Influence of a Precursor Catalyst on the Composition of Products in Catalytic Cracking of Heavy Oil
Abstract
:1. Introduction
2. Research Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maity, S.K.; Ancheyta, J.; Marroquín, G. Catalytic Aquathermolysis Used for Viscosity Reduction of Heavy Crude Oils: A Review. Energy Fuels 2010, 24, 2809–2816. [Google Scholar] [CrossRef]
- AL-Rubaye, A.H.; Suwaid, M.A.; Al-Muntaser, A.A.; Varfolomeev, M.A.; Rakhmatullin, I.Z.; Hakimi, M.H.; Saeed, S.A. Intensification of the steam stimulation process using bimetallic oxide catalysts of MFe2O4 (M = Cu, Co, Ni) for in-situ upgrading and recovery of heavy oil. J. Pet. Explor. Prod. Technol. 2022, 12, 577–587. [Google Scholar] [CrossRef]
- Hashemi, R.; Nassar, N.N.; Pereira Almao, P. Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges. Appl. Energy 2014, 133, 374–387. [Google Scholar] [CrossRef]
- Li, H.; Gao, H.; Zhao, X.; Xia, Z.; Yu, B.; Sun, D. Experimental study on viscosity reduction of heavy oil with water content by synergistic effect of microwave and nano-catalyst. J. Pet. Sci. Eng. 2022, 208, 109271. [Google Scholar] [CrossRef]
- Chen, Q.; Shan, Y.; Liu, H.; Zhao, B.; Cao, J. Upgrading of Venezuela extra-heavy oil vacuum residue by two-step thermal treatment. Pet. Sci. Technol. 2020, 38, 166–169. [Google Scholar] [CrossRef]
- Kang, K.H.; Kim, G.T.; Park, S.; Seo, P.W.; Seo, H.; Lee, C.W. A review on the Mo-precursors for catalytic hydroconversion of heavy oil. J. Ind. Eng. Chem. 2019, 76, 1–16. [Google Scholar] [CrossRef]
- Ortiz-Moreno, H.; Ramírez, J.; Cuevas, R.; Marroquín, G.; Ancheyta, J. Heavy Oil Upgrading at Moderate Pressure Using Dispersed Catalysts: Effects of Temperature, Pressure and Catalytic Precursor. Fuel 2012, 100, 186–192. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, Y.; Lu, N.; Xu, T.; Zhu, G.; Wang, K. A review on upgrading and viscosity reduction of heavy oil and bitumen by underground catalytic cracking. Energy Rep. 2021, 7, 4249–4272. [Google Scholar] [CrossRef]
- Kadkin, O.N.; Mikhailova, A.N.; Khafizov, N.R.; Yuan, C.; Varfolomeev, M.A. A molecular mechanics and molecular dynamics study of the structural organization of Cu(II), Ni(II), Co(II), and Fe(II) stearates as potential catalysts for in situ upgrading of heavy oil. Fuel 2022, 313, 123056. [Google Scholar] [CrossRef]
- Marei, N.N.; Nassar, N.N.; Hmoudah, M.; El-Qanni, A.; Vitale, G.; Hassan, A. Nanosize effects of NiO nanosorbcats on adsorption and catalytic thermo-oxidative decomposition of vacuum residue asphaltenes. Can. J. Chem. Eng. 2017, 95, 1864–1874. [Google Scholar] [CrossRef]
- Aliev, F.A.; Mukhamatdinov, I.I.; Sitnov, S.A.; Ziganshina, M.R.; Onishchenko, Y.V.; Sharifullin, A.V.; Vakhin, A.V. In-situ heavy oil aquathermolysis in the presence of nanodispersed catalysts based on transition metals. Processes 2021, 9, 127. [Google Scholar] [CrossRef]
- Yeletsky, P.M.; Zaikina, O.O.; Sosnin, G.A.; Kukushkin, R.G.; Yakovlev, V.A. Heavy oil cracking in the presence of steam and nanodispersed catalysts based on different metals. Fuel Process. Technol. 2020, 199, 106239. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, H.; Cai, X.; Gou, Q.; Jiang, L.; Chen, K.; Chen, Z.; Jiang, S. Current Status and Future Trends of In Situ Catalytic Upgrading of Extra Heavy Oil. Energies 2023, 16, 4610. [Google Scholar] [CrossRef]
