Prebiotics Improve Blood Pressure Control by Modulating Gut Microbiome Composition and Function: A Systematic Review and Meta-Analysis
Abstract
1. Background
2. Methods
3. Results
3.1. Clinical Data
3.1.1. Overview of Included Studies
3.1.2. Effect on Blood Pressure
3.1.3. Mechanistic Insights
3.2. Animal Data
3.2.1. Overview of Included Studies
3.2.2. Effect on Blood Pressure
3.2.3. Mechanistic Insights
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fryar, C.D.; Kit, B.; Carroll, M.D.; Afful, J. Hypertension Prevalence, Awareness, Treatment, and Control Among Adults Age 18 and Older: United States, August 2021–2023; NCHS Data Brief No. 511; National Center for Health Statistics: Atlanta, GA, USA, 2024. [Google Scholar]
- Bundy, J.D.; Li, C.; Stuchlik, P.; Bu, X.; Kelly, T.N.; Mills, K.T.; He, H.; Chen, J.; Whelton, P.K.; He, J. Systolic Blood Pressure Reduction and Risk of Cardiovascular Disease and Mortality: A Systematic Review and Network Meta-analysis. JAMA Cardiol. 2017, 2, 775–781. [Google Scholar] [CrossRef]
- Kario, K.; Okura, A.; Hoshide, S.; Mogi, M. The WHO Global report 2023 on hypertension warning the emerging hypertension burden in globe and its treatment strategy. Hypertens. Res. 2024, 47, 1099–1102. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Dennison Himmelfarb, C.; Depalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2018, 71, e13–e115. [Google Scholar]
- McEvoy, J.W.; McCarthy, C.P.; Bruno, R.M.; Brouwers, S.; Canavan, M.D.; Ceconi, C.; Christodorescu, R.M.; Daskalopoulou, S.S.; Ferro, C.J.; Gerdts, E.; et al. 2024 ESC Guidelines for the management of elevated blood pressure and hypertension. Eur. Heart J. 2024, 45, 3912–4018. [Google Scholar] [CrossRef] [PubMed]
- Whelton, S.P.; Hyre, A.D.; Pedersen, B.; Yi, Y.; Whelton, P.K.; He, J. Effect of dietary fiber intake on blood pressure: A meta-analysis of randomized, controlled clinical trials. J. Hypertens. 2005, 23, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.N.; Akerman, A.; Kumar, S.; Pham, H.T.D.; Coffey, S.; Mann, J. Dietary fibre in hypertension and cardiovascular disease management: Systematic review and meta-analyses. BMC Med. 2022, 20, 139. [Google Scholar] [CrossRef]
- Li, J.; Zhao, F.; Wang, Y.; Chen, J.; Tao, J.; Tian, G.; Wu, S.; Liu, W.; Cui, Q.; Geng, B.; et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017, 5, 14. [Google Scholar] [CrossRef]
- Silveira-Nunes, G.; Durso, D.F.; De Oliveira, L.R., Jr.; Cunha, E.H.M.; Maioli, T.U.; Vieira, A.T.; Speziali, E.; Corrêa-Oliveira, R.; Martins-Filho, O.A.; Teixeira-Carvalho, A.; et al. Hypertension Is Associated With Intestinal Microbiota Dysbiosis and Inflammation in a Brazilian Population. Front. Pharmacol. 2020, 11, 258. [Google Scholar] [CrossRef]
- Yan, D.; Sun, Y.; Zhou, X.; Si, W.; Liu, J.; Li, M.; Wu, M. Regulatory effect of gut microbes on blood pressure. Anim. Model. Exp. Med. 2022, 5, 513–531. [Google Scholar] [CrossRef]
