Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (963)

Search Parameters:
Keywords = metabolic bacterial diversity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2357 KiB  
Article
Nitrogen Fertilizer Reduction in Rice–Eel Co-Culture System Improves the Soil Microbial Diversity and Its Functional Stability
by Mengqian Ma, Weiguang Lv, Yu Huang, Juanqin Zhang, Shuangxi Li, Naling Bai, Haiyun Zhang, Xianpu Zhu, Chenglong Xu and Hanlin Zhang
Plants 2025, 14(15), 2425; https://doi.org/10.3390/plants14152425 - 5 Aug 2025
Abstract
The ecological rice–eel co-culture system is not only beneficial for enhancing productivity and sustainability in agriculture but also plays a crucial role in promoting environmental health. In the present study, based on the long-term positioning trial of the rice–eel co-culture system that began [...] Read more.
The ecological rice–eel co-culture system is not only beneficial for enhancing productivity and sustainability in agriculture but also plays a crucial role in promoting environmental health. In the present study, based on the long-term positioning trial of the rice–eel co-culture system that began in 2016 and was sampled in 2023, the effects of reduced nitrogen fertilizer application on soil physico-chemical properties and the bacterial community were investigated. Treatments included a conventional regular fertilization treatment (RT), rice–eel co-culture system regular fertilization (IT), and nitrogen-reduction 10%, 30%, and 50% fertilization treatments (IT90, IT70, and IT50). Our research demonstrated the following: (1) Compared to RT, IT significantly increased soil water-stable macroaggregates (R0.25), mean weight diameter (MWD), geometric mean diameter (GMD), and available phosphorus content, with the increases of 15.66%, 25.49%, 36.00%, and 18.42%, respectively. Among the nitrogen-reduction fertilization treatments, IT90 showed the most significant effect. Compared to IT, IT90 significantly increased R0.25, MWD, GMD, and available nitrogen content, with increases of 4.4%, 7.81%, 8.82%, and 28.89%, respectively. (2) Compared to RT, at the phylum level, the diversity of Chloroflexi was significantly increased under IT and IT50, and the diversity of Gemmatimonadota was significantly increased under IT90, IT70, and IT50. The diversity of Acidobacteriota was significantly higher in IT90 and IT70 compared to IT. It was shown that the rice–eel co-culture system and nitrogen fertilizer reduction could effectively improve the degradation capacity of organic matter and promote soil nitrogen cycling. In addition, redundancy analysis (RDA) identified total phosphorus, total nitrogen, and available nitrogen (p = 0.007) as the three most important environmental factors driving changes in the bacterial community. (3) The functional prediction analysis of soil microbiota showed that, compared to RT, the diversity of pathways related to biosynthesis (carbohydrate biosynthesis and cell structure biosynthesis) and metabolism (L-glutamate and L-glutamine biosynthesis) was significantly higher under IT70, IT90, IT, and IT50 (in descending order). However, the diversity of pathways associated with degradation/utilization/assimilation (secondary metabolite degradation and amine and polyamine degradation) was significantly lower under all the rice–eel co-culture treatments. In conclusion, the rice–eel co-culture system improved soil physicochemical properties and the soil microbial environment compared with conventional planting, and the best soil improvement was achieved with 10% less N fertilizer application. Full article
(This article belongs to the Special Issue Chemical Properties of Soils and its Impact on Plant Growth)
Show Figures

Figure 1

28 pages, 2816 KiB  
Article
Influence of the Origin, Feeding Status, and Trypanosoma cruzi Infection in the Microbial Composition of the Digestive Tract of Triatoma pallidipennis
by Everardo Gutiérrez-Millán, Alba N. Lecona-Valera, Mario H. Rodriguez and Ana E. Gutiérrez-Cabrera
Biology 2025, 14(8), 984; https://doi.org/10.3390/biology14080984 - 2 Aug 2025
Viewed by 290
Abstract
Triatoma pallidipennis, the main vector of Chagas disease in central Mexico, hosts a diverse and complex gut bacterial community shaped by environmental and physiological factors. To gain insight into these microbes’ dynamics, we characterised the gut bacterial communities of wild and insectary [...] Read more.
Triatoma pallidipennis, the main vector of Chagas disease in central Mexico, hosts a diverse and complex gut bacterial community shaped by environmental and physiological factors. To gain insight into these microbes’ dynamics, we characterised the gut bacterial communities of wild and insectary insects under different feeding and Trypanosoma cruzi infection conditions, using 16S rRNA gene sequencing. We identified 91 bacterial genera across 8 phyla, with Proteobacteria dominating most samples. Wild insects showed greater bacterial diversity, led by Acinetobacter and Pseudomonas, while insectary insects exhibited lower diversity and were dominated by Arsenophonus. The origin of the insects, whether they were reared in the insectary (laboratory) or collected from wild populations, was the principal factor structuring the gut microbiota, followed by feeding and T. cruzi infection. A stable core microbiota of 12 bacterial genera was present across all conditions, suggesting key functional roles in host physiology. Co-occurrence and functional enrichment analyses revealed that feeding and infection induced condition-specific microbial interactions and metabolic pathways. Our findings highlight the ecological plasticity of the triatomine gut microbiota and its potential role in modulating vector competence, providing a foundation for future microbiota-based control strategies. Full article
(This article belongs to the Special Issue Metabolic Interactions between the Gut Microbiome and Host)
Show Figures

