Can Biomarkers Predict Kidney Function Recovery and Mortality in Patients with Critical COVID-19 and Acute Kidney Injury?
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection and Laboratory Measurements
2.2. Gas Chromatography/Mass Spectrometry (GC/MS) Analysis
2.3. Operational Definitions
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics and Outcomes
3.2. Prediction of Complete Renal Recovery
3.3. Prediction of Mortality
3.4. The uSerpinA3 Kinetics and 90-Day Outcome
3.5. Metabolomics Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martínez-Rueda, A.J.; Álvarez, R.D.; Méndez-Pérez, R.A.; Fernández-Camargo, D.A.; Gaytan-Arocha, J.E.; Berman-Parks, N.; Flores-Camargo, A.; Comunidad-Bonilla, R.A.; Mejia-Vilet, J.M.; Arvizu-Hernandez, M.; et al. Community- and Hospital-Acquired Acute Kidney Injury in COVID-19: Different Phenotypes and Dismal Prognosis. Blood Purif. 2021, 50, 931–941. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.S.; Ng, J.H.; Ross, D.W.; Sharma, P.; Shah, H.H.; Barnett, R.L.; Hazzan, A.D.; Fishbane, S.; Jhaveri, K.D.; Northwell COVID-19 Research Consortium; et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020, 98, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Argenziano, M.G.; Bruce, S.L.; Slater, C.L.; Slater, C.L.; Tiao, J.R.; Baldwin, M.R.; Barr, R.G.; Chang, B.P.; Chau, K.H.; Choi, J.J.; et al. Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: Retrospective case series. BMJ 2020, 369, m1996. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Coca, S.G.; Chan, L.; Melamed, M.L.; Brenner, S.K.; Hayek, S.S.; Sutherland, A.; Puri, S.; Srivastava, A.; Leonberg-Yoo, A.; et al. AKI treated with renal replacement therapy in critically ill patients with COVID-19. J. Am. Soc. Nephrol. 2021, 32, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.H.; Hirsch, J.S.; Hazzan, A.; Wanchoo, R.; Shah, H.H.; Malieckal, D.A.; Ross, D.W.; Sharma, P.; Sakhiya, V.; Fishbane, S.; et al. Outcomes among patients hospitalized with COVID-19 and acute kidney injury. Am. J. Kidney Dis. 2021, 77, 204–215.e1. [Google Scholar] [CrossRef] [PubMed]
- Nugent, J.; Aklilu, A.; Yamamoto, Y.; Simonov, M.; Li, F.; Biswas, A.; Ghazi, L.; Greenberg, J.H.; Mansour, S.G.; Moledina, D.G.; et al. Assessment of acute kidney injury and longitudinal kidney function after hospital discharge among patients with and with- out COVID-19. JAMA Netw. Open 2021, 4, e211095. [Google Scholar] [CrossRef] [PubMed]
- Forni, L.G.; Darmon, M.; Ostermann, M.; Oudemans-van Straaten, H.M.; Pettilä, V.; Prowle, J.R.; Schetz, M.; Joannidis, M. Renal recovery after acute kidney injury. Intensive Care Med. 2017, 43, 855–866. [Google Scholar] [CrossRef] [PubMed]
- Srisawat, N.; Wen, X.; Lee, M.; Kong, L.; Elder, M.; Carter, M.; Unruh, M.; Finkel, K.; Vijayan, A.; Ramkumar, M.; et al. Urinary Biomarkers and Renal Recovery in Critically ill patients with renal Support. Clin. J. Am. Soc. Nephrol. 2011, 6, 1815–1823. [Google Scholar] [CrossRef] [PubMed]