- Gill, S.K.; Rossi, M.; Bajka, B.; Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 101–116. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Xu, C.; Marques, F.Z. How Dietary Fibre, Acting via the Gut Microbiome, Lowers Blood Pressure. Curr. Hypertens. Rep. 2022, 24, 509–521. [Google Scholar] [CrossRef]
- Natarajan, N.; Hori, D.; Flavahan, S.; Steppan, J.; Flavahan, N.A.; Berkowitz, D.E.; Pluznick, J.L. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol. Genom. 2016, 48, 826–834. [Google Scholar] [CrossRef]
- Poll, B.G.; Xu, J.; Jun, S.; Sanchez, J.; Zaidman, N.A.; He, X.; Lester, L.; Berkowitz, D.E.; Paolocci, N.; Gao, W.D.; et al. Acetate, a Short-Chain Fatty Acid, Acutely Lowers Heart Rate and Cardiac Contractility Along with Blood Pressure. J. Pharmacol. Exp. Ther. 2021, 377, 39–50. [Google Scholar] [CrossRef]
- Pluznick, J.L.; Protzko, R.J.; Gevorgyan, H.; Peterlin, Z.; Sipos, A.; Han, J.; Brunet, I.; Wan, L.X.; Rey, F.; Wang, T.; et al. Olfactory receptor responding to gut microbiota derived signals plays a role in renin secretion and blood pressure regulation. Proc. Natl. Acad. Sci. USA 2013, 110, 4410–4415. [Google Scholar] [CrossRef]
- Mahgoup, E.M. Gut Microbiota as a Therapeutic Target for Hypertension: Challenges and Insights for Future Clinical Applications—Gut Microbiota and Hypertension Therapy. Curr. Hypertens. Rep. 2025, 27, 14. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.T.J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; Cochrane: Cochrane, ON, USA, 2024; Available online: www.training.cochrane.org/handbook (accessed on 5 June 2025).
- Dos Santos Fechine, C.P.N.; Monteiro, M.; Tavares, J.F.; Souto, A.L.; Luna, R.C.P.; da Silva, C.S.O.; da Silva, J.A.; Dos Santos, S.G.; de Carvalho Costa, M.J.; Persuhn, D.C. Choline Metabolites, Hydroxybutyrate and HDL after Dietary Fiber Supplementation in Overweight/Obese Hypertensive Women: A Metabolomic Study. Nutrients 2021, 13, 1437. [Google Scholar] [CrossRef]
- Xue, Y.; Cui, L.; Qi, J.; Ojo, O.; Du, X.; Liu, Y.; Wang, X. The effect of dietary fiber (oat bran) supplement on blood pressure in patients with essential hypertension: A randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2458–2470. [Google Scholar] [CrossRef]
- Jama, H.A.; Rhys-Jones, D.; Nakai, M.; Yao, C.K.; Climie, R.E.; Sata, Y.; Anderson, D.; Creek, D.J.; Head, G.A.; Kaye, D.M.; et al. Prebiotic intervention with HAMSAB in untreated essential hypertensive patients assessed in a phase II randomized trial. Nat. Cardiovasc. Res. 2023, 2, 35–43. [Google Scholar] [CrossRef]
- Cao, S.; Shaw, E.L.; Quarles, W.R.; Sasaki, G.Y.; Dey, P.; Hodges, J.K.; Pokala, A.; Zeng, M.; Bruno, R.S. Daily Inclusion of Resistant Starch-Containing Potatoes in a Dietary Guidelines for Americans Dietary Pattern Does Not Adversely Affect Cardiometabolic Risk or Intestinal Permeability in Adults with Metabolic Syndrome: A Randomized Controlled Trial. Nutrients 2022, 14, 1545. [Google Scholar] [CrossRef] [PubMed]
- Hiel, S.; Gianfrancesco, M.A.; Rodriguez, J.; Portheault, D.; Leyrolle, Q.; Bindels, L.B.; da Silveria Cauduro, C.G.; Mulders, M.D.; Zamariola, G.; Azzi, A.-S.; et al. Link between gut microbiota and health outcomes in inulin -treated obese patients: Lessons from the Food4Gut multicenter randomized placebo-controlled trial. Clin. Nutr. 2020, 39, 3618–3628. [Google Scholar] [CrossRef] [PubMed]
