Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,131)

Search Parameters:
Keywords = membrane regeneration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3724 KiB  
Article
An Injectable, Dual-Curing Hydrogel for Controlled Bioactive Release in Regenerative Endodontics
by Meisam Omidi, Daniela S. Masson-Meyers and Jeffrey M. Toth
J. Compos. Sci. 2025, 9(8), 424; https://doi.org/10.3390/jcs9080424 - 7 Aug 2025
Abstract
Regenerative endodontics seeks to restore the vascularized pulp–dentin complex following conventional root canal therapy, yet reliable neovascularization within the constrained root canal remains a key challenge. This study investigates the development of an injectable, dual-curing hydrogel based on methacrylated decellularized amniotic membrane (dAM-MA) [...] Read more.
Regenerative endodontics seeks to restore the vascularized pulp–dentin complex following conventional root canal therapy, yet reliable neovascularization within the constrained root canal remains a key challenge. This study investigates the development of an injectable, dual-curing hydrogel based on methacrylated decellularized amniotic membrane (dAM-MA) and compares its performance to a conventional gelatin methacryloyl (GelMA). The dAM-MA platform was designed for biphasic release, incorporating both free vascular endothelial growth factor (VEGF) for an initial burst and matrix-metalloproteinase-cleavable VEGF conjugates for sustained delivery. The dAM-MA hydrogel achieved shape-fidelity via thermal gelation at 37 °C and possessed tunable stiffness (0.5–7.8 kPa) after visible-light irradiation. While showing high cytocompatibility comparable to GelMA (>125% hDPSC viability), the dAM-MA platform markedly outperformed the control in promoting endothelial tube formation (up to 800 µm total length; 42 branch points at 96 h). The biphasic VEGF release from dAM-MA matched physiological injury kinetics, driving both early chemotaxis and late vessel maturation. These results demonstrate that dAM-MA hydrogels combine native extracellular matrix complexity with practical, dual-curing injectability and programmable VEGF kinetics, offering a promising scaffold for minimally invasive pulp–dentin regeneration. Full article
(This article belongs to the Special Issue Biomedical Composite Applications)
Show Figures

Figure 1

33 pages, 10775 KiB  
Article
Electrospun Nanofibrous Membranes for Guided Bone Regeneration: Fabrication, Characterization, and Biocompatibility Evaluation—Toward Smart 2D Biomaterials
by Julia Radwan-Pragłowska, Aleksandra Kopacz, Aleksandra Sierakowska-Byczek, Łukasz Janus, Piotr Radomski and Aleksander Radwan-Pragłowski
Appl. Sci. 2025, 15(15), 8713; https://doi.org/10.3390/app15158713 - 6 Aug 2025
Abstract
Electrospun nanofibrous membranes have gained considerable attention in bone tissue engineering due to their ability to mimic the extracellular matrix and provide a suitable environment for cell attachment and proliferation. This study investigates the fabrication, characterization, and biocompatibility of poly(L-lactic acid) (PLA)-based membranes [...] Read more.
Electrospun nanofibrous membranes have gained considerable attention in bone tissue engineering due to their ability to mimic the extracellular matrix and provide a suitable environment for cell attachment and proliferation. This study investigates the fabrication, characterization, and biocompatibility of poly(L-lactic acid) (PLA)-based membranes enhanced with periclase (MgO) and gold nanoparticles (AuNPs). The membranes were fabricated using an optimized electrospinning process and subsequently characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FT-IR), and contact angle measurements. Additionally, in vitro biodegradation studies in simulated body fluid (SBF) and cytocompatibility tests with osteoblast-like cells were conducted. The results demonstrated that the incorporation of MgO and AuNPs significantly influenced the structural and chemical properties of the membranes, improving their wettability and bioactivity. SEM imaging confirmed uniform fiber morphology with well-distributed nanoparticles. FT-IR spectroscopy indicated successful integration of bioactive components into the PLA matrix. Cytocompatibility assays showed that modified membranes promoted higher osteoblast adhesion and proliferation compared to pristine PLA membranes. Furthermore, biodegradation studies revealed a controlled degradation rate suitable for guided bone regeneration applications. These findings suggest that electrospun PLA membranes enriched with MgO and AuNPs present a promising biomaterial for GBR applications, offering improved bioactivity, mechanical stability, and biocompatibility. Full article
(This article belongs to the Special Issue Bioactive Composite Materials: From Preparation to Application)
Show Figures

