Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,408)

Search Parameters:
Keywords = metabolites in blood

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3212 KiB  
Article
Supplementation with Live and Heat-Treated Lacticaseibacillus paracasei NB23 Enhances Endurance and Attenuates Exercise-Induced Fatigue in Mice
by Mon-Chien Lee, Ting-Yin Cheng, Ping-Jui Lin, Ting-Chun Lin, Chia-Hsuan Chou, Chao-Yuan Chen and Chi-Chang Huang
Nutrients 2025, 17(15), 2568; https://doi.org/10.3390/nu17152568 - 7 Aug 2025
Abstract
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate [...] Read more.
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate clearance of fatigue-associated by-products. Objective: This study aimed to determine whether live or heat-inactivated Lacticaseibacillus paracasei NB23 can enhance exercise endurance and attenuate fatigue biomarkers in a murine model. Methods: Forty male Institute of Cancer Research (ICR) mice were randomized into four groups (n = 10 each) receiving daily gavage for six weeks with vehicle, heat-killed NB23 (3 × 1010 cells/mouse/day), low-dose live NB23 (1 × 1010 CFU/mouse/day), or high-dose live NB23 (3 × 1010 CFU/mouse/day). Forelimb grip strength and weight-loaded swim-to-exhaustion tests assessed performance. Blood was collected post-exercise to measure serum lactate, ammonia, blood urea nitrogen (BUN), and creatine kinase (CK). Liver and muscle glycogen content was also quantified, and safety was confirmed by clinical-chemistry panels and histological examination. Results: NB23 treatment produced dose-dependent improvements in grip strength (p < 0.01) and swim endurance (p < 0.001). All NB23 groups exhibited significant reductions in post-exercise lactate (p < 0.0001), ammonia (p < 0.001), BUN (p < 0.001), and CK (p < 0.0001). Hepatic and muscle glycogen stores rose by 41–59% and 65–142%, respectively (p < 0.001). No changes in food or water intake, serum clinical-chemistry parameters, or tissue histology were observed. Conclusions: Our findings suggest that both live and heat-treated L. paracasei NB23 may contribute to improved endurance performance, increased energy reserves, and faster clearance of fatigue-related metabolites in our experimental model. However, these results should be interpreted cautiously given the exploratory nature and limitations of our study. Full article
Show Figures

Figure 1

15 pages, 787 KiB  
Review
Bradykinin Receptors in Metabolic Disorders: A Comprehensive Review
by Jéssica Branquinho, Raquel Leão Neves, Michael Bader and João Bosco Pesquero
Drugs Drug Candidates 2025, 4(3), 37; https://doi.org/10.3390/ddc4030037 - 5 Aug 2025
Viewed by 60
Abstract
The kallikrein–kinin system and its B1 and B2 receptors are key regulators in metabolic disorders such as obesity, diabetes, and insulin resistance. Obesity, a chronic and multifactorial condition often associated with comorbidities like type 2 diabetes and dyslipidemia, remains poorly understood at the [...] Read more.
The kallikrein–kinin system and its B1 and B2 receptors are key regulators in metabolic disorders such as obesity, diabetes, and insulin resistance. Obesity, a chronic and multifactorial condition often associated with comorbidities like type 2 diabetes and dyslipidemia, remains poorly understood at the metabolic level. The kinin B2 receptor (B2R) is involved in blood pressure regulation and glucose metabolism, promoting glucose uptake in skeletal muscle via bradykinin. Studies in B2R-KO mice demonstrate that the absence of this receptor predisposes animals to glucose intolerance under a high-fat diet and impairs adaptive thermogenesis, indicating a protective role for B2R in metabolic homeostasis and insulin sensitivity. In contrast, the kinin B1 receptor (B1R) is inducible under pathological conditions and is activated by kinin metabolites. Mouse models lacking B1R exhibit improved metabolic profiles, including protection against high-fat diet-induced obesity and insulin resistance, enhanced energy expenditure, and increased leptin sensitivity. B1R inactivation in adipocytes enhances insulin responsiveness and glucose tolerance, supporting its role in the development of insulin resistance. Moreover, B1R deficiency improves energy metabolism and thermogenic responses to adrenergic and cold stimuli, promoting the activation of brown adipose tissue and the browning of white adipose tissue. Collectively, these findings suggest that B1R and B2R represent promising therapeutic targets for the treatment of metabolic disorders. Full article
(This article belongs to the Special Issue Drugs of the Kallikrein-Kinin System)
Show Figures