Graphical abstract

20 pages, 4612 KiB  
Article
Effect of a Gluten-Free Diet on the Intestinal Microbiota of Women with Celiac Disease
by M. Mar Morcillo Serrano, Paloma Reche-Sainz, Daniel González-Reguero, Marina Robas-Mora, Rocío de la Iglesia, Natalia Úbeda, Elena Alonso-Aperte, Javier Arranz-Herrero and Pedro A. Jiménez-Gómez
Antibiotics 2025, 14(8), 785; https://doi.org/10.3390/antibiotics14080785 - 2 Aug 2025
Viewed by 235
Abstract
Background/Objectives: Celiac disease (CD) is an autoimmune disorder characterized by small intestinal enteropathy triggered by gluten ingestion, often associated with gut dysbiosis. The most effective treatment is strict adherence to a gluten-free diet (GFD), which alleviates symptoms. This study uniquely integrates taxonomic, [...] Read more.
Background/Objectives: Celiac disease (CD) is an autoimmune disorder characterized by small intestinal enteropathy triggered by gluten ingestion, often associated with gut dysbiosis. The most effective treatment is strict adherence to a gluten-free diet (GFD), which alleviates symptoms. This study uniquely integrates taxonomic, functional, and resistance profiling to evaluate the gut microbiota of women with CD on a GFD. Methods: To evaluate the long-term impact of a GFD, this study analyzed the gut microbiota of 10 women with CD on a GFD for over a year compared to 10 healthy controls with unrestricted diets. Taxonomic diversity (16S rRNA gene sequencing and the analysis of α and β-diversity), metabolic functionality (Biolog EcoPlates®), and antibiotic resistance profiles (Cenoantibiogram) were assessed. Results: Metagenomic analysis revealed no significant differences in taxonomic diversity but highlighted variations in the abundance of specific bacterial genera. Women with CD showed increased proportions of Bacteroides, Streptococcus, and Clostridium, associated with inflammation, but also elevated levels of beneficial genera such as Roseburia, Oxalobacter, and Paraprevotella. Despite no significant differences in metabolic diversity, higher minimum inhibitory concentrations (MICs) in women in the healthy control group suggest that dietary substrates in unrestricted diets may promote the proliferation of fast-growing bacteria capable of rapidly developing and disseminating antibiotic resistance mechanisms. Conclusions: These findings indicate that prolonged adherence to a GFD in CD supports remission of gut dysbiosis, enhances microbiota functionality, and may reduce the risk of antibiotic resistance, emphasizing the importance of dietary management in CD. Full article
(This article belongs to the Special Issue Antibiotic Resistance: A One-Health Approach, 2nd Edition)
Show Figures