- Charlton, J.; Portilla, D.; Okusa, M. A basic science view of acute kidney injury biomarkers. Nephrol. Dial. Transplant. 2014, 29, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Kashani, K.; Al, A.; Ardiles, T. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care 2013, 17, R25. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Navarro, A.; González-Soria, I.; Caldiño-Bohn, R.; Bobadilla, N.A. An integrative view of serpins in health and disease: The contribution of SerpinA3. Am. J. Physiol-Cell Physiol. 2021, 320, C106–C118. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Navarro, A.; Mejía-Vilet, J.M.; Pérez-Villalva, R.; Carrillo-Pérez, D.L.; Marquina-Castillo, B.; Gamba, G.; Bobadilla, N.A. SerpinA3 in the Early Recognition of Acute Kidney Injury to Chronic Kidney Disease (CKD) transition in the rat and its Potentiality un the Recognition of Patients with CKD. Sci. Rep. 2019, 9, 10350. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rojas, M.A.; Sánchez-Navarro, A.; Mejia-Vilet, J.M.; Pérez-Villalva, R.; Uribe, N.; Bobadilla, N.A. Urinary serpin-A3 is an early predictor of clinical response to therapy in patients with proliferative lupus nephritis. Am. J. Physiol. Renal Physiol. 2022, 323, F425–F434. [Google Scholar] [CrossRef] [PubMed]
- Páez-Franco, J.C.; Maravillas-Montero, J.L.; Mejía-Domínguez, N.R.; Torres-Ruiz, J.; Tamez-Torres, K.M.; Pérez-Fragoso, A.; Germán-Acacio, J.M.; Ponce-de-León, A.; Gómez-Martín, D.; Ulloa-Aguirre, A. Metabolomics analysis identifies glutamic acid and cystine imbalances in COVID-19 patients without comorbid conditions. Implications on redox homeostasis and COVID-19 pathophysiology. PLoS ONE 2022, 17, e0274910. [Google Scholar] [CrossRef] [PubMed]
- Summary of Recommendation Statements. Kidney Int. Suppl. 2013, 3, 5–14. [CrossRef] [PubMed]
- Siew, E.D.; Matheny, M.E. Choice of Reference Serum Creatinine in Defining Acute Kidney Injury. Nephron 2015, 131, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Pannu, N.; James, M.; Hemmelgarn, B.; Klarenbach, S.; Alberta Kidney Disease Network. Association between AKI, recovery of renal function, and long-term outcomes after hospital discharge. Clin. J. Am. Soc. Nephrol. 2013, 8, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Noble, R.A.; Lucas, B.J.; Selby, N.M. Long-Term Outcomes in Patients with Acute Kidney Injury. Clin. J. Am. Soc. Nephrol. 2020, 15, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Cerdá, J.; Liu, K.D.; Cruz, D.N.; Jaber, B.L.; Koyner, J.L.; Heung, M.; Okusa, M.D.; Faubel, S. Promoting Kidney Function Recovery in Patients with AKI Requiring RRT. Clin. J. Am. Soc. Nephrol. 2015, 10, 1859–1867. [Google Scholar] [CrossRef] [PubMed]