Figure 1

19 pages, 2363 KiB  
Article
Can Biomarkers Predict Kidney Function Recovery and Mortality in Patients with Critical COVID-19 and Acute Kidney Injury?
by Noemí Del Toro-Cisneros, José C. Páez-Franco, Miguel A. Martínez-Rojas, Isaac González-Soria, Juan Antonio Ortega-Trejo, Hilda Sánchez-Vidal, Norma A. Bobadilla, Alfredo Ulloa-Aguirre and Olynka Vega-Vega
Diagnostics 2025, 15(15), 1960; https://doi.org/10.3390/diagnostics15151960 - 5 Aug 2025
Viewed by 139
Abstract
Background/Objectives: COVID-19 is a systemic viral infection that may lead to serious complications including acute kidney injury that requires kidney replacement therapy. The primary aim of this study was to evaluate urinary SerpinA3 (uSerpinA3) excretion as a biomarker of kidney recovery at [...] Read more.
Background/Objectives: COVID-19 is a systemic viral infection that may lead to serious complications including acute kidney injury that requires kidney replacement therapy. The primary aim of this study was to evaluate urinary SerpinA3 (uSerpinA3) excretion as a biomarker of kidney recovery at 90 days, and the mortality in patients with critical COVID-19 and AKI requiring kidney replacement therapy (KRT). Methods: The study included patients with critical COVID-19 on invasive mechanical ventilation (IMV) requiring KRT. Blood and urine samples were obtained when KRT was initiated (day zero), and thereafter on days 1, 3, 7, and 14 post-replacement. uSerpinA3, kidney injury molecule-1 (uKIM-1), and neutrophil gelatinase-associated lipocalin (uNGAL) were measured in urine, and interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor alpha (TNF-α) in peripheral blood. In addition, metabolomics in sample days zero and 3, and in the survivors on sample day 90 was performed by employing gas chromatography coupled with mass spectrometry. Results: A total of 60 patients were recruited, of whom 29 (48%) survived hospitalization and recovered kidney function by day 90. In the survivors, 79% presented complete recovery (CRR) and the remaining (21%) recovered partially (PRR). In terms of uSerpinA3, levels on days 7 and 14 predicted CRR, with AUC values of 0.68 (p = 0.041) and 0.71 (p = 0.030), respectively, as well as mortality, with AUC values of 0.75 (p = 0.007) and 0.76 (p = 0.015), respectively. Among the other biomarkers, the excretion of uKIM-1 on day zero of KRT had a superior performance as a CRR predictor [(AUC, 0.71 (p = 0.017)], and as a mortality predictor [AUC, 0.68 (p = 0.028)]. In the metabolomics analysis, we identified four distinct profiles; the metabolite that maintained statistical significance in predicting mortality was p-cresol glucuronide. Conclusions: This study strongly suggests that uSerpinA3 and uKIM-1 can predict CRR and mortality in patients with critical COVID-19 and AKI requiring KRT. Metabolic analysis appears promising for identifying affected pathways and their clinical impact in this population. Full article
Show Figures

Figure 1

16 pages, 1991 KiB  
Article
Antihypertensive Effects of Lotus Seed (Nelumbo nucifera Gaertn.) Extract via eNOS Upregulation and Oxidative Stress Reduction in L-NAME-Induced Hypertensive Rats
by Anjaree Inchan, Tippaporn Bualeong, Worasak Kaewkong, Nitra Nuengchamnong, Phapada Apaikawee, Pakaporn Sa-Nguanpong, Wiriyaporn Sumsakul, Natthawut Charoenphon, Usana Chatturong, Watcharakorn Deetud and Krongkarn Chootip
Pharmaceuticals 2025, 18(8), 1156; https://doi.org/10.3390/ph18081156 - 4 Aug 2025
Viewed by 192
Abstract
Background/Objectives: Nelumbo nucifera Gaertn. (lotus) seeds have traditionally been used to treat hypertension, though their mechanisms remain unclear. This study investigated the antihypertensive effects of lotus seed extract (LSE) and its mechanisms in rats with Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. [...] Read more.
Background/Objectives: Nelumbo nucifera Gaertn. (lotus) seeds have traditionally been used to treat hypertension, though their mechanisms remain unclear. This study investigated the antihypertensive effects of lotus seed extract (LSE) and its mechanisms in rats with Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Methods: Male Sprague Dawley rats received L-NAME (40 mg/kg/day) in drinking water and were treated orally with LSE (5, 10, or 100 mg/kg/day), captopril (5 mg/kg/day), or a combination of LSE and captopril (2.5 mg/kg/day each) for 5 weeks. Hemodynamic parameters and histological changes in the left ventricle and aorta were assessed. Mechanistic studies included measurements of plasma nitric oxide (NO) metabolites, malondialdehyde (MDA), superoxide dismutase (SOD) activity, angiotensin II (Ang II), angiotensin-converting enzyme (ACE) activity, and protein expression via western blot. Results: L-NAME elevated systolic blood pressure and induced cardiovascular remodeling, oxidative stress, and renin-angiotensin system activation. LSE treatment reduced blood pressure, improved antioxidant status, increased NO bioavailability, and downregulated gp91phox and AT1R expression. The combination of low-dose LSE and captopril produced stronger effects than LSE alone, with efficacy comparable to captopril. Conclusions: These findings suggest that LSE exerts antihypertensive effects via antioxidant activity and inhibition of the renin-angiotensin system, supporting its potential as an adjunct therapy for hypertension. Full article
Show Figures