Graphical abstract

23 pages, 4116 KiB  
Article
Taxonomic and Functional Profiling of Bacterial Communities in Leather Biodegradation: Insights into Metabolic Pathways and Diversity
by Manuela Bonilla-Espadas, Marcelo Bertazzo, Irene Lifante-Martinez, Mónica Camacho, Elena Orgilés-Calpena, Francisca Arán-Aís and María-José Bonete
Bacteria 2025, 4(3), 37; https://doi.org/10.3390/bacteria4030037 - 1 Aug 2025
Viewed by 115
Abstract
Leather biodegradation is a complex microbial process with increasing relevance for sustainable waste management. In this study, we investigated bacterial communities responsible for the degradation of leather treated with different tanning agents (chrome, Zeolite, Biole®) using high-throughput 16S rRNA gene sequencing [...] Read more.
Leather biodegradation is a complex microbial process with increasing relevance for sustainable waste management. In this study, we investigated bacterial communities responsible for the degradation of leather treated with different tanning agents (chrome, Zeolite, Biole®) using high-throughput 16S rRNA gene sequencing and metatranscriptomic analysis. Proteobacteria, Bacteroidetes, and Patescibacteria emerged as the dominant phyla, while genera such as Acinetobacter, Pseudomonas, and Sphingopyxis were identified as key contributors to enzymatic activity and potential metal resistance. A total of 1302 enzymes were expressed across all the conditions, including 46 proteases, with endopeptidase La, endopeptidase Clp, and methionyl aminopeptidase being the most abundant. Collagen samples exhibited the highest functional diversity and total enzyme expression, whereas chrome-treated samples showed elevated protease activity, indicating selective pressure from heavy metals. Differential enzyme expression patterns were linked to both the microbial identity and tanning chemistry, revealing genus- and treatment-specific enzymatic signatures. These findings deepen our understanding of how tanning agents modulate the microbial structure and function and identify proteases with potential applications in the bioremediation and eco-innovation of leather waste processing. Full article
Show Figures

Figure 1

11 pages, 1139 KiB  
Article
Effect of Akkermansia muciniphila on GLP-1 and Insulin Secretion
by Ananta Prasad Arukha, Subhendu Nayak and Durga Madhab Swain
Nutrients 2025, 17(15), 2516; https://doi.org/10.3390/nu17152516 - 31 Jul 2025
Viewed by 338
Abstract
Background/Objectives: Gut microbiota research has gained momentum in recent years broadening knowledge of microbial components and their potential effects on health and well-being. Strong association between explicit microbes and metabolic diseases associated with obesity and type 2 diabetes mellitus, gastrointestinal disorders, neurodegenerative diseases, [...] Read more.
Background/Objectives: Gut microbiota research has gained momentum in recent years broadening knowledge of microbial components and their potential effects on health and well-being. Strong association between explicit microbes and metabolic diseases associated with obesity and type 2 diabetes mellitus, gastrointestinal disorders, neurodegenerative diseases, and even cancers have been established. Akkermansia muciniphila is a budding next-generation probiotic that plays an important role in systemic metabolism, intestinal health, and immune regulation, establishing strong implications for its use as a potent therapeutic intervention in diverse diseases. This project aimed at evaluating whether bacterial cell extracts of VH Akkermansia muciniphila (Vidya Strain; VS) can stimulate insulin secretion in INS-1 pancreatic beta cells and GLP-1 secretion in NCI-H716 human L-cells, both established in vitro models for studying metabolic regulation. Methods: Cultured VH Akkermansia muciniphila extracts were administered in a dose-dependent manner on INS-1 cells, and glucose-stimulated insulin secretion (GSIS) was measured via ELISA. Treated Human L-cell lines (NCI-H716) were analyzed for GLP-1 secretion. Results: Our study demonstrated that VH Akkermansia muciniphila extracts modestly increase insulin secretion from INS-1 beta cells and, more notably, induce a robust, dose-dependent rise in GLP-1 secretion from NCI-H716 L-cells, with the highest dose achieving over a 2000% increase comparable to glutamine. Conclusions: These findings suggest that VH A. muciniphila extracts may offer metabolic benefits by enhancing GLP-1 release, highlighting their potential for managing type 2 diabetes and obesity. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