- Vogel, M.J.; Mustroph, J.; Staudner, S.T.; Leininger, S.B.; Hubauer, U.; Wallner, S.; Meindl, C.; Hanses, F.; Zimmermann, M.; Maier, L.S.; et al. Kidney injury molecule-1: Potential biomarker of acute kidney injury and disease severity in patients with COVID-19. J. Nephrol. 2021, 34, 1007–1018. [Google Scholar] [CrossRef] [PubMed]
- Menez, S.; Moledina, D.G.; Thiessen-Philbrook, H.; Wilson, F.P.; Obeid, W.; Simonov, M.; Yamamoto, Y.; Corona-Villalobos, C.P.; Chang, C.; Garibaldi, B.T.; et al. Prognostic significance of urinary biomarkers in patients hospitalized with COVID-19. Am. J. Kidney Dis. 2022, 79, 257–267.e1. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Shang, N.; Levitman, A.; Corker, A.; Kudose, S.; Yaeh, A.; Neupane, U.; Stevens, J.; Sampogna, R.; Mills, A.M.; et al. Elevated neutrophil gelatinase-associated lipocalin is associated with the severity of kidney injury and poor prognosis of patients with COVID-19. Kidney Int. Rep. 2021, 6, 2979–2992. [Google Scholar] [CrossRef] [PubMed]
- Casas-Aparicio, G.; La Barrera, C.A.; Escamilla-Illescas, D.; León- Rodríguez, I.; Del Río-Estrada, P.M.; Calderón-Dávila, N.; González-Navarro, M.; Olmedo-Ocampo, R.; Castillejos-López, M.; Figueroa-Hernández, L.; et al. Role of urinary kidney stress biomarkers for early recognition of subclinical acute kidney injury in critically ill COVID-19 patients. Biomolecules 2022, 12, 275. [Google Scholar] [CrossRef] [PubMed]
- Shakked, N.P.; De Oliveira, M.H.; Cheruiyot, I.; Benoit, J.L.; Plebani, M.; Lippi, G.; Benoit, S.W.; Henry, B.M. Early prediction of COVID-19-associated acute kidney injury: Are serum NGAL and serum cystatin C levels better than serum creatinine? Clin. Biochem. 2022, 102, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Temiz, M.Z.; Hacibey, I.; Yazar, R.O.; Sevdi, M.S.; Kucuk, S.H.; Alkurt, G.; Doganay, L.; Dinler Doganay, G.; Dincer, M.M.; Yuruk, E.; et al. Altered kidney function induced by SARS-CoV-2 infection and acute kidney damage markers predict survival outcomes of COVID-19 patients: A prospective pilot study. Ren. Fail. 2022, 44, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Zhang, J.; Peng, Z. The role of kidney injury biomarkers in COVID-19. Ren. Fail. 2022, 44, 1280–1288. [Google Scholar] [CrossRef] [PubMed]
- Gaião, S.M.; Paiva, J.A.O.C. Biomarkers of renal recovery after acute kidney injury. Rev. Bras. Ter. Intensiva 2017, 29, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Uchino, S.; Bellomo, R.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; Gibney, N.; Tolwani, A.; et al. Discontinuation of continuous renal replacement therapy: A post hoc analysis of a prospective multicenter observational study. Crit. Care Med. 2009, 37, 2576–2582. [Google Scholar] [CrossRef] [PubMed]