Graphical abstract

29 pages, 3037 KiB  
Review
Methods for GC/MS Analysis of the Most Commonly Seized Drugs of Abuse and Their Metabolites in Biological Samples
by Ivan Kojić, Violeta M. Đurović, Yulia A. Smyatskaya, Nemanja Brkljača, Angi E. Skhvediani, Andrey V. Vasin, Ksenija Stojanović and Saša D. Đurović
Chemosensors 2025, 13(8), 286; https://doi.org/10.3390/chemosensors13080286 - 4 Aug 2025
Viewed by 201
Abstract
Gas chromatography with mass spectrometry (GC-MS) is a common analytical technique used for identifying and quantifying drugs of abuse, as well as their metabolites, extracted from biological samples. Depending on the properties of the analyzed compounds, particularly in the case of metabolites, derivatization [...] Read more.
Gas chromatography with mass spectrometry (GC-MS) is a common analytical technique used for identifying and quantifying drugs of abuse, as well as their metabolites, extracted from biological samples. Depending on the properties of the analyzed compounds, particularly in the case of metabolites, derivatization is often necessary. In this article, we will address the definition, properties, sample preparation, and GC-MS analysis of the most common drugs of abuse in their native (seized) form and their metabolites in biological samples (urine, blood, hair, and tissue). Drugs that will be described are: amphetamines and their derivatives, cannabinoids, cocaine, opioids, lysergide (LSD), benzodiazepines, gamma-hydroxybutyric acid (GHB), phencyclidine (PCP), mescaline, psilocin, and psilocybin. The literature review showed that the analysis of the drugs of abuse requires a simple extraction procedure and analysis with or without derivatization. However, the analysis of the metabolites requires removing the interferences from the matrix (proteins, other compounds, water, and other species that may interfere with the analysis or contaminate the GC-MS). This review article will provide insights into the available procedures for sample preparation and analytical methods, helping authors gain the necessary information and select the desired procedure for analysis. Full article
Show Figures

Figure 1

17 pages, 1812 KiB  
Article
Systemic Metabolic Alterations Induced by Etodolac in Healthy Individuals
by Rajaa Sebaa, Reem H. AlMalki, Hatouf Sukkarieh, Lina A. Dahabiyeh, Maha Al Mogren, Tawfiq Arafat, Ahmed H. Mujamammi, Essa M. Sabi and Anas M. Abdel Rahman
Pharmaceuticals 2025, 18(8), 1155; https://doi.org/10.3390/ph18081155 - 4 Aug 2025
Viewed by 173
Abstract
Background/Objective: Pharmacological interventions often exert systemic effects beyond their primary targets, underscoring the need for a comprehensive evaluation of their metabolic impact. Etodolac is a nonsteroidal anti-inflammatory drug (NSAID) that alleviates pain, fever, and inflammation by inhibiting cyclooxygenase-2 (COX-2), thereby reducing prostaglandin synthesis. [...] Read more.
Background/Objective: Pharmacological interventions often exert systemic effects beyond their primary targets, underscoring the need for a comprehensive evaluation of their metabolic impact. Etodolac is a nonsteroidal anti-inflammatory drug (NSAID) that alleviates pain, fever, and inflammation by inhibiting cyclooxygenase-2 (COX-2), thereby reducing prostaglandin synthesis. While its pharmacological effects are well known, the broader metabolic impact and potential mechanisms underlying improved clinical outcomes remain underexplored. Untargeted metabolomics, which profiles the metabolome without prior selection, is an emerging tool in clinical pharmacology for elucidating drug-induced metabolic changes. In this study, untargeted metabolomics was applied to investigate metabolic changes following a single oral dose of etodolac in healthy male volunteers. By analyzing serial blood samples over time, we identified endogenous metabolites whose concentrations were positively or inversely associated with the drug’s plasma levels. This approach provides a window into both therapeutic pathways and potential off-target effects, offering a promising strategy for early-stage drug evaluation and multi-target discovery using minimal human exposure. Methods: Thirty healthy participants received a 400 mg dose of Etodolac. Plasma samples were collected at five time points: pre-dose, before Cmax, at Cmax, after Cmax, and 36 h post-dose (n = 150). Samples underwent LC/MS-based untargeted metabolomics profiling and pharmacokinetic analysis. A total of 997 metabolites were significantly dysregulated between the pre-dose and Cmax time points, with 875 upregulated and 122 downregulated. Among these, 80 human endogenous metabolites were identified as being influenced by Etodolac. Results: A total of 17 metabolites exhibited time-dependent changes closely aligned with Etodolac’s pharmacokinetic profile, while 27 displayed inverse trends. Conclusions: Etodolac influences various metabolic pathways, including arachidonic acid metabolism, sphingolipid metabolism, and the biosynthesis of unsaturated fatty acids. These selective metabolic alterations complement its COX-2 inhibition and may contribute to its anti-inflammatory effects. This study provides new insights into Etodolac’s metabolic impact under healthy conditions and may inform future therapeutic strategies targeting inflammation. Full article
(This article belongs to the Special Issue Advances in Drug Analysis and Drug Development, 2nd Edition)
Show Figures