- Xiong, P.; Yang, H.; Wu, P.; Liao, Y.; Tan, D.; Ma, Z.; Yan, X. Study on catalytic aquathermolysis of heavy oil by simple synthesis of highly dispersed nickel-loaded nitrogen-doped carbon catalysts. Mol. Catal. 2022, 529, 112528. [Google Scholar] [CrossRef]
- Abdelsalam, Y.I.I.; Aliev, F.A.; Mirzayev, O.O.; Sitnov, S.A.; Katnov, V.E.; Akhmetzyanova, L.A.; Mukhamatdinova, R.E.; Vakhin, A.V. Aquathermolysis of Heavy Crude Oil: Comparison Study of the Performance of Ni(CH3COO)2 and Zn(CH3COO)2 Water-Soluble Catalysts. Catalysts 2023, 13, 873. [Google Scholar] [CrossRef]
- Mukhamatdinov, I.I.; Mahmoud, A.R.; Affane, B.; Mukhamatdinova, R.E.; Sitnov, S.A.; Vakhin, A.V. Development of a Nanodispersed Catalyst Based on Iron and Nickel for In Situ Upgrading Ashal′ cha Heavy Oil. Energy Fuels 2023, 37, 13912–13927. [Google Scholar] [CrossRef]
- Khanghah, M.A.; Jafari, A. Kinetic modeling and CFD simulation of catalytic upgrading reactions: From batch to continuous reactors. J. Taiwan Inst. Chem. Eng. 2022, 134, 104254. [Google Scholar] [CrossRef]
- Mukhamatdinov, I.I.; Khaidarova, A.R.; Mukhamatdinova, R.E.; Affane, B.; Vakhin, A.V. Development of a catalyst based on mixed iron oxides for intensification the production of heavy hydrocarbon feedstocks. Fuel 2022, 312, 123005. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Wang, Z.; Fan, S.; Chen, K. Hydrogenation of Nickel Octaethylporphyrin over Dispersed MoS2 Catalysts Formed In Situ. ChemistrySelect 2018, 3, 4292–4297. [Google Scholar] [CrossRef]
- Urazov, K.K.; Sviridenko, N.N.; Iovik, Y.A.; Kolobova, E.N.; Grabchenko, M.V.; Kurzina, I.A.; Mukhamatdinov, I.I. Effect of hydrogen-donor of heavy crude oil catalytic aquathermolysis in the presence of a nickel-based catalyst. Catalysts 2022, 12, 1154. [Google Scholar] [CrossRef]
- Urazov, K.K.; Sviridenko, N.N. NiO based catalysts obtained “in-situ” for heavy crude oil upgrading: Effect of NiO precursor on the catalytic cracking products composition. J. Taiwan Inst. Chem. Eng. 2021, 127, 151–156. [Google Scholar] [CrossRef]
- Simão, A.; Domínguez-Álvarez, E.; Yuan, C.; Suwaid, M.A.; Varfolomeev, M.A.; Ancheyta, J.; Al-mishaal, O.F.; Kudryashov, S.I.; Afanasiev, I.S.; Antonenko, D.A.; et al. On the use of metallic nanoparticulated catalysts for in-situ oil upgrading. Fuel 2022, 313, 122677. [Google Scholar] [CrossRef]
- Grabchenko, M.; Pantaleo, G.; Puleo, F.; Kharlamova, T.S.; Zaikovskii, V.I.; Vodyankina, O.; Liotta, L.F. Design of Ni-based catalysts supported over binary La-Ce oxides: Influence of La/Ce ratio on the catalytic performances in DRM. Catal. Today 2021, 382, 71–81. [Google Scholar] [CrossRef]
- Vakhin, A.V.; Aliev, F.A.; Mukhamatdinov, I.I.; Sitnov, S.A.; Sharifullin, A.V.; Kudryashov, S.I.; Afanasiev, I.S.; Petrashov, O.V.; Nurgaliev, D.K. Catalytic Aquathermolysis of Boca de Jaruco Heavy Oil with Nickel-Based Oil-Soluble Catalyst. Processes 2020, 8, 532. [Google Scholar] [CrossRef]
- GOST 31371.3-2008; Natural gas. Determination of Composition with Defined Uncertainty by Gas Chromatography Method. Part 3. Determination of Hydrogen, Helium, Oxigen, Nitrogen, Carbon Dioxide and Hydrocarbons up to C8 Using Two Packed Columns. Standardinform: Moscow, Russia, 2008.