15 pages, 1360 KiB  
Systematic Review
Prebiotics Improve Blood Pressure Control by Modulating Gut Microbiome Composition and Function: A Systematic Review and Meta-Analysis
by Abdulwhab Shremo Msdi, Elisabeth M. Wang and Kevin W. Garey
Nutrients 2025, 17(15), 2502; https://doi.org/10.3390/nu17152502 - 30 Jul 2025
Viewed by 410
Abstract
Background: Ingestion of dietary fibers (DFs) is a safe and accessible intervention associated with reductions in blood pressure (BP) and cardiovascular mortality. However, the mechanisms underlying the antihypertensive effects of DFs remain poorly defined. This systematic review and meta-analysis evaluates how DFs influence [...] Read more.
Background: Ingestion of dietary fibers (DFs) is a safe and accessible intervention associated with reductions in blood pressure (BP) and cardiovascular mortality. However, the mechanisms underlying the antihypertensive effects of DFs remain poorly defined. This systematic review and meta-analysis evaluates how DFs influence BP regulation by modulating gut microbial composition and enhancing short-chain fatty acid (SCFA) production. Methods: MEDLINE and EMBASE were systematically searched for interventional studies published between January 2014 and December 2024. Eligible studies assessed the effects of DFs or other prebiotics on systolic BP (SBP) and diastolic BP (DBP) in addition to changes in gut microbial or SCFA composition. Results: Of the 3010 records screened, nineteen studies met the inclusion criteria (seven human, twelve animal). A random-effects meta-analysis was conducted on six human trials reporting post-intervention BP values. Prebiotics were the primary intervention. In hypertensive cohorts, prebiotics significantly reduced SBP (−8.5 mmHg; 95% CI: −13.9, −3.1) and DBP (−5.2 mmHg; 95% CI: −8.5, −2.0). A pooled analysis of hypertensive and non-hypertensive patients showed non-significant reductions in SBP (−4.5 mmHg; 95% CI: −9.3, 0.3) and DBP (−2.5 mmHg; 95% CI: −5.4, 0.4). Animal studies consistently showed BP-lowering effects across diverse etiologies. Prebiotic interventions restored bacterial genera known to metabolize DFs to SCFAs (e.g., Bifidobacteria, Akkermansia, and Coprococcus) and increased SCFA levels. Mechanistically, SCFAs act along gut–organ axes to modulate immune, vascular, and neurohormonal pathways involved in BP regulation. Conclusions: Prebiotic supplementation is a promising strategy to reestablish BP homeostasis in hypertensive patients. Benefits are likely mediated through modulation of the gut microbiota and enhanced SCFA production. Full article
(This article belongs to the Special Issue Probiotics and Prebiotics: Past, Present and Future)
Show Figures

Graphical abstract

24 pages, 3204 KiB  
Article
Host Shaping Associated Microbiota in Hydrothermal Vent Snails from the Indian Ocean Ridge
by Xiang Zeng, Jianwei Chen, Guilin Liu, Yadong Zhou, Liping Wang, Yaolei Zhang, Shanshan Liu and Zongze Shao
Biology 2025, 14(8), 954; https://doi.org/10.3390/biology14080954 - 29 Jul 2025
Viewed by 241
Abstract
Snails at hydrothermal vents rely on symbiotic bacteria for nutrition; however, the specifics of these associations in adapting to such extreme environments remain underexplored. This study investigated the community structure and metabolic potential of bacteria associated with two Indian Ocean vent snails, Chrysomallon [...] Read more.
Snails at hydrothermal vents rely on symbiotic bacteria for nutrition; however, the specifics of these associations in adapting to such extreme environments remain underexplored. This study investigated the community structure and metabolic potential of bacteria associated with two Indian Ocean vent snails, Chrysomallon squamiferum and Gigantopelta aegis. Using microscopic, phylogenetic, and metagenomic analyses, this study examines bacterial communities inhabiting the foot and gland tissues of these snails. G. aegis exhibited exceptionally low bacterial diversity (Shannon index 0.14–0.18), primarily Gammaproteobacteria (99.9%), including chemosynthetic sulfur-oxidizing Chromatiales using Calvin–Benson–Bassham cycle and methane-oxidizing Methylococcales in the glands. C. squamiferum hosted significantly more diverse symbionts (Shannon indices 1.32–4.60). Its black variety scales were dominated by Campylobacterota (67.01–80.98%), such as Sulfurovum, which perform sulfur/hydrogen oxidation via the reductive tricarboxylic acid cycle, with both Campylobacterota and Gammaproteobacteria prevalent in the glands. The white-scaled variety of C. squamiferum had less Campylobacterota but a higher diversity of heterotrophic bacteria, including Delta-/Alpha-Proteobacteria, Bacteroidetes, and Firmicutes (classified as Desulfobacterota, Pseudomomonadota, Bacteroidota, and Bacillota in GTDB taxonomy). In C. squamiferum, Gammaproteobacteria, including Chromatiales, Thiotrichales, and a novel order “Endothiobacterales,” were chemosynthetic, capable of oxidizing sulfur, hydrogen, or iron, and utilizing the Calvin–Benson–Bassham cycle for carbon fixation. Heterotrophic Delta- and Alpha-Proteobacteria, Bacteroidetes, and Firmicutes potentially utilize organic matter from protein, starch, collagen, amino acids, thereby contributing to the holobiont community and host nutrition accessibility. The results indicate that host species and intra-species variation, rather than the immediate habitat, might shape the symbiotic microbial communities, crucial for the snails’ adaptation to vent ecosystems. Full article
Show Figures

