Insights into HKUST-1 Metal-Organic Framework’s Morphology and Physicochemical Properties Induced by Changing the Copper(II) Salt Precursors
Abstract
:1. Introduction
2. Materials and Methods
2.1. HKUST-1 Syntheses
2.2. Materials Characterization
2.2.1. X-Ray Diffraction (XRD)
2.2.2. Nitrogen Adsorption-Desorption at −196 °C
2.2.3. Fourier-Transform Infrared Spectroscopy (FTIR)
2.2.4. X-Ray Photoelectron Spectroscopy (XPS)
2.2.5. Thermogravimetric Analysis (TGA)
2.2.6. Dynamic Light Scattering (DLS)
2.2.7. Scanning Electron Microscopy (SEM)
3. Results and Discussion
4. Summary
Synthesis Conditions | Selected Properties | Ref. | ||||||
---|---|---|---|---|---|---|---|---|
Synthesis Method | Solvent | Copper(II) Precursor | Conditions | Surface Properties | Crystal Properties | |||
SBET, m2 g−1 | Vt, cm3 g−1 | Morphology | Average Size | |||||
Solvothermal | DMF | Cu(NO3)2 3H2O | T = 140 °C t = 5–30 min mixing involved | 2.60–12.02 | - | Spheric nanoparticles | 200 nm | [18] |
Ultrasound assisted solvothermal | DMF | Cu(NO3)2 3H2O | T = 80 °C t = 24 h no mixing | 977.00 | 0.387 | Bipyramid | - | [53] |
Solvothermal | DMF, ethanol | Cu(NO3)2 3H2O | T = 25 °C t = 1 min mixing involved, ZnO as synthesis modifier | 1489.00 | 0.660 | Bipyramid | 605 nm | [49] |
Solvothermal | Water, ethanol | Cu(NO3)2 2.5H2O | T = 25 °C t = 14–34 h mixing involved, acetic acid as modifier | - | - | Bipyramid—low acetic acid concentration Rod-like shape—elevated acetic acid concentration | ~300 nm ~600 nm | [48] |
Solvothermal | DMF | Cu(NO3)2 3H2O | T = 125 °C t = 24 h | 1617.00 | 0.767 | Bipyramid | 25,000–40,000 nm | [25] |
Water, ethanol | T = 125 °C t = 24 h no mixing | 1648.00 | 0.816 | 5000–15,000 nm | ||||
DMF | T = 104 °C t = 30 min no mixing | - | - | 5000–20,000 nm | ||||
Solvothermal | Water | Cu2CO3(OH)2 H2O | T = 25 °C t = 0.3–24 h no mixing | 10.00–130.00 (lower for longer time) | - | Rod-like shape | - | [54] |
Water:Ethanol (1:1) | 900.00–1600.00 (the highest for 3 h) | Bipyramid | - | |||||
Ethanol | 25.00–160.00 (lower for shorter time) | Undefined agglomerates | - | |||||
Solvothermal | Water:Ethanol (1:1) | Cu(NO3)2 3H2O | T = 110 °C t = 24 h Mixing involved | 1453.00 | 0.671 | Irregular | ~10,000 nm | [9] |
CuCl2 2H2O | No product | |||||||
CuSO4 5H2O | 1790.00 | 0.688 | Irregular | ~10,000 nm | ||||
Cu(CH3COO)2 H2O | 961.00 | 0.418 | Rod-like shape | 1000–100,000 nm | ||||
Ultrasound assisted solvothermal | Water:Ethanol (1:1) | Cu(NO3)2 3H2O | T = 110 °C t = 24 h Ultrasounds for 15 min at 25 °C, than no mixing | 1153 | 0.469 | Bipyramid | ~50,000 nm | This study |
CuCl2 2H2O | No product | |||||||
CuSO4 5H2O | 937.00 | 0.341 | Irregular | ~10,000 nm | ||||
Cu(CH3COO)2 H2O | 553.00 | 0.209 | Rod-like shape | 1000–100,000 nm |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saeed, T.; Naeem, A.; Ud Din, I.; Alotaibi, M.A.; Alharthi, A.I.; Wali Khan, I.; Huma Khan, N.; Malik, T. Structure, Nomenclature and Viable Synthesis of Micro/Nanoscale Metal Organic Frameworks and Their Remarkable Applications in Adsorption of Organic Pollutants. Microchem. J. 2020, 159, 105579. [Google Scholar] [CrossRef]