Figure 1

22 pages, 2692 KiB  
Article
Differences in the Profile of Aromatic Metabolites in the Corresponding Blood Serum and Cerebrospinal Fluid Samples of Patients with Secondary Bacterial Meningitis
by Alisa K. Pautova, Peter A. Meinarovich, Vladislav E. Zakharchenko, Pavel D. Sobolev, Natalia A. Burnakova and Natalia V. Beloborodova
Metabolites 2025, 15(8), 527; https://doi.org/10.3390/metabo15080527 - 3 Aug 2025
Viewed by 149
Abstract
Background: Secondary (nosocomial) bacterial meningitis remains a serious problem in patients with severe brain damage. The aim of this study was to assess the differences in the aromatic metabolites of tryptophan, phenylalanine, and tyrosine, in serum and cerebrospinal fluid (CSF) samples collected simultaneously [...] Read more.
Background: Secondary (nosocomial) bacterial meningitis remains a serious problem in patients with severe brain damage. The aim of this study was to assess the differences in the aromatic metabolites of tryptophan, phenylalanine, and tyrosine, in serum and cerebrospinal fluid (CSF) samples collected simultaneously from patients with long-term sequelae of severe brain damage with suspected secondary bacterial meningitis. Methods: Group I included 16 paired serum and CSF samples from patients (N = 11) without secondary bacterial meningitis; group II included 13 paired serum and CSF samples from patients (N = 4) with secondary bacterial meningitis. Results: The median concentrations of serum 5-hydroxyindole-3-acetic, CSF 4-hydroxyphenyllactic (p-HPhLA), CSF 4-hydroxyphenylacetic, CSF phenyllactic, and indole-3-lactic acids in serum and CSF were statistically higher in group II compared to group I (p-value ≤ 0.03), while 4-hydroxyphenylpropionic and indole-3-acetic in serum were lower in group II compared to group I (p-value = 0.04). In group I, p-HPhLA serum concentrations were greater than or equal to its CSF concentrations in 14 paired samples; in group II, p-HPhLA concentrations in serum were lower than in CSF in all paired samples. Conclusions: The obtained results demonstrate the differences in the profile of aromatic metabolites in serum and CSF and may confirm the hypothesis of the p-HPhLA microbial origin in the CSF of patients with secondary bacterial meningitis. Full article
Show Figures