Figure 1

16 pages, 7605 KiB  
Article
From Cap to Collar: Ontogeny of the Endocytic Collar in Neurospora crassa
by Marisela Garduño-Rosales, Caleb Oliver Bedsole, Brian D. Shaw and Rosa R. Mouriño-Pérez
J. Fungi 2025, 11(8), 577; https://doi.org/10.3390/jof11080577 - 3 Aug 2025
Viewed by 175
Abstract
Endocytosis in filamentous fungi is spatially restricted to a subapical zone known as the endocytic collar, which plays essential roles in membrane recycling and the maintenance of polarized growth. In this study, we investigated the ontogeny of the endocytic collar in Neurospora crassa [...] Read more.
Endocytosis in filamentous fungi is spatially restricted to a subapical zone known as the endocytic collar, which plays essential roles in membrane recycling and the maintenance of polarized growth. In this study, we investigated the ontogeny of the endocytic collar in Neurospora crassa by tracking fimbrin-labeled endocytic patches using confocal microscopy during conidial germination, hyphal branching, and regeneration following mechanical injury. We consistently observed an initial accumulation of endocytic patches at the hyphal tip, forming an apical cap, which later reorganized into a subapical collar. This transition was correlated with a significant increase in elongation rate and the appearance of a Spitzenkörper, indicating a link between exocytosis and collar positioning. Although this correlation is robust, our data do not establish causality; rather, collar formation appears to occur after surpassing a critical elongation. Our findings suggest that exocytosis displaces endocytosis from the apex, resulting in the formation of the collar, which is not required for the establishment of polarized growth but is essential for its maintenance. These results support the development of a unified model of collar formation in filamentous fungi and provide new insight into the spatial coordination between endocytic and exocytic processes during hyphal development. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Figure 1

27 pages, 5832 KiB  
Article
Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
by Héctor Herrera Hernández, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas and Jose de Jesus Agustin Flores Cuautle
J. Compos. Sci. 2025, 9(8), 401; https://doi.org/10.3390/jcs9080401 - 1 Aug 2025
Viewed by 337
Abstract
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes [...] Read more.
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes (fiber mats) made of polyvinylidene difluoride (PVDF) for possible use in cellular engineering. A standard culture medium was employed to support the proliferation of Hep-G2 cells under controlled conditions (37 °C, 4.8% CO2, and 100% relative humidity). Subsequently, after the incubation period, electrochemical impedance spectroscopy (EIS) assays were conducted in a physiological environment to characterize the electrical cellular response, providing insights into the biocompatibility of the material. Scanning electron microscopy (SEM) was employed to evaluate cell adhesion, morphology, and growth on the PVDF polymer membranes. The results suggest that PVDF polymer membranes can be successfully produced through electrospinning technology, resulting in the formation of a dipole structure, including the possible presence of a polar β-phase, contributing to piezoelectric activity. EIS measurements, based on Rct and Cdl values, are indicators of ion charge transfer and strong electrical interactions at the membrane interface. These findings suggest a favorable environment for cell proliferation, thereby enhancing cellular interactions at the fiber interface within the electrolyte. SEM observations displayed a consistent distribution of fibers with a distinctive spherical agglomeration on the entire PVDF surface. Finally, integrating piezoelectric properties into cell culture systems provides new opportunities for investigating the influence of electrical interactions on cellular behavior through electrochemical techniques. Based on the experimental results, this electrospun polymer demonstrates great potential as a promising candidate for next-generation biomaterials, with a probable application in tissue regeneration. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