- Hönicke, I.M.; Senkovska, I.; Bon, V.; Baburin, I.A.; Bönisch, N.; Raschke, S.; Evans, J.D.; Kaskel, S. Balancing Mechanical Stability and Ultrahigh Porosity in Crystalline Framework Materials. Angew. Chem. Int. Ed. 2018, 57, 13780–13783. [Google Scholar] [CrossRef] [PubMed]
- Baig, U.; Waheed, A.; Jillani, S.M.S. Recent Advancements in Metal-Organic Framework-Based Membranes for Hydrogen Separation: A Review. Chem Asian J 2024, 19, e202300619. [Google Scholar] [CrossRef]
- Felix Sahayaraj, A.; Joy Prabu, H.; Maniraj, J.; Kannan, M.; Bharathi, M.; Diwahar, P.; Salamon, J. Metal–Organic Frameworks (MOFs): The Next Generation of Materials for Catalysis, Gas Storage, and Separation. J. Inorg. Organomet. Polym. Mater. 2023, 33, 1757–1781. [Google Scholar] [CrossRef]
- Bonneau, M.; Lavenn, C.; Ginet, P.; Otake, K.I.; Kitagawa, S. Upscale Synthesis of a Binary Pillared Layered MOF for Hydrocarbon Gas Storage and Separation. Green Chem. 2020, 22, 718–724. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, C.; Duan, J.; Liang, Y.; Luo, J.; Han, Y.; Hu, J.; Shi, F. Synthesis of HKUST-1 Embedded in SBA-15 Functionalized with Carboxyl Groups as a Catalyst for 4-Nitrophenol to 4-Aminophenol. Appl. Surf. Sci. 2022, 573, 151558. [Google Scholar] [CrossRef]
- Ullah, R.; Rafiq, M.; Alamgir; Ahmed, A.; Liu, X.; Haider, W.; Fayaz, M.; Cao, Q.; Yu, B.; Shen, Y.; et al. Mn-MOF Derived N-Doped MnOx@carbon Heterogeneous Catalysts for Vis-Light, S2O82, HSO5, Vis/S2O82, and Vis/HSO5-Induced Degradation of Metronidazole: Kinetics and Mechanistic Study. J. Environ. Chem. Eng. 2024, 12, 113331. [Google Scholar] [CrossRef]
- Samanta, P.; Canivet, J. MOF-Supported Heterogeneous Catalysts for Hydroformylation Reactions: A Minireview. ChemCatChem 2024, 16, e202301435. [Google Scholar] [CrossRef]
- Mokrzycki, J.; Wolak, E.; Orzechowska-Zieba, A.; Zheng, K.; Duraczyńska, D.; Marzec, M.; Fedyna, M. The Effect of Copper(II) Salt Precursor on Physicochemical Properties of HKUST-1 MOFs and Their Application as Adsorbents of Cr(III) Ions from Aqueous Solutions. J. Water Process Eng. 2024, 64, 105761. [Google Scholar] [CrossRef]
- Nimbalkar, M.N.; Bhat, B.R. Simultaneous Adsorption of Methylene Blue and Heavy Metals from Water Using Zr-MOF Having Free Carboxylic Group. J. Environ. Chem. Eng. 2021, 9, 106216. [Google Scholar] [CrossRef]
- Pancielejko, A.; Głowienke, H.; Miodyńska, M.; Gołąbiewska, A.; Klimczuk, T.; Krawczyk, M.; Matus, K.; Zaleska-Medynska, A. CuGaS2@NH2-MIL-125(Ti) Nanocomposite: Unveiling a Promising Catalyst for Photocatalytic Hydrogen Generation. Int. J. Hydrogen Energy 2024, 79, 186–198. [Google Scholar] [CrossRef]
- Bhuyan, A.; Ahmaruzzaman, M. Recent Advances in MOF-5-Based Photocatalysts for Efficient Degradation of Toxic Organic Dyes in Aqueous Medium. Next Sustain. 2024, 3, 100016. [Google Scholar] [CrossRef]
- Tamuly, P.; Moorthy, J.N. De Novo Synthesis of Acridone-Based Zn-Metal-Organic Framework (Zn-MOF) as a Photocatalyst: Application for Visible Light-Mediated Oxidation of Sulfides and Enaminones. ACS Appl. Mater. Interfaces 2024, 16, 3348–3358. [Google Scholar] [CrossRef]
