Conductive Gels: Preparation, Properties and Applications

A special issue of Gels (ISSN 2310-2861). This special issue belongs to the section "Gel Applications".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 1945

Special Issue Editors


E-Mail Website
Guest Editor
Department of Conducting Polymers, Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
Interests: conducting polymers; composites; sensors; energy storage devices; water purification

E-Mail Website
Guest Editor
Research Group “Development and Modeling of Novel Nanoporous Materials”, Hamburg University of Technology, 21073 Hamburg, Germany
Interests: engineering of porous materials; biopolymers; aerogels; cryo processes; coarse-grained modeling
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Conducting gels represent a broad group of materials, in which conducting components of various natures, responsible for the electrical properties of a material, are incorporated or assembled into a network with a developed surface and good mechanical stability. In recent years, their attractive and highly tunable features, including their flexibility, self-healing capability, stimuli-responsive behavior, interconnected porous structure and high specific surface area, have been successfully used for water purification, energy storage, wearable electronics or biomedical applications.

The aim of the present Special Issue is to highlight the recent advances in basic and applied research on gels with electronic conductivity, which includes (but is not limited to) novel approaches for their design, synthesis and potential applications. Original research articles, short communications and reviews are welcome.

Dr. Konstantin Milakin
Dr. Pavel Gurikov
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Gels is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hydrogels
  • aerogels
  • cryogels
  • composites
  • electronic conductivity
  • conducting polymers
  • carbon materials
  • conducting fillers
  • self-healing
  • stimuli-responsive behavior
  • sensors
  • energy storage
  • drug delivery
  • water purification

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 5352 KiB  
Article
Facile Synthesis of Bioactive Silver Nanocomposite Hydrogels with Electro-Conductive and Wound-Healing Properties
by Solaiman, Tahmina Foyez, Syed Abdul Monim, Aminur Rahman and Abu Bin Imran
Gels 2025, 11(2), 84; https://doi.org/10.3390/gels11020084 - 22 Jan 2025
Viewed by 1516
Abstract
Bioactive metal and metal oxide-based nanocomposite hydrogels exhibit significant antibacterial properties by interacting with microbial DNA and preventing bacterial replication. They offer potential applications as coating materials for human or animal skin injuries to prevent microbial growth and promote healing. In this study, [...] Read more.
Bioactive metal and metal oxide-based nanocomposite hydrogels exhibit significant antibacterial properties by interacting with microbial DNA and preventing bacterial replication. They offer potential applications as coating materials for human or animal skin injuries to prevent microbial growth and promote healing. In this study, silver nanoparticles (AgNPs) were synthesized using a chemical reduction method and incorporated into a polymer network to fabricate silver nanocomposite hydrogels (AgNCHGs) through a simple free radical polymerization method. N-isopropylacrylamide (NIPA), which has lower critical solution temperature (LCST) at about body temperature, or acrylamide (AAm) was used as the main monomer, while one or more ionic co-monomers, such as acrylic acid (AAc) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS), were incorporated to obtain AgNCHGs. AgNPs were introduced into the hydrogel network via three different approaches. In the first method, the synthesized hydrogel was immersed in a silver nitrate (AgNO3) solution and reduced in situ using sodium borohydride (NaBH4) as a reducing agent. The second method involved mixing AgNO3 with gel precursors before reduction with NaBH4 to form AgNPs within the hydrogel. The final approach synthesized the AgNCHGs directly in a dispersion of pre-fabricated AgNPs. The incorporation of AgNPs in different AgNCHGs was confirmed through various characterization techniques. Varying temperature and pH conditions can trigger the release of bioactive AgNPs from the hydrogels. Furthermore, the antimicrobial and wound-healing properties of the AgNCHGs were evaluated against bacteria and fungi, demonstrating their potential in biomedical applications. In addition, AgNCHGs exhibit excellent electrical conductivity. The electrical conductivity of the hydrogels can be finely tuned by adjusting the concentration of AgNPs, making these materials promising candidates for energy, sensor, and stretchable electronics applications. This study presents facile synthesis methods of AgNCHGs, which integrate bioactivity, wound healing, and electrical conductivity in the same matrix, addressing a significant challenge in designing multifunctional hydrogels for next-generation technologies. Full article
(This article belongs to the Special Issue Conductive Gels: Preparation, Properties and Applications)
Show Figures

Figure 1

Back to TopTop