15 pages, 3215 KiB  
Article
The Effect of Collagen Membrane Fixation with Pins on Buccal Bone Regeneration in Immediate Dental Implant Sites: A Preclinical Study in Dogs
by Yuma Hazama, Takahisa Iida, Niklaus P. Lang, Fernando M. Muñoz Guzon, Giovanna Iezzi, Daniele Botticelli and Shunsuke Baba
J. Funct. Biomater. 2025, 16(8), 281; https://doi.org/10.3390/jfb16080281 - 31 Jul 2025
Viewed by 296
Abstract
Background: The role of collagen membrane fixation during guided bone regeneration (GBR) remains debatable, particularly in post-extraction sockets with buccal defects and concomitant immediate implant placement. This study evaluated whether or not fixation with titanium pins improved regenerative outcomes. Methods: Six adult Beagle [...] Read more.
Background: The role of collagen membrane fixation during guided bone regeneration (GBR) remains debatable, particularly in post-extraction sockets with buccal defects and concomitant immediate implant placement. This study evaluated whether or not fixation with titanium pins improved regenerative outcomes. Methods: Six adult Beagle dogs received bilateral extractions of the fourth mandibular premolars. An implant was immediately placed in both the distal alveoli, and standardized buccal bone defects (5 mm height, 3–2 mm width) were prepared. All defects were filled with a slowly resorbing equine xenograft and covered by a resorbable pericardium membrane. At the test sites, the membrane was apically fixed with pins, while no fixation was applied to the control sites. After 3 months of healing, histomorphometric analyses were performed. Results: The vertical bone gain of the buccal crest was 3.2 mm in the test sites (pin group) and 2.9 mm in the control sites (no-pin) (p > 0.754). No significant difference was found in terms of bone-to-implant contact (BIC). However, residual graft particles were located significantly more coronally in the pin group compared to the no-pin group (p = 0.021). Morphometric analyses revealed similar new bone formation within the groups, but with higher amounts of residual xenograft and soft tissue in the pin group. Conclusions: Membrane fixation did not significantly enhance vertical bone gain, and although the slightly higher regeneration in the pin group (3.2 mm vs. 2.9 mm) may hold clinical relevance in esthetically sensitive areas and osseointegration, it appeared to limit apical migration of the grafting material. Full article
(This article belongs to the Special Issue Biomaterials in Dentistry: Current Status and Advances)
Show Figures

Figure 1

21 pages, 1562 KiB  
Review
Electrospun Molecularly Imprinted Polymers for Environmental Remediation: A Mini Review
by Sisonke Sigonya, Bakang Mo Mothudi, Olayemi J. Fakayode, Teboho C. Mokhena, Paul Mayer, Thabang H. Mokhothu, Talent R. Makhanya and Katekani Shingange
Polymers 2025, 17(15), 2082; https://doi.org/10.3390/polym17152082 - 30 Jul 2025
Viewed by 281
Abstract
This review critically examines the recent advancements in the development and application of electrospun molecularly imprinted polymer (MIP) nanofiber membranes for environmental remediation. Emphasizing the significance of these materials, the discussion highlights the mechanisms by which electrospun MIPs achieve high selectivity and efficiency [...] Read more.
This review critically examines the recent advancements in the development and application of electrospun molecularly imprinted polymer (MIP) nanofiber membranes for environmental remediation. Emphasizing the significance of these materials, the discussion highlights the mechanisms by which electrospun MIPs achieve high selectivity and efficiency in removing various pollutants, including dyes, heavy metals, and pharmaceutical residues such as NSAIDs and antiretroviral drugs. The synthesis methodologies are explored in detail, focusing on the choice of monomers, templates, and polymerization conditions that influence the structural and functional properties of the membranes. Characterization techniques used to assess morphology, surface area, porosity, and imprinting efficacy are also examined, providing insights into how these parameters affect adsorption performance. Furthermore, the review evaluates the performance metrics of electrospun MIPs, including adsorption capacities, selectivity, reusability, and stability in complex environmental matrices. Practical considerations, such as scalability, regeneration, and long-term operational stability, are discussed to assess their potential for real-world applications. The article concludes with an outline of future research directions, emphasizing the need for multi-template imprinting, integration with existing treatment technologies, and field-scale validation to address current limitations. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