- Ma, D.; Wang, G.; Lu, J.; Zeng, X.; Cheng, Y.; Zhang, Z.; Lin, N.; Chen, Q. Multifunctional Nano MOF Drug Delivery Platform in Combination Therapy. Eur. J. Med. Chem. 2023, 261, 115884. [Google Scholar] [CrossRef]
- Ahangarkolaee, A.R.; Binaeian, A.; Kasgari, A.H.; Valipour, P.; Binaeian, E. MOF-Based Prodrug Entrapped in Carboxymethyl Cellulose and Alginate Hydrogel: A Drug Delivery Platform. J. Porous Mater. 2024, 31, 2193–2203. [Google Scholar] [CrossRef]
- Nguyen, N.T.T.; Nguyen, T.T.T.; Ge, S.; Liew, R.K.; Nguyen, D.T.C.; Tran, T. Van Recent Progress and Challenges of MOF-Based Nanocomposites in Bioimaging, Biosensing and Biocarriers for Drug Delivery. Nanoscale Adv. 2024, 6, 1800–1821. [Google Scholar] [CrossRef] [PubMed]
- Zamaro, J.M.; Pérez, N.C.; Miró, E.E.; Casado, C.; Seoane, B.; Téllez, C.; Coronas, J. HKUST-1 MOF: A Matrix to Synthesize CuO and CuO–CeO2 Nanoparticle Catalysts for CO Oxidation. Chem. Eng. J. 2012, 195–196, 180–187. [Google Scholar] [CrossRef]
- Morales, E.M.C.; Méndez-Rojas, M.A.; Torres-Martínez, L.M.; Garay-Rodríguez, L.F.; López, I.; Uflyand, I.E.; Kharisov, B.I. Ultrafast Synthesis of HKUST-1 Nanoparticles by Solvothermal Method: Properties and Possible Applications. Polyhedron 2021, 210, 115517. [Google Scholar] [CrossRef]
- Zelenka, T.; Baláž, M.; Férová, M.; Diko, P.; Bednarčík, J.; Királyová, A.; Zauška, Ľ.; Bureš, R.; Sharda, P.; Király, N.; et al. The Influence of HKUST-1 and MOF-76 Hand Grinding/Mechanical Activation on Stability, Particle Size, Textural Properties and Carbon Dioxide Sorption. Sci. Rep. 2024, 14, 15386. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, K.; Guo, L.; Hu, X.; Zhou, M. Unveiling the Potential of HKUST-1: Synthesis, Activation, Advantages and Biomedical Applications. J. Mater. Chem. B 2024, 12, 2670–2690. [Google Scholar] [CrossRef]
- Nath, B. Mechanochemical Synthesis of Metal–Organic Frameworks. In Synthesis of Metal-Organic Frameworks via Water-Based Routes: A Green and Sustainable Approach; Elsevier: Amsterdam, The Netherlands, 2024; pp. 93–120. [Google Scholar] [CrossRef]
- Sondermann, L.; Smith, Q.; Strothmann, T.; Vollrath, A.; Beglau, T.H.Y.; Janiak, C. Mechanochemical Synthesis and Application of Mixed-Metal Copper–Ruthenium HKUST-1 Metal–Organic Frameworks in the Electrocatalytic Oxygen Evolution Reaction. RSC Mechanochem. 2024, 1, 296–307. [Google Scholar] [CrossRef]
- Zhang, Q.; Yan, S.; Yan, X.; Lv, Y. Recent Advances in Metal-Organic Frameworks: Synthesis, Application and Toxicity. Sci. Total Environ. 2023, 902, 165944. [Google Scholar] [CrossRef] [PubMed]
- Varsha, V.M.; Nageswaran, G. Review—Direct Electrochemical Synthesis of Metal Organic Frameworks. J. Electrochem. Soc. 2020, 167, 155527. [Google Scholar] [CrossRef]