Figure 1

19 pages, 2164 KiB  
Article
Community Structure, Growth-Promoting Potential, and Genomic Analysis of Seed-Endophytic Bacteria in Stipagrostis pennata
by Yuanyuan Yuan, Shuyue Pang, Wenkang Niu, Tingting Zhang and Lei Ma
Microorganisms 2025, 13(8), 1754; https://doi.org/10.3390/microorganisms13081754 - 27 Jul 2025
Viewed by 270
Abstract
Stipagrostis pennata is an important plant in desert ecosystems. Its seed-endophytic bacteria may play a critical role in plant growth and environmental adaptation processes. This study systematically analyzed the community composition and potential plant growth-promoting (PGP) functions of seed-endophytic bacteria associated with S. [...] Read more.
Stipagrostis pennata is an important plant in desert ecosystems. Its seed-endophytic bacteria may play a critical role in plant growth and environmental adaptation processes. This study systematically analyzed the community composition and potential plant growth-promoting (PGP) functions of seed-endophytic bacteria associated with S. pennata. The results showed that while the overall diversity of bacterial communities from different sampling sites was similar, significant differences were observed in specific functional genes and species abundances. Nine endophytic bacterial strains were isolated from the seeds, among which Bacillus altitudinis strain L7 exhibited phosphorus solubilizing capabilities, nitrogen fixing, IAA production, siderophore generation, and multi-hydrolytic enzyme activities. Additionally, the genomic sequencing of L7 revealed the key genes involved in plant growth promotion and environmental adaptation, including Na+ efflux systems, K+ transport systems, compatible solute synthesis genes, and the gene clusters associated with nitrogen metabolism, IAA synthesis, phosphate solubilization, and siderophore synthesis. Strain L7 exhibits salt and osmotic stress tolerance while promoting plant growth, providing a promising candidate for desert microbial resource utilization and plant biostimulant development. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

25 pages, 4954 KiB  
Article
Local Fungi Promote Plant Growth by Positively Affecting Rhizosphere Metabolites to Drive Beneficial Microbial Assembly
by Deyu Dong, Zhanling Xie, Jing Guo, Bao Wang, Qingqing Peng, Jiabao Yang, Baojie Deng, Yuan Gao, Yuting Guo, Xueting Fa and Jianing Yu
Microorganisms 2025, 13(8), 1752; https://doi.org/10.3390/microorganisms13081752 - 26 Jul 2025
Viewed by 378
Abstract
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi [...] Read more.
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi (DK; F18-3) and commercially available bacteria (B0) were used as materials to explore their regulatory mechanisms for plant growth, soil physicochemical factors, microbial communities, and metabolic profiles in the field. Compared to bacterial treatments, local fungi treatments exhibited stronger ecological restoration efficacy. In addition, the DK and F18-3 strains, respectively, increased shoot and root biomass by 23.43% and 195.58% and significantly enhanced soil nutrient content and enzyme activity. Microbiome analysis further implied that, compared with the CK, DK treatment could significantly improve the α-diversity of fungi in the rhizosphere soil (the Shannon index increased by 14.27%) and increased the amount of unique bacterial genera in the rhizosphere soil of plants, totaling fourteen genera. Meanwhile, this aggregated the most biomarkers and beneficial microorganisms and strengthened the interactions among beneficial microorganisms. After DK treatment, twenty of the positively accumulated differential metabolites (DMs) in the plant rhizosphere were highly positively associated with six plant traits such as shoot length and root length, as well as beneficial microorganisms (e.g., Apodus and Pseudogymnoascus), but two DMs were highly negatively related to plant pathogenic fungi (including Cistella and Alternaria). Specifically, DK mainly inhibited the growth of pathogenic fungi through regulating the accumulation of D-(+)-Malic acid and Gamma-Aminobutyric acid (Cistella and Alternaria decreased by 84.20% and 58.53%, respectively). In contrast, the F18-3 strain mainly exerted its antibacterial effect by enriching Acidovorax genus microorganisms. This study verified the core role of local fungi in the restoration of mining areas in the Qinghai–Tibet Plateau and provided a new direction for the development of microbial agents for ecological restoration in the Qinghai–Tibet Plateau. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