17 pages, 3944 KiB  
Article
Functionalized Magnetic Nanoparticles as Recyclable Draw Solutes for Forward Osmosis: A Sustainable Approach to Produced Water Reclamation
by Sunith B. Madduri and Raghava R. Kommalapati
Separations 2025, 12(8), 199; https://doi.org/10.3390/separations12080199 - 29 Jul 2025
Viewed by 301
Abstract
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the [...] Read more.
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the application of iron oxide MNPs synthesized via co-precipitation as innovative draw solutes in forward osmosis (FO) for treating synthetic produced water (SPW). The FO membrane underwent surface modification with sulfobetaine methacrylate (SBMA), a zwitterionic polymer, to increase hydrophilicity, minimize fouling, and elevate water flux. The SBMA functional groups aid in electrostatic repulsion of organic and inorganic contaminants, simultaneously encouraging robust hydration layers that improve water permeability. This adjustment is vital for sustaining consistent flux performance while functioning with MNP-based draw solutions. Material analysis through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) verified the MNPs’ thermal stability, consistent morphology, and modified surface chemistry. The FO experiments showed a distinct relationship between MNP concentration and osmotic efficiency. At an MNP dosage of 10 g/L, the peak real-time flux was observed at around 3.5–4.0 L/m2·h. After magnetic regeneration, 7.8 g of retrieved MNPs generated a steady flow of ~2.8 L/m2·h, whereas a subsequent regeneration (4.06 g) resulted in ~1.5 L/m2·h, demonstrating partial preservation of osmotic driving capability. Post-FO draw solutions, after filtration, exhibited total dissolved solids (TDS) measurements that varied from 2.5 mg/L (0 g/L MNP) to 227.1 mg/L (10 g/L MNP), further validating the effective dispersion and solute contribution of MNPs. The TDS of regenerated MNP solutions stayed similar to that of their fresh versions, indicating minimal loss of solute activity during the recycling process. The combined synergistic application of SBMA-modified FO membranes and regenerable MNP draw solutes showcases an effective and sustainable method for treating produced water, providing excellent water recovery, consistent operational stability, and opportunities for cyclic reuse. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Graphical abstract

14 pages, 1281 KiB  
Article
Membrane Separation for the Treatment of LiBr + LiCl Brines and Their Application
by Jonathan Ibarra-Bahena, Ulises Dehesa-Carrasco, Yuridiana Rocio Galindo-Luna, Iván Leonardo Medina-Caballero and Wilfrido Rivera
Membranes 2025, 15(8), 219; https://doi.org/10.3390/membranes15080219 - 23 Jul 2025
Viewed by 307
Abstract
In sorption cooling systems, an important stage of the thermodynamic cycle is the separation of the refrigerant fluid from the absorbent mixture. This process is called “regeneration” or “desorption,” and it is similar to thermal desalination, where water is separated from an aqueous [...] Read more.
In sorption cooling systems, an important stage of the thermodynamic cycle is the separation of the refrigerant fluid from the absorbent mixture. This process is called “regeneration” or “desorption,” and it is similar to thermal desalination, where water is separated from an aqueous saline solution. However, since sorption systems utilize high salt concentration solutions, conventional desalination techniques such as reverse osmosis are not suitable. In this regard, membrane devices can enhance heat and mass transfer processes in compact sizes. In the present paper, a membrane device with an air gap membrane distillation configuration was evaluated, operating with the H2O/LiBr + LiCl solution (with a mass ratio of 2:1, LiBr:LiCl), to assess the produced distilled water flux. Among the operating parameters analyzed (solution temperature, cooling water temperature, salt concentration, and membrane pore size), solution temperature had the highest impact on the distilled water flux, while the membrane pore size had the lowest impact. The maximum distilled water flux was 7.63 kg/h·m2 with a solution temperature of 95.3 °C, a cooling water temperature of 25.1 °C, a salt concentration of 44.99% w/w, and a membrane pore size of 0.45 μm. On the other hand, the minimum distilled water flux was 0.28 kg/h·m2 with a solution temperature of 80.3 °C, a cooling water temperature of 40.1 °C, a salt concentration of 50.05% w/w, and with a membrane pore size of 0.22 μm. Full article
(This article belongs to the Special Issue Applications of Membrane Distillation in Water Treatment and Reuse)
Show Figures