Graphical abstract

21 pages, 4988 KiB  
Article
Ozone Exposure Induces Prediabetic Symptoms Through Hepatic Glycogen Metabolism and Insulin Resistance
by Yuchai Tian, Xiaoyun Wu, Zhihua Gong, Xiaomin Liang, Huizhen Zhu, Jiyue Zhang, Yangcheng Hu, Bin Li, Pengchong Xu, Kaiyue Guo and Huifeng Yue
Toxics 2025, 13(8), 652; https://doi.org/10.3390/toxics13080652 - 31 Jul 2025
Viewed by 299
Abstract
(1) Background: Epidemiological studies link ozone (O3) exposure to diabetes risk, but mechanisms and early biomarkers remain unclear. (2) Methods: Female mice exposed to 0.5/1.0 ppm O3 were assessed for glucose tolerance and HOMA (homeostasis model assessment) index. Genes related [...] Read more.
(1) Background: Epidemiological studies link ozone (O3) exposure to diabetes risk, but mechanisms and early biomarkers remain unclear. (2) Methods: Female mice exposed to 0.5/1.0 ppm O3 were assessed for glucose tolerance and HOMA (homeostasis model assessment) index. Genes related to impaired glucose tolerance and insulin resistance were screened through the Comparative Toxicogenomics Database (CTD), and verified using quantitative real-time PCR. In addition, liver histopathological observations and the determination of basic biochemical indicators were conducted, and targeted metabolomics analysis was performed on the liver to verify glycogen levels and gene expression. In vitro validation was conducted with HepG2 and Min6 cell lines. (3) Results: Fasting blood glucose and insulin resistance were elevated following O3 exposure. Given that the liver plays a critical role in glucose metabolism, we further investigated hepatocyte apoptosis and alterations in glycogen metabolism, including reduced glycogen levels and genetic dysregulation. Metabolomics analysis revealed abnormalities in fructose metabolism and glycogen synthesis in the livers of the O3-exposed group. In vitro studies demonstrated that oxidative stress enhances both liver cell apoptosis and insulin resistance in pancreatic islet β cells. (4) Conclusions: O3 triggers prediabetes symptoms via hepatic metabolic dysfunction and hepatocyte apoptosis. The identified metabolites and genes offer potential as early biomarkers and therapeutic targets. Full article
Show Figures

Graphical abstract

9 pages, 1703 KiB  
Article
Plasma/Serum Electrolyte and Metabolite Testing on Blood Gas Analyzer ABL837, a New Application
by Vera Y. Chen, Rachel Fullarton and Yu Chen
Diagnostics 2025, 15(15), 1923; https://doi.org/10.3390/diagnostics15151923 - 31 Jul 2025
Viewed by 220
Abstract
Background: Core laboratory chemistry analyzers typically use plasma and serum samples, while blood gas instruments use whole blood for electrolyte and metabolite tests. Due to high costs to back up the core lab chemistry analyzers, especially in the remote small community hospitals, [...] Read more.
Background: Core laboratory chemistry analyzers typically use plasma and serum samples, while blood gas instruments use whole blood for electrolyte and metabolite tests. Due to high costs to back up the core lab chemistry analyzers, especially in the remote small community hospitals, we have verified the interchangeability of serum/plasma electrolytes and metabolites on blood gas instruments (GEM4000 and Radiometer ABL90) vs. chemistry analyzers. In this study, we sought to extend the investigation to another blood gas device—Radiometer ABL837. Methods: One plasma separator tube and one serum separator tube were drawn from 20 apparently healthy individuals and outpatients and 20 intensive care unit patients. All the samples were run on Roche Cobas8000, and then were run on three Radiometer ABL837 analyzers for sodium (Na+), potassium (K+), chloride (Cl), glucose, lactate (plasma only), and creatinine parameters. Paired measurements between the ABL837 and Cobas8000 were compared, and their difference were assessed for statistical and clinical significance. Results: ABL837 demonstrated statistical significance (p < 0.05) vs. Cobas8000 on all the plasma and serum parameters. However, no parameter differences were found when comparing the plasma/serum results on ABL837 to those on Cobas8000, indicating that none were clinically significant. ABL837 also demonstrated good–excellent correlations with Cobas8000 on all the parameters. Conclusions: When comparing metabolite and electrolyte values with plasma and serum sample types, the ABL837 blood gas instruments and Cobas 8000 chemistry analyzer are interchangeable. These data proves that ABL837 can be used as a backup for a chemistry analyzer in measuring plasma and serum electrolyte and metabolite concentrations. Full article
(This article belongs to the Special Issue Recent Advances in Clinical Biochemistry)
Show Figures