- Isaeva, V.I.; Isaeva, V.I.; Saifutdinov, B.R.; Chernyshev, V.V.; Chernyshev, V.V.; Vergun, V.V.; Kapustin, G.I.; Kapustin, G.I.; Kurnysheva, Y.P.; Ilyin, M.M.; et al. Impact of the Preparation Procedure on the Performance of the Microporous HKUST-1 Metal-Organic Framework in the Liquid-Phase Separation of Aromatic Compounds. Molecules 2020, 25, 2648. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Kauer, M.; Guo, P.; Kunze, S.; Cwik, S.; Muhler, M.; Wang, Y.; Epp, K.; Kieslich, G.; Fischer, R.A. Impact of Synthesis Parameters on the Formation of Defects in HKUST-1. Eur. J. Inorg. Chem. 2017, 2017, 925–931. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, B.; Zhou, Q.; Zhang, T.; Wu, W. Morphology Effect of Metal-Organic Framework HKUST-1 as a Catalyst on Benzene Oxidation. Chem. Res. Chin. Univ. 2017, 33, 971–978. [Google Scholar] [CrossRef]
- Hong, S.J.; Zhang, X.N.; Sun, Z.; Zeng, T. The Potential Health Risks of N,N-Dimethylformamide: An Updated Review. J. Appl. Toxicol. 2024, 44, 1637–1646. [Google Scholar] [CrossRef]
- Becker, J.; Manske, C.; Randl, S. Green Chemistry and Sustainability Metrics in the Pharmaceutical Manufacturing Sector. Curr Opin. Green Sustain. Chem. 2022, 33, 100562. [Google Scholar] [CrossRef]
- Chen, C.; Li, B.; Zhou, L.; Xia, Z.; Feng, N.; Ding, J.; Wang, L.; Wan, H.; Guan, G. Synthesis of Hierarchically Structured Hybrid Materials by Controlled Self-Assembly of Metal-Organic Framework with Mesoporous Silica for CO2 Adsorption. ACS Appl. Mater. Interfaces 2017, 9, 23060–23071. [Google Scholar] [CrossRef]
- Stavila, V.; Volponi, J.; Katzenmeyer, A.M.; Dixon, M.C.; Allendorf, M.D. Kinetics and Mechanism of Metal–Organic Framework Thin Film Growth: Systematic Investigation of HKUST-1 Deposition on QCM Electrodes. Chem. Sci. 2012, 3, 1531–1540. [Google Scholar] [CrossRef]
- Amirjalayer, S.; Tafipolsky, M.; Schmid, R. Surface Termination of the Metal-Organic Framework HKUST-1: A Theoretical Investigation. J. Phys. Chem. Lett. 2014, 5, 3206–3210. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Ao, M.; Pham, G.H.; Sunarso, J.; Chen, Y.; Liu, J.; Wang, K.; Liu, S. Cu/ZnO Catalysts Derived from Bimetallic Metal–Organic Framework for Dimethyl Ether Synthesis from Syngas with Enhanced Selectivity and Stability. Small 2020, 16, 1906276. [Google Scholar] [CrossRef]
- Crawford, S.E.; Kim, K.J.; Yu, Y.; Ohodnicki, P.R. Rapid, Selective, Ambient Growth and Optimization of Copper Benzene-1,3,5-Tricarboxylate (Cu-BTC) Metal-Organic Framework Thin Films on a Conductive Metal Oxide. Cryst. Growth Des. 2018, 18, 2924–2931. [Google Scholar] [CrossRef]
- Loera-Serna, S.; Beltrán, H.I.; Mendoza-Sánchez, M.; Álvarez-Zeferino, J.C.; Almanza, F.; Fernández-Luqueño, F. Effect of HKUST-1 Metal–Organic Framework in Root and Shoot Systems, as Well as Seed Germination. Environ. Sci. Pollut. Res. 2024, 31, 13270–13283. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Esteban, C.; Ayala, R.; López-Cartes, C. Stability and Performance of BTC-Based MOFs for Environmental Applications. J. Solid State Chem. 2024, 339, 124956. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Rezvani Jalal, N.; Madrakian, T.; Afkhami, A.; Ghoorchian, A. In Situ Growth of Metal-Organic Framework HKUST-1 on Graphene Oxide Nanoribbons with High Electrochemical Sensing Performance in Imatinib Determination. ACS Appl. Mater. Interfaces 2020, 12, 4859–4869. [Google Scholar] [CrossRef] [PubMed]