- Roshanravan, N.; Mahdavi, R.; Alizadeh, E.; Ghavami, A.; Rahbar Saadat, Y.; Mesri Alamdari, N.; Alipour, S.; Dastouri, M.R.; Ostadrahimi, A. The effects of sodium butyrate and inulin supplementation on angiotensin signaling pathway via promotion of Akkermansia muciniphila abundance in type 2 diabetes; A randomized, double-blind, placebo-controlled trial. J. Cardiovasc. Thorac. Res. 2017, 9, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Vijay, A.; Astbury, S.; Panayiotis, L.; Marques, F.Z.; Spector, T.D.; Menni, C.; Valdes, A.M. Dietary Interventions Reduce Traditional and Novel Cardiovascular Risk Markers by Altering the Gut Microbiome and Their Metabolites. Front. Cardiovasc. Med. 2021, 8, 691564. [Google Scholar] [CrossRef]
- Avellaneda-Franco, L.; Xie, L.; Nakai, M.; Barr, J.J.; Marques, F.Z. Dietary fiber intake impacts gut bacterial and viral populations in a hypertensive mouse model. Gut Microbes 2024, 16, 2407047. [Google Scholar] [CrossRef]
- Kaye, D.M.; Shihata, W.A.; Jama, H.A.; Tsyganov, K.; Ziemann, M.; Kiriazis, H.; Horlock, D.; Vijay, A.; Giam, B.; Vinh, A.; et al. Deficiency of Prebiotic Fiber and Insufficient Signaling Through Gut Metabolite-Sensing Receptors Leads to Cardiovascular Disease. Circulation 2020, 141, 1393–1403. [Google Scholar] [CrossRef]
- Xie, L.; Muralitharan, R.R.; Dinakis, E.; Antonacci, S.; Leung, K.C.; McArdle, Z.; Mirabito Colafella, K.; Nakai, M.; Paterson, M.; Peh, A.; et al. Dietary fiber controls blood pressure and cardiovascular risk by lowering large intestinal pH and activating the proton-sensing receptor GPR65. bioRxiv 2022. [Google Scholar] [CrossRef]
- Chao, Y.-M.; Tain, Y.-L.; Lee, W.-C.; Wu, K.L.H.; Yu, H.-R.; Chan, J.Y.H. Protection by -Biotics against Hypertension Programmed by Maternal High Fructose Diet: Rectification of Dysregulated Expression of Short-Chain Fatty Acid Receptors in the Hypothalamic Paraventricular Nucleus of Adult Offspring. Nutrients 2022, 14, 4306. [Google Scholar] [CrossRef]
- Hsu, C.-N.; Lin, Y.-J.; Hou, C.-Y.; Tain, Y.-L. Maternal Administration of Probiotic or Prebiotic Prevents Male Adult Rat Offspring against Developmental Programming of Hypertension Induced by High Fructose Consumption in Pregnancy and Lactation. Nutrients 2018, 10, 1229. [Google Scholar] [CrossRef]
- Ganesh, B.P.; Nelson, J.W.; Eskew, J.R.; Ganesan, A.; Ajami, N.J.; Petrosino, J.F.; Bryan, R.M.; Durgan, D.J. Prebiotics, Probiotics, and Acetate Supplementation Prevent Hypertension in a Model of Obstructive Sleep Apnea. Hypertension 2018, 72, 1141–1150. [Google Scholar] [CrossRef]
- O’Connor, K.M.; Lucking, E.F.; Bastiaanssen, T.F.; Peterson, V.L.; Crispie, F.; Cotter, P.D.; Clarke, G.; Cryan, J.F.; O’HAlloran, K.D. Prebiotic administration modulates gut microbiota and faecal short-chain fatty acid concentrations but does not prevent chronic intermittent hypoxia-induced apnoea and hypertension in adult rats. EBioMedicine 2020, 59, 102968. [Google Scholar] [CrossRef] [PubMed]
