004. [Google Scholar] [CrossRef]
- Lawson, K.; Wallbridge, S.P.; Catling, A.E.; Kirk, C.A.; Dann, S.E. Determination of Layered Nickel Hydroxide Phases in Materials Disordered by Stacking Faults and Interstratification. J. Mater. Chem. A 2023, 11, 789–799. [Google Scholar] [CrossRef]
- Hall, D.S.; Lockwood, D.J.; Bock, C.; MacDougall, B.R. Nickel Hydroxides and Related Materials: A Review of Their Structures, Synthesis and Properties. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20140792. [Google Scholar] [CrossRef] [PubMed]
- Kurt, H.I.; Ergul, E.; Yilmaz, N.F.; Oduncuoglu, M. Surface Functionalization of Nano MgO Particles with Nickel and Cobalt. Mater. Res. Express 2019, 6, 0850f1. [Google Scholar] [CrossRef]
- Murtaza, M.; Aqib, A.I.; Khan, S.R.; Muneer, A.; Ali, M.M.; Waseem, A.; Zaheer, T.; Al-Keridis, L.A.; Alshammari, N.; Saeed, M. Sodium Alginate-Based MgO Nanoparticles Coupled Antibiotics as Safe and Effective Antimicrobial Candidates against Staphylococcus Aureus of Houbara Bustard Birds. Biomedicines 2023, 11, 1959. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.-Y.; Pereira, J.; Huang, Z.; Fan, Q.; Santra, S.; White, J.C.; De La Torre-Roche, R.; Da Silva, S.; Vallad, G.E.; Freeman, J.H.; et al. Potential of Novel Magnesium Nanomaterials to Manage Bacterial Spot Disease of Tomato in Greenhouse and Field Conditions. Plants 2023, 12, 1832. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.-Y.T.; Grelling, N.; Wetteland, C.L.; Rosario, R.; Liu, H. Antimicrobial Activities and Mechanisms of Magnesium Oxide Nanoparticles (NMgO) against Pathogenic Bacteria, Yeasts, and Biofilms. Sci. Rep. 2018, 8, 16260. [Google Scholar] [CrossRef]
- Chaudhari, V.P.; Rajput, K.; Mondal Roy, S.; Chaudhuri, T.K.; Roy, D.R. Experimental and First-Principles Investigation on the Structural, Electronic and Antimicrobial Properties of Nickel Hydroxide Nanoparticles. J. Phys. Chem. Solids 2022, 160, 110367. [Google Scholar] [CrossRef]
Nickel Precursor Salt | Mg (%) | Ni (%) | Estimated Composition |
---|---|---|---|
MgOst | 99.841 | - | [Mg0.99O] |
Acetate | 90.867 | 8.789 | [Ni0.087Mg0.91(OH)2]Ac |
Chloride | 90.784 | 9.050 | [Ni0.090Mg0.91(OH)2]Chlo |
Nitrate | 90.342 | 9.437 | [Ni0.094Mg0.90(OH)2]Nitr |
Sample | L* | a* | b* | C* | h* | ΔE | Color Mine |
---|---|---|---|---|---|---|---|
MgOst | 67.65 | 0.84 | 3.13 | 3.24 | 104.98 | - | |
Ni(Ac) | 54.02 | −8.56 | 7.61 | 11.45 | 138.34 | 17.15 | |
Ni(Chlo) | 54.28 | −9.39 | 6.46 | 11.40 | 145.48 | 17.16 | |
Ni(Nitr) | 54.35 | −9.03 | 6.96 | 11.40 | 142.37 | 17.00 |
Sample | L* | a* | b* | C* | h* | ΔE | Color Mine |
---|---|---|---|---|---|---|---|
Colorless paint | 65.04 | −0.95 | 2.91 | 3.06 | 108.14 | - | |
MgOst | 78.49 | 0.54 | 4.42 | 4.45 | 96.90 | 13.62 | |
Ni(Ac) | 70.60 | −13.07 | 10.67 | 16.87 | 140.77 | 15.43 | |
Ni(Chlo) | 64.59 | −9.20 | 7.64 | 11.96 | 140.31 | 9.52 | |
Ni(Nitr) | 72.36 | −12.22 | 11.13 | 16.53 | 137.68 | 15.75 |
Sample | L* | a* | b* | C* | h* | ΔE | Color Mine |
---|---|---|---|---|---|---|---|
Colorless paint | 88.00 | −0.06 | 4.37 | 4.37 | 90.34 | - | |
MgOst | 86.99 | 0.53 | 4.42 | 4.45 | 96.90 | 1.17 | |
Ni(Ac) | 82.87 | −7.48 | 10.65 | 13.01 | 125.07 | 11.00 | |
Ni(Chlo) | 83.46 | −6.77 | 9.07 | 11.31 | 126.75 | 9.37 | |
Ni(Nitr) | 85.49 | −5.83 | 10.03 | 11.60 | 120.16 | 8.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siqueira, C.; Schons, A.B.; Appelt, P.; Silva, W.D.; Balaba, N.; Cunha, M.A.A.; Anaissi, F.J. Synthesis of Green Brucite [NixMg1−x(OH)2] by Incorporation of Nickel Ions in the Periclase Phase (MgO) Applied as Pigments. Colorants 2024, 3, 138-151. https://doi.org/10.3390/colorants3020011
Siqueira C, Schons AB, Appelt P, Silva WD, Balaba N, Cunha MAA, Anaissi FJ. Synthesis of Green Brucite [NixMg1−x(OH)2] by Incorporation of Nickel Ions in the Periclase Phase (MgO) Applied as Pigments. Colorants. 2024; 3(2):138-151. https://doi.org/10.3390/colorants3020011
Chicago/Turabian StyleSiqueira, Cássio, Aline B. Schons, Patricia Appelt, Weslei D. Silva, Nayara Balaba, Mário A. A. Cunha, and Fauze J. Anaissi. 2024. "Synthesis of Green Brucite [NixMg1−x(OH)2] by Incorporation of Nickel Ions in the Periclase Phase (MgO) Applied as Pigments" Colorants 3, no. 2: 138-151. https://doi.org/10.3390/colorants3020011
APA StyleSiqueira, C., Schons, A. B., Appelt, P., Silva, W. D., Balaba, N., Cunha, M. A. A., & Anaissi, F. J. (2024). Synthesis of Green Brucite [NixMg1−x(OH)2] by Incorporation of Nickel Ions in the Periclase Phase (MgO) Applied as Pigments. Colorants, 3(2), 138-151. https://doi.org/10.3390/colorants3020011