Figure 1

21 pages, 1623 KiB  
Article
Derivation of Human Toxicokinetic Parameters and Chemical-Specific Adjustment Factor of Citrinin Through a Human Intervention Trial and Hierarchical Bayesian Population Modeling
by Lia Visintin, Camilla Martino, Sarah De Saeger, Eugenio Alladio, Marthe De Boevre and Weihsueh A. Chiu
Toxins 2025, 17(8), 382; https://doi.org/10.3390/toxins17080382 - 31 Jul 2025
Viewed by 248
Abstract
Background: Citrinin (CIT) is a mycotoxin produced by various fungi contaminating stored cereals and fruits. While biomonitoring and food occurrence data indicate widespread exposure, its public health risks remain unclear due to the lack of human toxicokinetic (TK) data. Methods: A UHPLC-MS/MS method [...] Read more.
Background: Citrinin (CIT) is a mycotoxin produced by various fungi contaminating stored cereals and fruits. While biomonitoring and food occurrence data indicate widespread exposure, its public health risks remain unclear due to the lack of human toxicokinetic (TK) data. Methods: A UHPLC-MS/MS method was validated for CIT quantification in capillary blood (VAMS Mitra® tips), feces, and urine obtaining LLOQs ≤ 0.05 ng/mL. A human TK study was conducted following a single oral bolus of 200 ng/kg bw CIT. Individual capillary blood (VAMS Mitra® tips), feces, and urine samples were collected for 48 h after exposure. Samples were analyzed to determine CIT’s TK profile. Results: TK modeling was performed using a multi-compartmental structure with a hierarchical Bayesian population approach, allowing robust parameter estimation despite the lack of standards for CIT metabolites. Conclusions: The derived TK parameters align with preliminary human data and significantly advance CIT exposure assessment via biomonitoring. A human inter-individual toxicokinetic variability (HKAF) of 1.92 was calculated based on the derived AUC, indicating that EFSA’s current default uncertainty factor for TK variability is adequately protective for at least 95% of the population. Full article
(This article belongs to the Special Issue Mycotoxins in Food and Feeds: Human Health and Animal Nutrition)
Show Figures

Figure 1

17 pages, 458 KiB  
Article
Effects of Chestnut Tannin Extract on Enteric Methane Emissions, Blood Metabolites and Lactation Performance in Mid-Lactation Cows
by Radiša Prodanović, Dušan Bošnjaković, Ana Djordjevic, Predrag Simeunović, Sveta Arsić, Aleksandra Mitrović, Ljubomir Jovanović, Ivan Vujanac, Danijela Kirovski and Sreten Nedić
Animals 2025, 15(15), 2238; https://doi.org/10.3390/ani15152238 - 30 Jul 2025
Viewed by 153
Abstract
Dietary tannin supplementation represents a potential strategy to modulate rumen fermentation and enhance lactation performance in dairy cows, though responses remain inconsistent. A 21-day feeding trial was conducted to evaluate the effect of chestnut tannin (CNT) extract on the enteric methane emissions (EME), [...] Read more.
Dietary tannin supplementation represents a potential strategy to modulate rumen fermentation and enhance lactation performance in dairy cows, though responses remain inconsistent. A 21-day feeding trial was conducted to evaluate the effect of chestnut tannin (CNT) extract on the enteric methane emissions (EME), blood metabolites, and milk production traits in mid-lactation dairy cows. Thirty-six Holstein cows were allocated to three homogeneous treatment groups: control (CNT0, 0 g/d CNT), CNT40 (40 g/d CNT), and CNT80 (80 g/d CNT). Measurements of EME, dry matter intake (DMI), milk yield (MY), and blood and milk parameters were carried out pre- and post-21-day supplementation period. Compared with the no-additive group, the CNT extract reduced methane production, methane yield, and methane intensity in CNT40 and CNT80 (p < 0.001). CNT40 and CNT80 cows exhibited lower blood urea nitrogen (p = 0.019 and p = 0.002) and elevated serum insulin (p = 0.003 and p < 0.001) and growth hormone concentrations (p = 0.046 and p = 0.034), coinciding with reduced aspartate aminotransferase (p = 0.016 and p = 0.045), and lactate dehydrogenase (p = 0.011 and p = 0.008) activities compared to control. However, CNT80 had higher circulating NEFA and BHBA than CNT0 (p = 0.003 and p = 0.004) and CNT40 (p = 0.035 and p = 0.019). The blood glucose, albumin, and total bilirubin concentrations were not affected. MY and fat- and protein-corrected milk (FPCM), MY/DMI, and FPCM/DMI were higher in both CNT40 (p = 0.004, p = 0.003, p = 0.014, p = 0.010) and CNT80 (p = 0.002, p = 0.003, p = 0.008, p = 0.013) cows compared with controls. Feeding CNT80 resulted in higher protein content (p = 0.015) but lower fat percentage in milk (p = 0.004) compared to CNT0. Milk urea nitrogen and somatic cell counts were significantly lower in both CNT40 (p < 0.001, p = 0.009) and CNT80 (p < 0.001 for both) compared to CNT0, while milk lactose did not differ between treatments. These findings demonstrate that chestnut tannin extract effectively mitigates EME while enhancing lactation performance in mid-lactation dairy cows. Full article
(This article belongs to the Special Issue Advances in Nutrition and Feeding Strategies for Dairy Cows)
Show Figures