- Bulut, E.C.; Kutucu, D.E.; Üstünova, S.; Ağırbaşlı, M.; Dedeakayoğulları, H.; Tarhan, Ç.; Kapucu, A.; Yeğen, B.Ç.; Tansel, C.D.; Gürevin, E.G. Synbiotic supplementation ameliorates anxiety and myocardial ischaemia–reperfusion injury in hyperglycaemic rats by modulating gut microbiota. Exp. Physiol. 2024, 109, 1882–1895. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, H.-Y.; Huang, J.-H.; Xu, W.-F.; Feng, X.-J.; Xiong, Z.-P.; Dong, Y.-J.; Li, L.-Z.; He, X.; Wu, H.-S.; et al. Polysaccharide, the Active Component of Dendrobium officinale, Ameliorates Metabolic Hypertension in Rats via Regulating Intestinal Flora-SCFAs-Vascular Axis. Front. Pharmacol. 2022, 13, 935714. [Google Scholar] [CrossRef] [PubMed]
- Marques, F.Z.; Nelson, E.; Chu, P.-Y.; Horlock, D.; Fiedler, A.; Ziemann, M.; Tan, J.K.; Kuruppu, S.; Rajapakse, N.W.; El-Osta, A.; et al. High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice. Circulation 2017, 135, 964–977. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, J.; Tian, C.; Chen, X.; Li, H.; Wei, X.; Lin, W.; Zheng, N.; Jiang, A.; Feng, R.; et al. Targeting the Gut Microbiota to Investigate the Mechanism of Lactulose in Negating the Effects of a High-Salt Diet on Hypertension. Mol. Nutr. Food Res. 2019, 63, 1800941. [Google Scholar] [CrossRef]
- Han, Z.-L.; Chen, M.; Fu, X.-D.; Yang, M.; Hrmova, M.; Zhao, Y.-H.; Mou, H.-J. Potassium Alginate Oligosaccharides Alter Gut Microbiota, and Have Potential to Prevent the Development of Hypertension and Heart Failure in Spontaneously Hypertensive Rats. Int. J. Mol. Sci. 2021, 22, 9823. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, T.; Ma, D.; Shi, P.; Zhang, H.; Li, J.; Sun, Z.; Ercolini, D. Probiotics Bifidobacterium lactis M8 and Lactobacillus rhamnosus M9 prevent high blood pressure via modulating the gut microbiota composition and host metabolic products. mSystems 2023, 8, e00331-23. [Google Scholar] [CrossRef]
- Wilck, N.; Matus, M.G.; Kearney, S.M.; Olesen, S.W.; Forslund, K.; Bartolomaeus, H.; Haase, S.; Mähler, A.; Balogh, A.; Markó, L.; et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 2017, 551, 585–589. [Google Scholar] [CrossRef]
- Aja, E.; Zeng, A.; Gray, W.; Connelley, K.; Chaganti, A.; Jacobs, J.P. Health Effects and Therapeutic Potential of the Gut Microbe Akkermansia muciniphila. Nutrients 2025, 17, 562. [Google Scholar] [CrossRef] [PubMed]
- He, K.-Y.; Lei, X.-Y.; Wu, D.-H.; Zhang, L.; Li, J.-Q.; Li, Q.-T.; Yin, W.-T.; Zhao, Z.-L.; Liu, H.; Xiang, X.-Y.; et al. Akkermansia muciniphila protects the intestine from irradiation-induced injury by secretion of propionic acid. Gut Microbes 2023, 15, 2293312. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef]
- Maruyama, S.; Matsuoka, T.; Hosomi, K.; Park, J.; Nishimura, M.; Murakami, H.; Konishi, K.; Miyachi, M.; Kawashima, H.; Mizuguchi, K.; et al. Characteristic Gut Bacteria in High Barley Consuming Japanese Individuals without Hypertension. Microorganisms 2023, 11, 1246. [Google Scholar] [CrossRef]