- ASTM-D287; Standard Test Method for API Gravity of Crude Petroleum and Petroleum Products. ASTM International: West Conshohocken, PA, USA, 2012. [CrossRef]
- ASTM D4124; Standard Test Method for Separation of Asphalt into Four Fractions. ASTM International: West Conshohocken, PA, USA, 2018. [CrossRef]
- ASTM-D4294; Standard Test Method for Sulfur in Petroleum and Petroleum Products by Energy Dispersive X-ray Fluorescence Spectrometry. ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- ASTM-D2887; Standard Test Method for Boiling Range Distribution of Petroleum Fractions by Gas Chromatography. ASTM International: West Conshohocken, PA, USA, 2023. [CrossRef]
- Moioli, E.; Züttel, A. A model-based comparison of Ru and Ni catalysts for the Sabatier reaction. Sustain. Energy Fuels 2020, 4, 1396–1408. [Google Scholar] [CrossRef]
- Hosseinpour, M.; Akizuki, M.; Oshima, Y.; Soltani, M. Influence of formic acid and iron oxide nanoparticles on active hydrogenation of PAHs by hot compressed water. Isotope tracing study. Fuel 2019, 254, 115675. [Google Scholar] [CrossRef]
- De Jesus, J.C.; González, I.; Quevedo, A.; Puerta, T. Thermal decomposition of nickel acetate tetrahydrate: An integrated study by TGA, QMS and XPS techniques. J. Mol. Catal. A Chem. 2005, 228, 283–291. [Google Scholar] [CrossRef]
- Puzan, A.N.; Baumer, V.N.; Lisovytskiy, D.V.; Mateychenko, P.V. Structure transformations in nickel oxalate dihydrate NiC2O4·2H2O and nickel formate dihydrate Ni(HCO2)2·2H2O during thermal decomposition. J. Solid State Chem. 2018, 266, 133–142. [Google Scholar] [CrossRef]
- Iglesia, E.; Boudart, M. Decomposition of formic acid on copper, nickel, and copper-nickel alloys: III. Catalytic decomposition on nickel and copper-nickel alloys. J. Catal. 1983, 81, 224–238. [Google Scholar] [CrossRef]
- Couttenye, R.A.; De Vila, M.H.; Suib, S.L. Decomposition of methane with an autocatalytically reduced nickel catalyst. J. Catal. 2005, 233, 317–326. [Google Scholar] [CrossRef]
- Tan, Y.; Hu, W.; Du, Y.; Li, J. Species and impacts of metal sites over bifunctional catalyst on long chain n-alkane hydroisomerization: A review. Appl. Catal. A 2021, 611, 117916. [Google Scholar] [CrossRef]
- Brockner, W.; Ehrhardt, C.; Gjikaj, M. Thermal decomposition of nickel nitrate hexahydrate, Ni(NO3)2·6H2O, in comparison to Co(NO3)2·6H2O and Ca(NO3)2·4H2O. Thermochim. Acta 2007, 456, 64–68. [Google Scholar] [CrossRef]
- Enger, B.C.; Holmen, A. Nickel and Fischer-Tropsch Synthesis. Catal. Rev. 2012, 54, 437–488. [Google Scholar] [CrossRef]
- Hussein, G.A.M.; Nohman, A.K.H.; Attyia, K.M.A. Characterization of the decomposition course of nickel acetate tetrahydrate in air. J. Therm. Anal. 1994, 42, 1155–1165. [Google Scholar] [CrossRef]