Figure 1

16 pages, 1702 KiB  
Article
Does Salt Form Matter? A Pilot Randomized, Double-Blind, Crossover Pharmacokinetic Comparison of Crystalline and Regular Glucosamine Sulfate in Healthy Volunteers
by Chuck Chang, Afoke Ibi, Yiming Zhang, Min Du, Yoon Seok Roh, Robert O’Brien and Julia Solnier
Nutrients 2025, 17(15), 2491; https://doi.org/10.3390/nu17152491 - 30 Jul 2025
Viewed by 302
Abstract
Background: Crystalline glucosamine sulfate (cGS) claims to be a stabilized form of glucosamine sulfate with a defined crystalline structure intended to enhance chemical stability. It is proposed to offer pharmacokinetic advantages over regular glucosamine sulfate (rGS) which is stabilized with potassium or [...] Read more.
Background: Crystalline glucosamine sulfate (cGS) claims to be a stabilized form of glucosamine sulfate with a defined crystalline structure intended to enhance chemical stability. It is proposed to offer pharmacokinetic advantages over regular glucosamine sulfate (rGS) which is stabilized with potassium or sodium chloride. However, comparative human bioavailability data are limited. Since both forms dissociate in gastric fluid into constituent ions, the impact of cGS formulation on absorption remains uncertain. This pilot study aimed to compare the bioavailability of cGS and rGS using a randomized, double-blind, crossover design. Methods: Ten healthy adults received a single 1500 mg oral dose of either cGS or rGS with a 7-day washout between interventions. Capillary blood samples were collected over 24 h. Glucosamine and its metabolite concentrations were quantified by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS), and pharmacokinetic parameters—including maximum concentration (Cmax), time to reach Cmax (Tmax), and area under the curve (AUC)—were calculated. Results: Mean AUC0–24, Cmax, Tmax, and T½ values for glucosamine and glucosamine-6-sulfate (GlcN-6-S) were comparable between cGS and rGS. Although the AUC0–24 for glucosamine was modestly higher with rGS (18,300 ng·h/mL) than with cGS (12,900 ng·h/mL), the difference was not statistically significant (p = 0.136). GlcN-6-S exposure was also similar between formulations (rGS: 50,700 ng·h/mL; cGS: 50,600 ng·h/mL), with a geometric mean ratio of 1.39, a delayed Tmax (6–8 h) and longer half-life, consistent with its role as a downstream metabolite. N-acetylglucosamine levels remained stable, indicating potential homeostatic regulation. Conclusions: This pilot study found no significant pharmacokinetic advantage of cGS over rGS. These preliminary findings challenge claims of cGS’ pharmacokinetic superiority, although the small sample size limits definitive conclusions. Larger, adequately powered studies are needed to confirm these results. Full article
(This article belongs to the Special Issue Bone-Health-Promoting Bioactive Nutrition)
Show Figures

Graphical abstract

11 pages, 944 KiB  
Article
Amesilide, a New Bicyclic Polyketide from the Marine Fungus Amesia nigricolor MUT6601
by Giang Nam Pham, Matteo Florio Furno, Juan A. Garcia-Sanchez, Patrick Munro, Fatouma Mohamed Abdoul-Latif, Laurent Boyer, Giovanna Cristina Varese and Mohamed Mehiri
Molecules 2025, 30(15), 3169; https://doi.org/10.3390/molecules30153169 - 29 Jul 2025
Viewed by 268
Abstract
A new bicyclic polyketide, amesilide (1), along with the previously reported metabolites, chamisides A (2), B (3), and E (4), chaetoconvosins B (5) and C (6), and chaetochromins A (7 [...] Read more.
A new bicyclic polyketide, amesilide (1), along with the previously reported metabolites, chamisides A (2), B (3), and E (4), chaetoconvosins B (5) and C (6), and chaetochromins A (7) and B (8), were isolated from the marine fungus Amesia nigricolor MUT6601. The structures of the compounds were determined by extensive spectrometric (HRMS) and spectroscopic (1D and 2D NMR) analyses, as well as specific rotation. Absolute configurations of the stereogenic centers of amesilide (1) were determined by a comparison of its experimental circular dichroism (CD) spectrum with its time-dependent density functional theory (TD-DFT) electronic circular dichroism (ECD) spectra. Among them, chaetochromins A (7) and B (8) showed strong antibacterial activity against Staphylococcus aureus S25 (MBC values of 12.50 µM and MIC values of 6.25 µM) and a moderate cytotoxicity against monocytes (THP-1) and peripheral blood cells (PBMC) (IC50 values of 33.65–40.01 µM). Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