23 pages, 2699 KiB  
Article
Changes in L-Carnitine Metabolism Affect the Gut Microbiome and Influence Sexual Behavior Through the Gut–Testis Axis
by Polina Babenkova, Artem Gureev, Irina Sadovnikova, Inna Burakova, Yuliya Smirnova, Svetlana Pogorelova, Polina Morozova, Viktoria Gribovskaya, Dianna Adzhemian and Mikhail Syromyatnikov
Microorganisms 2025, 13(8), 1751; https://doi.org/10.3390/microorganisms13081751 - 26 Jul 2025
Viewed by 416
Abstract
L-carnitine and Mildronate are substances that can significantly rearrange the energy metabolism of cells. This can potentially cause changes in the bacterial composition of the gut microbiome and affect testis functionality and male sexual health. Mice of the C57Bl/6 line were used. Sexual [...] Read more.
L-carnitine and Mildronate are substances that can significantly rearrange the energy metabolism of cells. This can potentially cause changes in the bacterial composition of the gut microbiome and affect testis functionality and male sexual health. Mice of the C57Bl/6 line were used. Sexual behavior was assessed using physiological tests, and gene expression patterns were assessed by qPCR. High-throughput sequencing of mouse fecal microbiota was performed. We showed that long-term administration of Mildronate has no significant effect on the intestinal microbiome, and there was a compensatory increase in the expression of genes involved in fatty acid and leptin metabolism. No impairment of sexual motivation in male mice was observed. Prolonged L-carnitine supplementation caused a decrease in alpha diversity of bacteria and a decrease in some groups of microorganisms that are components of a healthy gut microflora. A correlation was observed between the level of bacteria from Firmicutes phylum, indicators of sexual motivation of mice, and the dynamics of body weight gain. Our results may indicate that metabolic modulators can have a significant impact on the structure of the bacterial community of the gut microbiome, which may influence male sexual health through the gut–semen axis. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

14 pages, 1299 KiB  
Article
Host-Dependent Variation in Tetranychus urticae Fitness and Microbiota Composition Across Strawberry Cultivars
by Xu Zhang, Hongjun Yang, Zhiming Yan, Yuanhua Wang, Quanzhi Wang, Shimei Huo, Zhan Chen, Jialong Cheng and Kun Yang
Insects 2025, 16(8), 767; https://doi.org/10.3390/insects16080767 - 25 Jul 2025
Viewed by 500
Abstract
Tetranychus urticae, commonly known as the two-spotted spider mite, is a highly adaptable and polyphagous arthropod in the family Tetranychidae, capable of feeding on over 1200 plant species, including strawberries (Fragaria × ananassa Duch.). The fitness and microbiota of herbivorous arthropods [...] Read more.
Tetranychus urticae, commonly known as the two-spotted spider mite, is a highly adaptable and polyphagous arthropod in the family Tetranychidae, capable of feeding on over 1200 plant species, including strawberries (Fragaria × ananassa Duch.). The fitness and microbiota of herbivorous arthropods can vary significantly across different plant species and cultivars. In this study, we investigated the fecundity, longevity, growth rate, and microbiota composition of T. urticae reared on seven Chinese strawberry cultivars: Hongyan (HY), Yuexiu (YX), Tianshi (TS), Ningyu (NY), Xuetu (XT), Zhangjj (ZJ), and Xuelixiang (XLX). Our findings revealed significant differences among cultivars: mites reared on the XT cultivar exhibited the highest fecundity (166.56 ± 7.82 eggs), while those on XLX had the shortest pre-adult period (7.71 ± 0.13 days). Longevity was significantly extended in mites reared on XLX, XT, and NY cultivars (25.95–26.83 days). Microbiota analysis via 16S rRNA sequencing showed that Proteobacteria dominated (>89.96% abundance) across all mite groups, with Wolbachia as the predominant symbiont (89.58–99.19%). Male mites exhibited higher bacterial diversity (Shannon and Chao1 indices) than females, though Wolbachia abundance did not differ significantly between sexes or cultivars. Functional predictions highlighted roles of microbiota in biosynthesis, detoxification, and energy metabolism. These findings underscore the influence of host plant variety on T. urticae fitness and microbiota composition, suggesting potential strategies for breeding resistant strawberry cultivars and leveraging microbial interactions for pest management. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