- Del Toro-Cisneros, N.; Caballero-Islas, A.E.; Ramírez-Sandoval, J.C.; Mejía-Vilet, J.M.; Arvizu-Hernández, M.; Casas-Aparicio, G.; Chávez-Íñiguez, J.; Rizo-Topete, L.M.; Vega-Vega, O. What did we learn about coronavirus disease-19-associated acute kidney injury during the pandemic? Rev. Investig. Clin. 2022, 74, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; van Till, J.W.O.; Mulligan, G. Targeting acute kidney injury in COVID-19. Nephrol. Dial. Transplant. 2020, 35, 1652–1662. [Google Scholar] [CrossRef] [PubMed]
- Suvarna, K.; Biswas, D.; Pai, M.G.J.; Acharjee, A.; Bankar, R.; Palanivel, V.; Salkar, A.; Verma, A.; Mukherjee, A.; Choudhury, M.; et al. Proteomics and Machine Learning Approaches Reveal a Set of Prognostic Markers for COVID-19 Severity with Drug Repurposing Potential. Front. Physiol. 2021, 12, 652799. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, M.; Caterino, M.; Fedele, R.; Cevenini, A.; Pontillo, M.; Barra, L.; Ruoppolo, M. COVIDomics: The Proteomic and Metabolomic Signatures of COVID-19. Int. J. Mol. Sci. 2022, 23, 2414. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Cao, Z.; Schnackenberg, L.; Pence, L.; Yu, L.R.; Choudhury, D.; Palevsky, P.M.; Portilla, D.; Beger, R.D. Serum metabolite profiles predict outcomes in critically ill patients receiving renal replacement therapy. J. Chromatogr. B 2021, 1187, 123024. [Google Scholar] [CrossRef] [PubMed]
- Aronov, P.A.; Luo, F.J.; Plummer, N.S.; Quan, Z.; Holmes, S.; Hostetter, T.H.; Meyer, T.W. Colonic contribution to uremic solutes. J. Am. Soc. Nephrol. 2011, 22, 1769–1776. [Google Scholar] [CrossRef] [PubMed]
- Dubin, R.F.; Rhee, E.P. Proteomics and Metabolomics in Kidney Disease, including Insights into Etiology, Treatment, and Prevention. Clin. J. Am. Soc. Nephrol. 2020, 15, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Irino, Y.; Toh, R.; Nagao, M.; Mori, T.; Honjo, T.; Shinohara, M.; Tsuda, S.; Nakajima, H.; Satomi-Kobayashi, S.; Shinke, T.; et al. 2-Aminobutyric acid modulates glutathione homeostasis in the myocardium. Sci. Rep. 2016, 6, 36749. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, J.M. Glutathione and glycine in acute renal failure. Ren. Fail. 1992, 14, 311–319. [Google Scholar] [CrossRef] [PubMed]
Live (n = 29) | Deceased (n = 31) | p-Value | |
---|---|---|---|
Demographics | |||
Age, years | 51 ± 12.2 | 56 ± 12.2 | 0.085 |
Male, n (%) | 20 (69) | 26 (84) | 0.173 |
Body mass index, kg/m2 | 31 (29–35) | 29 (27–38) | 0.240 |
Charlson index | 1 (0–2) | 2 (0–3) | 0.323 |
SOFA score | 10 (9–11) | 10 (9–11) | 0.542 |
Days of hospitalization at the beginning KRT | 5 (2–12) | 6 (4–12) | 0.418 |
Days of IMV at the beginning KRT | 3 (2–5) | 6 (3–9) | 0.079 |
Kidney function | |||
Baseline SCr, mg/dL | 1 (0.8–1.2) | 1 (0.9–1.2) | 0.823 |
SCr at KRT initiation, mg/dL | 5.1 (3.5–6) | 4.2 (3.3–5) | 0.162 |
Urine output at KRT initiation, mL | 612 (280–1347) | 994 (250–2112) | 0.416 |
Laboratory at KRT initiation | |||
Leukocytes, x 1000/mm3 | 12 (9–15) | 12 (8–17) | 0.784 |
C-reactive protein, mg/dL | 16.2 (10.3–27) | 19 (7.6–29.3) | 0.906 |