- Snelson, M.; Jama, H.; Rhys-Jones, D.; Nakai, M.; Anderson, D.; Creek, D.; Head, P.; Mackay, C.; Muir, J.; Marques, F. O88 Reduction in Systolic Blood Pressure Following Dietary Fibre Intervention Is Dependent on Baseline Gut Microbiota Composition. J. Hypertens. 2024, 42, e41. [Google Scholar] [CrossRef]
- Mukhopadhya, I.; Louis, P. Gut microbiota-derived short-chain fatty acids and their role in human health and disease. Nat. Rev. Microbiol. 2025, 1–17, Epub ahead of print. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Stoeva, M.K.; Justice, N.; Nemchek, M.; Sieber, C.M.K.; Tyagi, S.; Gines, J.; Skennerton, C.T.; Souza, M.; Kolterman, O.; et al. Increased circulating butyrate and ursodeoxycholate during probiotic intervention in humans with type 2 diabetes. BMC Microbiol. 2022, 22, 19. [Google Scholar] [CrossRef]
Design, Year (n) | Population | Intervention | Dose (g/day)/ Duration (Weeks) | Effect on BP | Increase in Main Bacterial Taxa | Increase in SCFA (Site) | Effect on Inflammation/Gut Integrity | Effect on Cardiac/Metabolic Function |
---|---|---|---|---|---|---|---|---|
RCT, 2021 (14). [22] | 20–50 YO hypertensive women with obesity (BMI ~ 35) | Mix of soluble/ Insoluble fibers | 12/8 | Decreased | NR | Butyrate (plasma) | NR | Increased HDL-c, choline, and hydroxybutyrate |
RCT, 2017 (44). [23] | 18–65 YO hypertensive patients (BMI ~ 25) | Oat Bran a | 8.9/12 | Decreased | Bifidobacterium_g | NR | NR | NR |
RCT, cross-over, 2022 (20). [24] | 18–70 YO untreated hypertensive patients (BMI ~ 26) | RS | 40/3 | Decreased | Parabacteroides distasonis & Ruminococcus Gauverauii | Butyrate (plasma) | No change/NR | Decreased peripheral resistance |
RCT, cross-over, 2022 (27). [25] | 18–50 YO with metabolic syndrome (BMI ~ 35) | RS a | 20/2 | Decreased b | Lachnospiraceae_f & Ruminococcaceae_f | Acetate (fecal) | NR/Decreased endotoxins | Improved glucose/insulin profile b |
RCT, multicenter, 2020 (106). [26] | 18–55 YO with obesity (50% with diabetes) (BMI ~ 37) | Inulin a | 16/12 | Decreased b | Actinobacteria_p, Bifidobacterium_g & Anaerostipes hadrus. | NR | No change/NR | Decreased weight and insulin b |
RCT, 2017 (59). [27] | 33–55 YO overweight with diabetes (BMI ~ 31) | Inulin | 10/6.4VLD | Decreased | Akkermansia muciniphila | NR | Decreased HS-CRP and TNF-alpha/NR | NR |
Secondary analysis, 2021(69). [28] | >18 YO healthy volunteers with low fiber consumption (BMI ~ 27) | Inulin | 20/6 | Decreased c | Lachnospiraceae_f, Ruminococcaceae_f, d Bifidobacterium_g, and Coprococcus 3 | d Butyrate (plasma) | Decreased IL4 and TNF-alpha/NR | Decreased GlycA, LDL, VLDL-c and cholesterol |
Model, Year | Intervention Type | Intervention (Duration in Weeks) | Effect on BP | Shifted Bacterial Composition (ß-Diversity) a | Effect on F/B Ratio | Increase in Main Bacterial Taxa | Decrease in Main Bacterial Taxa | Increase in SCFA (Site) | Axis |
---|---|---|---|---|---|---|---|---|---|
Angiotensin-II, 2024. [29] | Prebiotic | RS (4) | Decreased | No | NR | Bacteroides caecimuris | NA | NR | NA |