- Tilley, R.D.; Jefferson, D.A. The Synthesis of Nickel Sulfide Nanoparticles on Graphitized Carbon Supports. J. Phys. Chem. B 2002, 106, 10895–10901. [Google Scholar] [CrossRef]
- Djimasbe, R.; Varfolomeev, M.A.; Al-Muntaser, A.A.; Yuan, C.; Feoktistov, D.A.; Suwaid, M.A.; Kirgizov, A.J.; Davletshin, R.R.; Zinnatullin, A.L.; Fatou, S.D.; et al. Oil dispersed nickel-based catalyst for catalytic upgrading of heavy oil using supercritical water. Fuel 2022, 313, 122702. [Google Scholar] [CrossRef]
- Osasuyi, O.; Quang, D.V.; Basina, G.; Al Wahedi, Y.; Abu Zahra, M.R.M.; Palmisano, G.; Al-Ali, K. Reversible Metal Sulfide Transition in a Two-Step Thermochemical H2S Splitting. Ind. Eng. Chem. Res. 2022, 61, 6135–6145. [Google Scholar] [CrossRef]
- Kharat, A.N.; Pendleton, P.; Badalyan, A.; Abedini, M.; Amini, M.M. Decomposition of Nickel Formate on Sol–Gel Alumina and Characterization of Product by X-Ray Photoelectron and TOF-SIMS Spectroscopies. J. Catal. 2002, 205, 7–15. [Google Scholar] [CrossRef]
- Lewis, A.D.; Fletcher, E.G.; Fletcher, H.T. CO2 Gasification Rates of Petroleum Coke in a Pressurized Flat-Flame Burner Entrained-Flow Reactor. Energy Fuels 2014, 28, 4447–4457. [Google Scholar] [CrossRef]
Characteristics | Heavy Crude Oil |
---|---|
°API gravity at 15 °C | 13.1 |
Viscosity at 20 °C, mm2/s | 1999.8 |
Sulfur content, wt.% | 4.74 |
H/C ratio | 1.52 |
Elemental composition, wt.% | |
C | 82.10 |
H | 10.41 |
N | 1.00 |
S | 4.74 |
O | 1.75 |
Component composition, wt.% | |
Saturated hydrocarbons | 22.2 |
Aromatic hydrocarbons | 41.1 |
Resins | 30.8 |
Asphaltenes | 5.9 |
Fractional composition, wt.% | |
ibp–200 °C | 4.6 |
200–360 °C | 27.9 |
360–500 °C | 41.6 |
>500 °C | 25.9 |
Indices | Initial Heavy Oil | Experiment | |||||
---|---|---|---|---|---|---|---|
No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 | ||
Process time, min | 60 | 60 | 60 | 80 | 100 | 120 | |
Temperature, °C | 350 | 400 | 450 | 450 | 450 | 450 | |
Gas yield, wt.% | 0.1 | 0.1 | 0.4 | 0.6 | 1.0 | 2.6 | |
Coke yield, wt.% | 0.7 | 1.1 | 1.1 | 1.5 | 1.8 | 3.4 | |
LP yield, wt.% | 100 | 99.2 | 98.8 | 98.5 | 97.9 | 97.2 | 94.0 |
Content, wt.% | |||||||
Sulfur | 4.74 | 4.72 | 4.63 | 4.59 | 4.50 | 4.41 | 4.25 |
SH | 22.2 | 21.5 | 23.3 | 24.8 | 24.2 | 23.4 | 22.9 |
AH | 41.1 | 43.8 | 45.9 | 45.6 | 46.1 | 46.8 | 46.0 |
Resins | 30.8 | 27.5 | 23.0 | 20.7 | 20.2 | 19.7 | 18.0 |
Asphaltenes | 5.9 | 6.4 | 6.6 | 7.4 | 7.4 | 7.3 | 7.1 |
Indices | Initial Heavy Oil | Experiment | |||||||
---|---|---|---|---|---|---|---|---|---|
No. 0 | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 | No. 7 | ||
Catalyst | 0.0 | 0.1 | 0.1 | 0.1 | 0.15 | 0.20 | 0.30 | 0.50 | |
Process time, min | 60 | 60 | 80 | 100 | 60 | 60 | 60 | 60 | |