Creatine kinase, U/L | 369 (69–1049) | 1013 (302–1852) | 0.023 |
Lactate dehydrogenase, U/L | 433 (313–552) | 482 (335–586) | 0.608 |
Ferritin, ng/mL | 939 (532–1689) | 1202 (613–1855) | 0.276 |
PaO2/FiO2 ratio | 144 (113–170) | 123 (96–154) | 0.141 |
Treatments in ICU at KRT initiation | |||
Carbapenems, n (%) | 18 (62) | 20 (65) | 0.844 |
Vancomycin, n (%) | 13 (45) | 14 (45) | 0.979 |
Antifungal therapy, n (%) | 3 (10) | 3 (10) | 1.000 |
Norepinephrine, n (%) | 22 (76) | 27 (87) | 0.327 |
CRR (n = 23) | PRR (n = 6) | p-Value | |
---|---|---|---|
Demographics | |||
Age, years | 51 ± 13.4 | 47 ± 9.8 | 0.448 |
Male, n (%) | 16 (70) | 4 (67) | 1.000 |
Body mass index, kg/m2 | 31.2 (28.9–36.6) | 31.2 (31.1–33.4) | 0.860 |
Charlson index, n (%) | 1 (0–3) | 2 (0–4) | 0.494 |
SOFA score | 10 (9–11) | 9 (7–12) | 0.525 |
Days of hospitalization at the beginning KRT | 6 (2–15) | 5 (4–8) | 0.733 |
Days of IMV at the beginning KRT | 3 (2–8) | 3 (2–5) | 0.581 |
Kidney function | |||
Baseline SCr, mg/dL | 1 (0.8–1.2) | 0.9 (0.7–1.1) | 0.796 |
SCr at KRT initiation, mg/dL | 4.5 (3.3–5.9) | 5.7 (5.1–6.9) | 0.321 |
Urine output at KRT initiation, mL | 587 (301–1316) | 1091 (249–1855) | 0.561 |
SCr at discharge, mg/dL | 0.83 (0.68–1.76) | 3.89 (1.85–4.87) | 0.003 |
Laboratory at KRT initiation | |||
Leukocytes, ×1000/mm3 | 13 (10–16) | 7 (6–9) | 0.003 |
C-reactive protein, mg/dL | 19.2 (10.2–28.3) | 12.3 (10.4–18.4) | 0.527 |
Creatine kinase, U/L | 340 (100–1225) | 267 (43–753) | 0.251 |
Lactate dehydrogenase, U/L | 468 (347–554) | 312 (275–524) | 0.212 |
Ferritin, ng/mL | 1171 (602–1815) | 443 (327–901) | 0.050 |
PaO2/FiO2 ratio | 144 (110–170) | 160 (113–175) | 0.667 |
Treatments in ICU at KRT initiation | |||
Carbapenems, n (%) | 17 (74) | 2 (33) | 0.156 |
Vancomycin, n (%) | 11 (48) | 3 (50) | 1.000 |
Antifungal therapy, n (%) | 3 (13) | 1 (17) | 1.000 |
Norepinephrine, n (%) | 20 (87) | 3 (50) | 0.120 |
Biomarker | Time Point | AUC (95% CI) | p-Value |
---|---|---|---|
Urine biomarker | |||
KIM-1, µg/mg | Day 0 | 0.71 (0.55–0.86) | 0.017 |
Day 1 | 0.63 (0.46–0.81) | 0.143 | |
Day 3 | 0.54 (0.37–0.71) | 0.673 | |
Day 7 | 0.52 (0.34–0.70) | 0.846 | |
Day 14 | 0.60 (0.40–0.80) | 0.283 | |
NGAL, µg/mg | Day 0 | 0.67 (0.52–0.82) | 0.051 |
Day 1 | 0.55 (0.37–0.72) | 0.626 | |
Day 3 | 0.50 (0.32–0.67) | 0.952 | |
Day 7 | 0.55 (0.37–0.73) | 0.576 | |
Day 14 | 0.51 (0.32–0.70) | 0.927 | |
SerpinA3 *, DPI/mg | Day 0 | 0.59 (0.43–0.75) | 0.300 |
Day 1 | 0.61 (0.45–0.78) | 0.223 | |
Day 3 | 0.56 (0.39–0.73) | 0.492 | |
Day 7 | 0.68 (0.52–0.85) | 0.041 | |
Day 14 | 0.71 (0.53–0.89) | 0.030 | |
SerpinA3 **, µg/mg | Day 0 | 0.61 (0.47–0.76) | 0.140 |
Day 7 | 0.49 (0.31–0.66) | 0.865 | |
Day 14 | 0.58 (0.39–0.77) | 0.425 | |
Urine output > 500 mL | Day 0 | 0.53 (0.38–0.68) | 0.715 |
Urine output > 1 L | Day 0 | 0.61 (0.47–0.76) | 0.144 |