Angiotensin-II, 2020. [30] | Prebiotic | RS (7) | Decreased | Yes | Decreased | MacelliBacteroides_g | Clostridium spp. | NR | Gut–Heart |
Angiotensin-II + Gpr65 KO, 2022. [31] | Prebiotic | RS (3) | Decreased b | NR | NR | Lachnospiraceae_f and Bacteroides_g | Alistipes-g | Acetate/propionate (cecal) | Gut–Heart and Gut–Kidney |
HFD-programmed fetal HTN, 2022. [32] | Prebiotic (given to offspring) | ITF (6) | Decreased | NR | NR | NR | NA | Butyrate (plasma/PVN) | Gut–CNS |
HFD-programmed fetal HTN, 2018. [33] | Prebiotic (given to mother) | ITF (pregnancy/lactation) | Decreased | NR | No change | Akkermansia muciniphila | Bacteroides acidifaciens & Prevotella albensis | Propionate (plasma) | Gut–Kidney |
Hypoxia + high fat diet, 2018. [34] | Prebiotic | RS (2) | Decreased | Yes | NR | Actinobacteria_p, Bifidobacteria_g, Ruminococcus_g, & Blautia_g | Verrucomicrobia_P & Akkermansia muciniphila | Acetate (cecal/portal blood) | Gut–CNS |
Mild, intermittent hypoxia c, 2020. [35] | Prebiotic | ITF (4) | No change | Yes | NR | Bifidobacterium animalis | NA | Acetate (fecal) | NA |
Metabolic HTN + ischemic injury d, 2024. [36] | Symbiotic | ITF + probiotic e (8) | Decreased f | NR | NR | Actinobacteria_p & Bacteroidetes_p | Proteobacteria_p | NR | Gut–Heart |
Metabolic HTN, 2022. [37] | Prebiotic | DOPS (7) | Decreased | NR | Decreased | Lachnospiraceae_f & Lactobacillus_g | Blautia_g | Acetate/butyrate/propionate (colon/aorta) | Gut–Heart |
Salt-sensitive HTN g, 2017. [38] | Prebiotic | RS (6) | Decreased | Yes | Decreased | Bacteroides acidifaciens & Bifidobacterium_g | Enterobacterales_o & Prevotella_g | NR | Gut–Heart |
Salt-sensitive HTN, 2019. [39] | Prebiotic | Lactulose (4) | Decreased | NR | NR | Bifidobacterium_g & Subdoligranulum_g | Alistipes_g | NR | Gut–RAAS |
SHR, 2021. [40] | Prebiotic | PAO (6) | Decreased | Yes | Decreased | Ruminococcaceae_f & Bacteroides uniformis | Prevotella 9 | No change | Gut–RAAS and Gut–Heart |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shremo Msdi, A.; Wang, E.M.; Garey, K.W. Prebiotics Improve Blood Pressure Control by Modulating Gut Microbiome Composition and Function: A Systematic Review and Meta-Analysis. Nutrients 2025, 17, 2502. https://doi.org/10.3390/nu17152502
Shremo Msdi A, Wang EM, Garey KW. Prebiotics Improve Blood Pressure Control by Modulating Gut Microbiome Composition and Function: A Systematic Review and Meta-Analysis. Nutrients. 2025; 17(15):2502. https://doi.org/10.3390/nu17152502
Chicago/Turabian StyleShremo Msdi, Abdulwhab, Elisabeth M. Wang, and Kevin W. Garey. 2025. "Prebiotics Improve Blood Pressure Control by Modulating Gut Microbiome Composition and Function: A Systematic Review and Meta-Analysis" Nutrients 17, no. 15: 2502. https://doi.org/10.3390/nu17152502
APA StyleShremo Msdi, A., Wang, E. M., & Garey, K. W. (2025). Prebiotics Improve Blood Pressure Control by Modulating Gut Microbiome Composition and Function: A Systematic Review and Meta-Analysis. Nutrients, 17(15), 2502. https://doi.org/10.3390/nu17152502