Gas yield, wt.% | 0.4 | 11.2 | 11.6 | 11.8 | 8.0 | 6.2 | 9.7 | 5.8 | |
Coke yield, wt.% | 1.1 | 2.6 | 4.3 | 7.3 | 4.3 | 3.8 | 3.5 | 3.4 | |
LP yield, wt.% | 100 | 98.5 | 86.2 | 84.1 | 80.7 | 87.7 | 90.0 | 86.8 | 90.8 |
Fractional content, wt.% | |||||||||
ibp–200 °C | 4.6 | 7.7 | 15.1 | 17.9 | 22.7 | 17.1 | 17.1 | 15.4 | 18.8 |
200–360 °C | 27.9 | 30.1 | 36.0 | 35.5 | 35.7 | 37.9 | 36.6 | 37.5 | 37.2 |
360–500 °C | 41.6 | 30.6 | 20.4 | 18.4 | 14.5 | 22.9 | 17.7 | 20.3 | 21.9 |
>500 °C | 25.9 | 30.1 | 14.7 | 12.3 | 7.8 | 9.8 | 18.6 | 13.6 | 12.9 |
Sulfur content, wt.% | |||||||||
Gas | 0.04 | 2.15 | 2.18 | 2.19 | 1.81 | 1.56 | 1.49 | 1.31 | |
Coke | 0.11 | 0.15 | 0.25 | 0.33 | 0.31 | 0.27 | 0.24 | 0.32 | |
LP | 4.74 | 4.59 | 2.44 | 2.31 | 2.22 | 2.62 | 2.91 | 3.01 | 3.11 |
Indices | Initial Heavy Oil | Experiment | |||
---|---|---|---|---|---|
Without Catalyst | NiNit | NiFor | NiAc | ||
Gas yield, wt.% | 0.4 | 8.0 | 9.6 | 8.0 | |
Coke yield, wt.% | 1.1 | 4.3 | 4.3 | 4.5 | |
LP yield, wt.% | 100 | 98.5 | 87.7 | 86.1 | 87.5 |
Fractional content, wt.% | |||||
ibp–200 °C | 4.6 | 7.7 | 17.1 | 24.6 | 21.4 |
200–360 °C | 27.9 | 30.1 | 37.9 | 32.2 | 36.4 |
360–500 °C | 41.6 | 30.6 | 22.9 | 14.8 | 14.7 |
>500 °C | 25.9 | 30.1 | 9.8 | 14.5 | 15.0 |
Sulfur content, wt.% | |||||
Gas | 0.04 | 1.81 | 1.63 | 1.24 | |
Coke | 0.11 | 0.31 | 0.29 | 0.29 | |
LP | 4.74 | 4.59 | 2.62 | 2.82 | 3.21 |
Precursor | Content, wt.% | |||||||
---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | H2 | CO + CO2 | H2S | |
NiNit | 2.67 | 1.29 | 0.81 | 0.37 | 0.16 | 0.03 | 0.75 | 1.92 |
NiFor | 3.42 | 1.87 | 1.33 | 0.56 | 0.23 | 0.04 | 0.43 | 1.73 |
NiAc | 2.68 | 1.55 | 1.21 | 0.62 | 0.25 | 0.03 | 0.34 | 1.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urazov, K.K.; Sviridenko, N.N.; Sviridenko, Y.A.; Utyaganova, V.R. Influence of a Precursor Catalyst on the Composition of Products in Catalytic Cracking of Heavy Oil. Energies 2024, 17, 2016. https://doi.org/10.3390/en17092016
Urazov KK, Sviridenko NN, Sviridenko YA, Utyaganova VR. Influence of a Precursor Catalyst on the Composition of Products in Catalytic Cracking of Heavy Oil. Energies. 2024; 17(9):2016. https://doi.org/10.3390/en17092016
Chicago/Turabian StyleUrazov, Khoshim Kh., Nikita N. Sviridenko, Yulia A. Sviridenko, and Veronika R. Utyaganova. 2024. "Influence of a Precursor Catalyst on the Composition of Products in Catalytic Cracking of Heavy Oil" Energies 17, no. 9: 2016. https://doi.org/10.3390/en17092016
APA StyleUrazov, K. K., Sviridenko, N. N., Sviridenko, Y. A., & Utyaganova, V. R. (2024). Influence of a Precursor Catalyst on the Composition of Products in Catalytic Cracking of Heavy Oil. Energies, 17(9), 2016. https://doi.org/10.3390/en17092016