19 pages, 2696 KiB  
Article
Cell Type-Specific Effects of Fusarium Mycotoxins on Primary Neurons and Astroglial Cells
by Viktória Szentgyörgyi, Brigitta Tagscherer-Micska, Anikó Rátkai, Katalin Schlett, Norbert Bencsik and Krisztián Tárnok
Toxins 2025, 17(8), 368; https://doi.org/10.3390/toxins17080368 - 25 Jul 2025
Viewed by 316
Abstract
Fumonisin B1, deoxynivalenol (DON), and zearalenone (ZEA) are toxic secondary metabolites produced by Fusarium molds. These mycotoxins are common food and feed pollutants and represent a risk to human and animal health. Although the mycotoxins produced by this genus can cross the blood–brain [...] Read more.
Fumonisin B1, deoxynivalenol (DON), and zearalenone (ZEA) are toxic secondary metabolites produced by Fusarium molds. These mycotoxins are common food and feed pollutants and represent a risk to human and animal health. Although the mycotoxins produced by this genus can cross the blood–brain barrier in many species, their effect on neuronal function remains unclear. We investigated the cell viability effects of these toxins on specified neural cell types, including mouse primary neuronal, astroglial, and mixed-cell cultures 24 or 48 h after mycotoxin administration. DON decreased cell viability in a dose-dependent manner, independent of the culture type. Fumonisin B1 was toxic in pure neuronal cultures only at high doses, but toxicity was attenuated in mixed and pure astroglial cultures. ZEA had significant effects on all culture types in 10 nM by increasing cell viability and network activity, as revealed by multi-electrode array measurements. Since ZEA is a mycoestrogen, we analyzed the effects of ZEA on the expression of estrogen receptor isotypes ERα and ERβ and the mitochondrial voltage-dependent anion channel via qRT-PCR. In neuronal and mixed cultures, ZEA administration decreased ERα expression, while in astroglial cultures, it induced the opposite effect. Thus, our results emphasize that Fusarium mycotoxins act in a cell-specific manner. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

15 pages, 798 KiB  
Article
Associations Between Serum Gut-Derived Tryptophan Metabolites and Cardiovascular Health Markers in Adolescents with Obesity
by Jeny E. Rivera, Renny Lan, Mario G. Ferruzzi, Elisabet Børsheim, Emir Tas and Eva C. Diaz
Nutrients 2025, 17(15), 2430; https://doi.org/10.3390/nu17152430 - 25 Jul 2025
Viewed by 304
Abstract
Background/Objectives: Gut-derived tryptophan (Trp) metabolites play important roles in metabolic and cardiovascular regulation. Although animal studies suggest their protective effects against metabolic dysfunction, data in adolescents, particularly those with obesity, remain limited. The objective of this study was to evaluate associations between circulating [...] Read more.
Background/Objectives: Gut-derived tryptophan (Trp) metabolites play important roles in metabolic and cardiovascular regulation. Although animal studies suggest their protective effects against metabolic dysfunction, data in adolescents, particularly those with obesity, remain limited. The objective of this study was to evaluate associations between circulating gut-derived Trp metabolites and markers of cardiometabolic, vascular, and platelet health in adolescents with obesity. Methods: Data were analyzed from 28 adolescents (ages 13–18; mean BMI = 36 ± 6.4 kg/m2). Fasting blood was collected to assess lipid profiles using a clinical analyzer and insulin resistance using the homeostatic model assessment for insulin resistance (HOMA-IR). Gut-derived Trp metabolites were measured by UPLC–mass spectrometry, peak oxygen uptake (VO2 peak) by gas exchange during an incremental cycle ergometer test, and body composition by dual-energy X-ray absorptiometry. Platelet spare respiratory capacity (SRC), endothelial function, and liver fat were measured using high-resolution respirometry, flow-mediated dilation (FMD) of the brachial artery, and magnetic resonance imaging respectively. Results: Indole-3-propionic acid was inversely associated with diastolic blood pressure (rho = −0.39, p = 0.047), total cholesterol (rho = −0.55, p = 0.002), and LDL-C (rho = −0.57, p = 0.0014), independent of sex and obesity severity. Indoxyl sulfate was positively correlated with fasting glucose (rho = 0.47, p = 0.012), and adolescents with impaired fasting glucose had 1.6-fold higher IS levels. Indole-3-acetaldehyde declined with age (rho = −0.50, p = 0.007), and Indole-3-acetic acid and indole were higher in Hispanics vs. non-Hispanics. No significant associations were observed between Trp metabolites and FMD, VO2 peak, or SRC. Conclusions: Gut-derived Trp metabolites, particularly indole-3-propionic and indoxyl sulfate, are associated with markers of cardiometabolic risk in adolescents with obesity. These findings support their potential relevance in early-onset cardiovascular disease risk. Full article
Show Figures

Figure 1

Back to TopTop