Figure 1

14 pages, 2153 KiB  
Article
The Effect of Insulin-like Growth Factor-1 on Protein Composition and DNA Content in Damaged Somatic Nerves
by Marina Parchaykina, Milena Simakova, Tatyana Kuzmenko, Anastasia Zavarykina, Elvira Revina, Elizaveta Sadovnikova, Igor Grunyushkin, Svetlana Kiryukhina and Victor Revin
Sci. Pharm. 2025, 93(3), 32; https://doi.org/10.3390/scipharm93030032 - 22 Jul 2025
Viewed by 274
Abstract
This study investigated the changes in protein composition and DNA content in damaged somatic nerves when exposed to insulin-like growth factor-1 (IGF-1). Using electrophoretic protein separation in polyacrylamide gel (PAG) and spectrophotometry, the transection was shown to be accompanied by a significant decrease [...] Read more.
This study investigated the changes in protein composition and DNA content in damaged somatic nerves when exposed to insulin-like growth factor-1 (IGF-1). Using electrophoretic protein separation in polyacrylamide gel (PAG) and spectrophotometry, the transection was shown to be accompanied by a significant decrease in the quantitative content of total protein, certain protein fractions and DNA, both in the proximal and distal segments of the nerve conductor. Against the background of the intramuscular administration of IGF-1, intensive DNA synthesis and the protein composition stabilization of somatic nerves at the earlier post-traumatic stages were observed. By means of Raman scattering (RS-spectroscopy) and recording action potentials (APs), the enhanced recovery of the physicochemical condition of the nerve fiber membrane and its functional activity, indicating regeneration activation in the somatic nerves after damage, was revealed. IGF-1 was most likely to stimulate cytoskeleton protein synthesis through launching the mitogen-activated protein kinase signal pathway (MAPK/ERK), resulting in the increased expression of the genes related to the remyelination and functioning recovery of damaged nerve conductors. Full article
Show Figures

Figure 1

14 pages, 405 KiB  
Review
A Mini Review of Reused End-of-Life Reverse Osmosis (EoL RO) Membranes
by Anissa Somrani, Kholoud Abohelal and Maxime Pontié
Membranes 2025, 15(7), 217; https://doi.org/10.3390/membranes15070217 - 21 Jul 2025
Viewed by 509
Abstract
As sensitive parts of the water treatment process, reverse osmosis (RO) membranes are the most important for desalination and wastewater treatment. But the performance of RO membranes deteriorates over time due to fouling, necessitating frequent replacements. One of the environmental challenges is the [...] Read more.
As sensitive parts of the water treatment process, reverse osmosis (RO) membranes are the most important for desalination and wastewater treatment. But the performance of RO membranes deteriorates over time due to fouling, necessitating frequent replacements. One of the environmental challenges is the disposal of End-of-Life (EoL) RO membranes, which are made of non-biodegradable polymers. The reuse of EoL membranes as a sustainable approach for waste saving and resource efficiency has recently attracted considerable attention. The present work provides a comprehensive overview of the strategies for reusing EoL RO membranes as sustainable alternatives to conventional disposal methods. Furthermore, the fundamental principles of RO technology, the primary types and impacts of membrane fouling, and advanced cleaning and regeneration techniques are discussed. The conversion of EoL membranes into nanofiltration (NF), ultrafiltration (UF), and forward osmosis (FO) membranes is also covered in this review, as well as their uses in brackish water desalination, dye/salt separation, groundwater treatment, and household wastewater reuse. Environmental and economic benefits, as well as technical, social, and regulatory challenges, are also discussed. Finally, the review highlights innovative approaches and future directions for incorporating EoL membrane reuse into circular economy models, outlining its potential to improve sustainability and reduce operational costs in water treatment systems. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