- Martak, F.; Al Hafiz, M.R.; Sulistiono, D.O.; Rosyidah, A.; Kusumawati, Y.; Ediati, R. Direct Synthesis of Al-HKUST-1 and Its Application as Adsorbent for Removal of Congo Red in Water. Nano-Struct. Nano-Objects 2021, 27, 100773. [Google Scholar] [CrossRef]
- Xie, W.; Wan, F. Basic Ionic Liquid Functionalized Magnetically Responsive Fe3O4@HKUST-1 Composites Used for Biodiesel Production. Fuel 2018, 220, 248–256. [Google Scholar] [CrossRef]
- Farzaneh, N.; Radinekiyan, F.; Naimi-Jamal, M.R.; Dekamin, M.G. Development of New Magnetic Nanocomposite Designed by Reduced Graphene Oxide Aerogel and HKUST-1, and Its Catalytic Application in the Synthesis of Polyhydroquinoline and 1,8-Dioxo-Decahydroacridine Derivatives. Sci. Rep. 2023, 13, 22913. [Google Scholar] [CrossRef]
- Garg, D.; Rekhi, H.; Kaur, H.; Singh, K.; Malik, A.K. A Novel Method for the Synthesis of MOF-199 for Sensing and Photocatalytic Applications. J. Fluoresc. 2022, 32, 1171–1188. [Google Scholar] [CrossRef] [PubMed]
- Meda, L.; Ranghino, G.; Moretti, G.; Cerofolini, G.F. XPS Detection of Some Redox Phenomena in Cu-Zeolites. Surf. Interface Anal. 2002, 33, 516–521. [Google Scholar] [CrossRef]
- Fedyna, M.; Legutko, P.; Marzec, M.; Sojka, Z. Influence of Zeolite Framework, Copper Speciation, and Water on NO2 and N2O Formation during NH3-SCR. Appl. Catal. B Environ. Energy 2025, 361, 124632. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Zhou, Y.; Wang, Y.; Wu, Y.; Xie, Y.; Zhao, P.; Hu, X.; Fei, J. Ultra-Sensitive Electrochemical Sensor Based on In Situ Grown Ultrafine HKUST-1 Nanoparticles @ Graphite Nanosheets and Core–Shell Structured MoO3-Polypyrrole Nanowires for the Detection of Rutin in Orange Juice. Microchim. Acta 2024, 191, 393. [Google Scholar] [CrossRef] [PubMed]
- Ennis, C.; Tay, A.C.Y.; Falconer, J.L.; Lee, S.J.; Meledandri, C.J. Nanoscale Cu(II) MOFs Formed via Microemulsion: Vibrational Mode Characterization Performed Using a Combined FTIR, Synchrotron Far-IR, and Periodic DFT Approach. J. Phys. Chem. C 2021, 125, 20426–20438. [Google Scholar] [CrossRef]
- Ho, P.S.; Chong, K.C.; Lai, S.O.; Lee, S.S.; Lau, W.J.; Lu, S.Y.; Ooi, B.S. Synthesis of Cu-BTC Metal-Organic Framework for CO2 Capture via Solvent-Free Method: Effect of Metal Precursor and Molar Ratio. Aerosol Air. Qual. Res. 2022, 22, 220235. [Google Scholar] [CrossRef]
- Wijaya, C.J.; Ismadji, S.; Aparamarta, H.W.; Gunawan, S. Statistically Optimum HKUST-1 Synthesized by Room Temperature Coordination Modulation Method for the Adsorption of Crystal Violet Dye. Molecules 2021, 26, 6430. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, M.; Hu, J.; Feng, W.; Li, J.; You, Z. Highly Efficient and Selective Removal of Pb2+ by Ultrafast Synthesis of HKUST-1: Kinetic, Isotherms and Mechanism Analysis. Colloids Surf. A Physicochem. Eng. Asp. 2022, 633, 127852. [Google Scholar] [CrossRef]