24 pages, 11000 KiB  
Article
Differences and Influencing Factors of Soil Bacterial Communities Under Different Forest Types on the Southern Slope of the Qilian Mountains
by Shuang Ji, Huichun Xie, Shaobo Du, Shaoxiong Zhang, Zhiqiang Dong, Hongye Li and Xunxun Qiu
Biology 2025, 14(8), 927; https://doi.org/10.3390/biology14080927 - 23 Jul 2025
Viewed by 221
Abstract
Understanding the distribution patterns of soil bacterial community structure and diversity across different forest types is essential for elucidating the mechanisms underlying microbial community assembly and its ecological drivers, particularly under the pressures of climate change. In this study, we examined six forest [...] Read more.
Understanding the distribution patterns of soil bacterial community structure and diversity across different forest types is essential for elucidating the mechanisms underlying microbial community assembly and its ecological drivers, particularly under the pressures of climate change. In this study, we examined six forest types—including four monocultures and two mixed-species stands—to systematically evaluate the structural composition, diversity metrics, and functional potential of soil bacterial communities. Significant differences in microbial structure and functional composition were observed among forest types. Mixed forests exhibited higher soil nutrient levels, more complex structures, and greater water retention capacity, resulting in significantly higher bacterial and functional diversity compared to monoculture forests. Bacterial diversity was greater in subsurface layers than in surface layers. Surface communities in monoculture forests showed relatively high structural heterogeneity, whereas deeper communities in mixed forests displayed more pronounced differentiation. The dominant bacterial phyla were mainly related to carbon and nitrogen metabolism, compound degradation, and anaerobic photosynthesis. Surface bacterial communities were primarily influenced by catalase activity, alkali-hydrolysable nitrogen, bulk density, and pH, whereas subsurface communities were largely controlled by pH, with supplementary regulation by nitrogen and potassium availability. Therefore, forest type and soil depth jointly influence the diversity, composition, and functional attributes of soil microbial communities by modulating soil physicochemical conditions. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

27 pages, 4050 KiB  
Article
The Gut Mycobiome and Nutritional Status in Paediatric Phenylketonuria: A Cross-Sectional Pilot Study
by Malgorzata Ostrowska, Elwira Komoń-Janczara, Bozena Mikoluc, Katarzyna Iłowiecka, Justyna Jarczak, Justyna Zagórska, Paulina Zambrzycka, Silvia Turroni and Hubert Szczerba
Nutrients 2025, 17(15), 2405; https://doi.org/10.3390/nu17152405 - 23 Jul 2025
Viewed by 240
Abstract
Background: Phenylketonuria (PKU) is a metabolic disorder managed through a strict, lifelong low-phenylalanine diet, which may influence gut microbiome dynamics. While gut bacterial alterations in PKU are increasingly investigated, the fungal community (mycobiome) remains largely unexplored. This study compared gut mycobiome composition and [...] Read more.
Background: Phenylketonuria (PKU) is a metabolic disorder managed through a strict, lifelong low-phenylalanine diet, which may influence gut microbiome dynamics. While gut bacterial alterations in PKU are increasingly investigated, the fungal community (mycobiome) remains largely unexplored. This study compared gut mycobiome composition and dietary profiles of paediatric PKU patients and healthy controls, stratified by age (<10 and 10–18 years). Methods: Stool samples from 20 children (10 PKU, 10 controls) were analysed using ITS1/ITS2 amplicon sequencing. Nutritional status was assessed using Body Mass Index percentiles (Polish standards), and nutrient intake was evaluated from three-day dietary records compared to national reference values. Correlations between fungal taxa and dietary factors were explored. Results: Although alpha diversity did not differ significantly, beta diversity and LEfSe analyses revealed distinct fungal profiles between PKU patients and controls, indicating a trend toward group separation (PERMANOVA: F = 1.54646, p = 0.09; ANOVA: p = 0.0609). PKU patients showed increased Eurotiales (p = 0.029), Aspergillaceae (p = 0.029), and Penicillium (p = 0.11) and decreased Physalacriaceae (0% vs. 5.84% in controls) and Malassezia (p = 0.13). Spearman’s analysis showed significant correlations between Geotrichum and intake of protein (ρ = 0.55, p = 0.0127) and phenylalanine (ρ = 0.70, p = 0.0005). Conclusions: Dietary treatment in PKU is associated with age-dependent shifts in the gut mycobiome, notably increasing the abundance of taxa such as Eurotiales, Aspergillaceae, and Penicillium, involved in carbohydrate/lipid metabolism and mucosal inflammation. These findings highlight the potential of gut fungi as nutritional and clinical biomarkers in PKU. Full article
(This article belongs to the Special Issue Nutrients: 15th Anniversary)
Show Figures