15 pages, 1695 KiB  
Article
Reconstructive Therapy in Patients with Peri-Implantitis in a University Dental Hospital: A Preliminary Retrospective Case Series Focusing on Complications
by Ahmad Alahmari, Xavier Costa-Berenguer, Rui Figueiredo, Eduard Valmaseda-Castellón, Alba Sánchez-Torres and Marta García-García
Appl. Sci. 2025, 15(14), 8040; https://doi.org/10.3390/app15148040 - 18 Jul 2025
Viewed by 453
Abstract
Peri-implantitis is an inflammatory disease-causing bone loss around dental implants, often requiring reconstructive surgical therapies to reduce probing depth and regenerate bone. However, such surgeries are frequently complicated by postoperative issues. This retrospective case series aimed to identify the main postoperative complications following [...] Read more.
Peri-implantitis is an inflammatory disease-causing bone loss around dental implants, often requiring reconstructive surgical therapies to reduce probing depth and regenerate bone. However, such surgeries are frequently complicated by postoperative issues. This retrospective case series aimed to identify the main postoperative complications following the reconstructive treatment of peri-implant bone defects in peri-implantitis patients. Data from 14 patients with 21 affected implants were analyzed, including demographics, oral hygiene, surgical techniques, and complications such as wound dehiscence, membrane exposure, and infections. Wound dehiscence was measured using Image J® software version 1.54. Descriptive and bivariate analyses were performed. The results showed that 11 implants (52.4%; 95% confidence interval (95%CI): 29% to 76%) in nine patients (57.1%; 95%CI = 27% to 87%) developed soft tissue dehiscence after one week, with membrane exposure observed in 4 implants. Dehiscence was significantly associated with mandibular implant location (p = 0.003), poor interproximal hygiene (p = 0.008), and membrane exposure (p = 0.034). No postoperative infections were recorded. In conclusion, more than half of peri-implantitis patients undergoing reconstructive surgery experience wound dehiscence, particularly in cases involving mandible, poor hygiene, and membrane exposure. This complication might compromise bone regeneration and reduce the treatment success rate. These results should be interpreted cautiously due to study design limitations (retrospective design, lack of a control group, and small sample size). Full article
(This article belongs to the Special Issue Recent Advances in Digital Dentistry and Oral Implantology)
Show Figures

Figure 1

22 pages, 2494 KiB  
Systematic Review
Reassessing the Use of Membranes in Peri-Implantitis Surgery: A Systematic Review and Meta-Analysis of In Vivo Studies
by Young Joon Cho, Yong Tak Jeong, Hyun Nyun Woo, Hyun Woo Cho, Min Gu Kang, Sung-Min Hwang and Jae-Mok Lee
J. Funct. Biomater. 2025, 16(7), 262; https://doi.org/10.3390/jfb16070262 - 15 Jul 2025
Viewed by 669
Abstract
Peri-implantitis (PI) presents a growing challenge in implant dentistry, with regenerative surgical approaches often incorporating barrier membranes despite the uncertainty of their clinical value. This systematic review and meta-analysis of in vivo studies aimed to evaluate the efficacy of barrier membranes in the [...] Read more.
Peri-implantitis (PI) presents a growing challenge in implant dentistry, with regenerative surgical approaches often incorporating barrier membranes despite the uncertainty of their clinical value. This systematic review and meta-analysis of in vivo studies aimed to evaluate the efficacy of barrier membranes in the reconstructive surgical treatment of PI. A comprehensive electronic search was performed in PubMed, Scopus, Google Scholar, and the Cochrane Library, covering studies published from 1990 to 2024. The protocol followed PRISMA guidelines and was registered in PROSPERO (CRD42025625417). Eligible studies included in vivo investigations comparing regenerative procedures with and without membrane use, with a minimum follow-up of 6 months and at least 10 implants per study. Risk of bias (RoB) was assessed using the Cochrane RoB tool. The meta-analysis was conducted using a random-effects model and included 15 studies comprising 560 patients. Although not consistently statistically significant, the findings suggested that membrane use may offer enhanced outcomes in terms of probing pocket depth (PPD) reduction and marginal bone level (MLB) gain. The evidence was limited by high clinical heterogeneity, variability in outcome definitions, and short follow-up durations. While membranes are commonly utilized, current evidence does not justify their routine use. Further well-designed, long-term clinical trials are needed to establish specific indications and optimize treatment strategies. Full article
(This article belongs to the Special Issue New Biomaterials in Periodontology and Implantology)
Show Figures