- Zhao, L.; Azhar, M.R.; Li, X.; Duan, X.; Sun, H.; Wang, S.; Fang, X. Adsorption of Cerium (III) by HKUST-1 Metal-Organic Framework from Aqueous Solution. J. Colloid Interface Sci. 2019, 542, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Wang, J.; Huang, H.; Cui, Y.; Mei, D. CO Oxidation over HKUST-1 Catalysts: The Role of Defective Sites. J. Phys. Chem. C 2022, 126, 9652–9664. [Google Scholar] [CrossRef]
- Yañez-Aulestia, A.; Trejos, V.M.; Esparza-Schulz, J.M.; Ibarra, I.A.; Sánchez-González, E. Chemically Modified HKUST-1(Cu) for Gas Adsorption and Separation: Mixed-Metal and Hierarchical Porosity. ACS Appl. Mater. Interfaces 2024, 16, 65581–65591. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Liu, C.; Srinivasakannan, C.; Li, L.; Wang, Y. Synthesis of Magnetic Fe3O4-HKUST-1 Nanocomposites for Azo Dye Adsorption. Arab. J. Chem. 2023, 16, 104767. [Google Scholar] [CrossRef]
- Riccò, R.; Linder-Patton, O.; Sumida, K.; Styles, M.J.; Liang, K.; Amenitsch, H.; Doonan, C.J.; Falcaro, P. Conversion of Copper Carbonate into a Metal-Organic Framework. Chem. Mater. 2018, 30, 5630–5638. [Google Scholar] [CrossRef]
Parameters | a-HKUST-1 | c-HKUST-1 | n-HKUST-1 | s-HKUST-1 |
---|---|---|---|---|
Product yield, % | 96.3 ± 0.1 | 0 | 52.3 ± 0.2 | 21.2 ± 0.1 |
Synthesis pH, - | 3.92 ± 0.12 | 2.31 ± 0.02 | 2.96 ± 0.08 | 2.06 ± 0.03 |
Parameters | a-HKUST-1 | n-HKUST-1 | s-HKUST-1 |
---|---|---|---|
SBET, m2 g−1 | 553 | 1153 | 937 |
Vt, cm3 g−1 | 0.209 | 0.469 | 0.341 |
Vmicro, cm3 g−1 | 0.046 | 0.203 | 0.244 |
Vmicro/Vt, % | 22.0 | 43.3 | 59.5 |
Element | C | O | Cu | ||||
---|---|---|---|---|---|---|---|
Binding energy, eV | 285.0 | 286.0 | 288.8 | 291.0 | 532.0 | 533.5 | 932.5–933.5 |
Groups/Oxidation state | C-C | C-O | O-C=O | O-(C=O)-O | C-O-Cu O=C | O-C | Cu+/2+ |
a-HKUST-1 | 34.1 | 3.0 | 15.9 | 1.6 | 30.1 | 4.8 | 10.6 |
n-HKUST-1 | 30.8 | 6.5 | 16.2 | 2.1 | 27.3 | 6.6 | 10.4 |
s-HKUST-1 | 33.7 | 4.3 | 15.9 | 1.7 | 28.2 | 5.7 | 10.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klęba, J.; Zheng, K.; Duraczyńska, D.; Marzec, M.; Fedyna, M.; Mokrzycki, J. Insights into HKUST-1 Metal-Organic Framework’s Morphology and Physicochemical Properties Induced by Changing the Copper(II) Salt Precursors. Materials 2025, 18, 676. https://doi.org/10.3390/ma18030676
Klęba J, Zheng K, Duraczyńska D, Marzec M, Fedyna M, Mokrzycki J. Insights into HKUST-1 Metal-Organic Framework’s Morphology and Physicochemical Properties Induced by Changing the Copper(II) Salt Precursors. Materials. 2025; 18(3):676. https://doi.org/10.3390/ma18030676
Chicago/Turabian StyleKlęba, Joanna, Kun Zheng, Dorota Duraczyńska, Mateusz Marzec, Monika Fedyna, and Jakub Mokrzycki. 2025. "Insights into HKUST-1 Metal-Organic Framework’s Morphology and Physicochemical Properties Induced by Changing the Copper(II) Salt Precursors" Materials 18, no. 3: 676. https://doi.org/10.3390/ma18030676
APA StyleKlęba, J., Zheng, K., Duraczyńska, D., Marzec, M., Fedyna, M., & Mokrzycki, J. (2025). Insights into HKUST-1 Metal-Organic Framework’s Morphology and Physicochemical Properties Induced by Changing the Copper(II) Salt Precursors. Materials, 18(3), 676. https://doi.org/10.3390/ma18030676