Figure 1

20 pages, 2995 KiB  
Article
Analysis of Bacterial Community During Cow Manure and Wheat Straw Composting and the Isolation of Lignin-Degrading Bacteria from the Compost
by Hanxiang Yang, Jianguo Hu, Bingxin Zhang, Yan Li, Chenxian Yang, Fusheng Chen, Tingwei Zhu and Ying Xin
Microorganisms 2025, 13(8), 1716; https://doi.org/10.3390/microorganisms13081716 - 22 Jul 2025
Viewed by 375
Abstract
Biodegradation is a green and efficient method for lignin depolymerization and conversion. In order to screen potential bacterial strains for efficient lignin degradation, composts of cow dung and wheat straw were prepared, and the dynamic changes in the predicted bacterial community structure and [...] Read more.
Biodegradation is a green and efficient method for lignin depolymerization and conversion. In order to screen potential bacterial strains for efficient lignin degradation, composts of cow dung and wheat straw were prepared, and the dynamic changes in the predicted bacterial community structure and function in different periods of the composts were investigated. Then, bacteria with an efficient lignin degradation ability were finally screened out from the compost samples. Based on the monitoring results of the physicochemical indexes of the composting process, it was found that the temperature and pH of the compost firstly increased and then decreased with the extension of time, and the water content and C/N gradually decreased. High-throughput sequencing of compost samples from the initial (DA), high-temperature (DB), and cooling (DC) periods revealed that the number of OTUs increased sharply then stabilized around 2000, and the alpha diversity of the bacterial community decreased firstly and then increased. The predominant phyla identified included Proteobacteria, Firmicutes, Chloroflexi, and Bacteroidetes, determined by the relative abundance of beta-diversity-associated species. Functional gene analysis conducted using Tax4Fun revealed that the genes were primarily categorized into Metabolism, Genetic Information Processing, Environmental Information Processing, and Cellular Processes. Based on the decolorization of aniline blue and the degradation efficiency of alkali lignin, eight bacterial strains were isolated from compost samples at the three stages. Cupriavidus sp. F1 showed the highest degradation of alkali lignin with 66.01%. Cupriavidus sp. D8 showed the highest lignin degradation potential with all three enzyme activities significantly higher than the other strains. The results provide a strategy for the lignin degradation and utilization of biomass resources. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

29 pages, 4742 KiB  
Article
Sustainable Tea Cultivation with a Rhizobacterial Consortium: A Microbiome-Driven Alternative to Chemical Fertilizers
by Silpi Sorongpong, Sourav Debnath, Praveen Rahi, Biswajit Bera and Piyush Pandey
Microorganisms 2025, 13(8), 1715; https://doi.org/10.3390/microorganisms13081715 - 22 Jul 2025
Viewed by 988
Abstract
The excessive use of chemical fertilizers in tea cultivation threatens soil health, environmental sustainability, and long-term crop productivity. This study explores the application of plant growth-promoting bacteria (PGPB) as an eco-friendly alternative to conventional fertilizers. A bacterial consortium was developed using selected rhizobacterial [...] Read more.
The excessive use of chemical fertilizers in tea cultivation threatens soil health, environmental sustainability, and long-term crop productivity. This study explores the application of plant growth-promoting bacteria (PGPB) as an eco-friendly alternative to conventional fertilizers. A bacterial consortium was developed using selected rhizobacterial isolates—Lysinibacillus fusiformis, five strains of Serratia marcescens, and two Bacillus spp.—based on their phosphate and zinc solubilization abilities and production of ACC deaminase, indole-3-acetic acid, and siderophores. The consortium was tested in both pot and field conditions using two tea clones, S3A3 and TS491, and compared with a chemical fertilizer treatment. Plants treated with the consortium showed enhanced growth, biomass, and antioxidant activity. The total phenolic contents increased to 1643.6 mg GAE/mL (S3A3) and 1646.93 mg GAE/mL (TS491), with higher catalase (458.17–458.74 U/g/min), glutathione (34.67–42.67 µmol/gfw), and superoxide dismutase (679.85–552.28 units/gfw/s) activities. A soil metagenomic analysis revealed increased microbial diversity and the enrichment of phyla, including Acidobacteria, Proteobacteria, Actinobacteria, Chloroflexi, and Firmicutes. Functional gene analysis showed the increased abundance of genes for siderophore biosynthesis, glutathione and nitrogen metabolism, and indole alkaloid biosynthesis. This study recommends the potential of a PGPB consortium as a sustainable alternative to chemical fertilizers, enhancing both the tea plant performance and soil microbial health. Full article
Show Figures

Figure 1

Back to TopTop