Plasma biomarker | |||
IL-6, pg/mL | Day 0 | 0.58 (0.37–0.67) | 0.830 |
IL-10, pg/mL | Day 0 | 0.64 (0.50–0.79) | 0.072 |
TNF-alpha, pg/mL | Day 0 | 0.57 (0.41–0.73) | 0.366 |
Biomarker | Time Point | AUC (95% CI) | p-Value |
---|---|---|---|
Urine biomarker | |||
KIM-1, µg/mg | Day 0 | 0.68 (0.53–0.84) | 0.028 |
Day 1 | 0.60 (0.43–0.77) | 0.254 | |
Day 3 | 0.51 (0.33–0.69) | 0.925 | |
Day 7 | 0.54 (0.35–0.73) | 0.702 | |
Day 14 | 0.56 (0.34–0.79) | 0.561 | |
NGAL, µg/mg | Day 0 | 0.63 (0.47–0.79) | 0.123 |
Day 1 | 0.51 (0.33–0.68) | 0.934 | |
Day 3 | 0.43 (0.26–0.61) | 0.439 | |
Day 7 | 0.51 (0.31–0.71) | 0.959 | |
Day 14 | 0.56 (0.35–0.77) | 0.561 | |
SerpinA3 *, DPI/mg | Day 0 | 0.52 (0.36–0.69) | 0.779 |
Day 1 | 0.58 (0.41–0.75) | 0.366 | |
Day 3 | 0.54 (0.37–0.72) | 0.622 | |
Day 7 | 0.75 (0.59–0.92) | 0.007 | |
Day 14 | 0.76 (0.58–0.95) | 0.015 | |
SerpinA3 **, µg/mg | Day 0 | 0.64 (0.48–0.80) | 0.097 |
Day 7 | 0.54 (0.37–0.72) | 0.646 | |
Day 14 | 0.47 (0.26–0.68) | 0.758 | |
Urine output > 500 mL | Day 0 | 0.51 (0.37–0.66) | 0.859 |
Urine output >1 L | Day 0 | 0.59 (0.44–0.73) | 0.249 |
Plasma biomarker | |||
IL-6, pg/mL | Day 0 | 0.57 (0.43–0.72) | 0.311 |
IL-10, pg/mL | Day 0 | 0.64 (0.50–0.79) | 0.057 |
TNF-alpha, pg/mL | Day 0 | 0.52 (0.37–0.67) | 0.830 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Toro-Cisneros, N.; Páez-Franco, J.C.; Martínez-Rojas, M.A.; González-Soria, I.; Ortega-Trejo, J.A.; Sánchez-Vidal, H.; Bobadilla, N.A.; Ulloa-Aguirre, A.; Vega-Vega, O. Can Biomarkers Predict Kidney Function Recovery and Mortality in Patients with Critical COVID-19 and Acute Kidney Injury? Diagnostics 2025, 15, 1960. https://doi.org/10.3390/diagnostics15151960
Del Toro-Cisneros N, Páez-Franco JC, Martínez-Rojas MA, González-Soria I, Ortega-Trejo JA, Sánchez-Vidal H, Bobadilla NA, Ulloa-Aguirre A, Vega-Vega O. Can Biomarkers Predict Kidney Function Recovery and Mortality in Patients with Critical COVID-19 and Acute Kidney Injury? Diagnostics. 2025; 15(15):1960. https://doi.org/10.3390/diagnostics15151960
Chicago/Turabian StyleDel Toro-Cisneros, Noemí, José C. Páez-Franco, Miguel A. Martínez-Rojas, Isaac González-Soria, Juan Antonio Ortega-Trejo, Hilda Sánchez-Vidal, Norma A. Bobadilla, Alfredo Ulloa-Aguirre, and Olynka Vega-Vega. 2025. "Can Biomarkers Predict Kidney Function Recovery and Mortality in Patients with Critical COVID-19 and Acute Kidney Injury?" Diagnostics 15, no. 15: 1960. https://doi.org/10.3390/diagnostics15151960
APA StyleDel Toro-Cisneros, N., Páez-Franco, J. C., Martínez-Rojas, M. A., González-Soria, I., Ortega-Trejo, J. A., Sánchez-Vidal, H., Bobadilla, N. A., Ulloa-Aguirre, A., & Vega-Vega, O. (2025). Can Biomarkers Predict Kidney Function Recovery and Mortality in Patients with Critical COVID-19 and Acute Kidney Injury? Diagnostics, 15(15), 1960. https://doi.org/10.3390/diagnostics15151960