Figure 1

15 pages, 2606 KiB  
Article
A Collagen Membrane Pretreated with Citrate Promotes Collagen Mineralization and Bone Regeneration
by Qi Zhang, Yewen Zhong, Xinlin He and Sui Mai
J. Funct. Biomater. 2025, 16(7), 261; https://doi.org/10.3390/jfb16070261 - 15 Jul 2025
Viewed by 607
Abstract
Purpose: Collagen membranes with biomimetic mineralization are emerging as promising materials for bone regeneration, owing to their high biocompatibility. In this study, we developed a biogenic collagen membrane by combining citrate (C) pretreatment and carboxymethyl chitosan (CMC)-mediated mineralization and further evaluated its bone [...] Read more.
Purpose: Collagen membranes with biomimetic mineralization are emerging as promising materials for bone regeneration, owing to their high biocompatibility. In this study, we developed a biogenic collagen membrane by combining citrate (C) pretreatment and carboxymethyl chitosan (CMC)-mediated mineralization and further evaluated its bone healing potential. Methods: C-CMC collagen membranes were prepared by lyophilization. The mineral composition and content were tested through X-ray diffraction (XRD), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA). The micromorphology was observed using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning probe microscopy (SPM). Physical and mechanical properties, including the swelling rate, porosity, hydrophilicity, tensile strength, Young’s modulus, degradation, and barrier function, were also evaluated. Bone mesenchymal stem cells (BMSCs) were cultured in vitro to observe their behavior. An in vivo critical-size rat calvarial defect model was used to validate the effects of the membrane on bone regeneration. Results: The C-CMC collagen membrane was successfully synthesized as a collagen–hydroxyapatite complex with intrafibrillar mineralization, exhibiting improved mechanical properties and an optimal swelling rate, porosity, hydrophilicity, and degradation rate. Additionally, the C-CMC collagen membrane promoted BMSC proliferation, adhesion, and osteogenesis while preventing epithelial cell infiltration. In vivo experiments indicated that C-CMC collagen membranes significantly stimulated bone regeneration without causing systemic toxicity. Conclusions: Our findings suggest that the C-CMC collagen membrane possesses satisfactory physical and mechanical properties, along with good biocompatibility and efficacy in bone defect regeneration, making it a potential candidate for a bioactive guided bone regeneration membrane in clinical applications. Full article
Show Figures

Figure 1

19 pages, 1293 KiB  
Review
Customized 3D-Printed Scaffolds for Alveolar Ridge Augmentation: A Scoping Review of Workflows, Technology, and Materials
by Saeed A. Elrefaei, Lucrezia Parma-Benfenati, Rana Dabaja, Paolo Nava, Hom-Lay Wang and Muhammad H. A. Saleh
Medicina 2025, 61(7), 1269; https://doi.org/10.3390/medicina61071269 - 14 Jul 2025
Viewed by 346
Abstract
Background and Objectives: Bone regeneration (BR) is a cornerstone technique in reconstructive dental surgery, traditionally using either barrier membranes, titanium meshes, or perforated non-resorbable membranes to facilitate bone regeneration. Recent advancements in 3D technology, including CAD/CAM and additive manufacturing, have enabled the development [...] Read more.
Background and Objectives: Bone regeneration (BR) is a cornerstone technique in reconstructive dental surgery, traditionally using either barrier membranes, titanium meshes, or perforated non-resorbable membranes to facilitate bone regeneration. Recent advancements in 3D technology, including CAD/CAM and additive manufacturing, have enabled the development of customized scaffolds tailored to patient needs, potentially overcoming the limitations of conventional methods. Materials and Methods: A scoping review was conducted according to the PRISMA guidelines. Electronic searches were performed in MEDLINE (PubMed), the Cochrane Library, Scopus, and Web of Science up to January 2025 to identify studies on digital technologies applied to bone augmentation. Eligible studies encompassed randomized controlled trials, cohort studies, case series, and case reports, all published in English. Data regarding digital workflows, software, materials, printing techniques, and sterilization methods were extracted from 23 studies published between 2015 and 2024. Results: The review highlights a diverse range of digital workflows, beginning with CBCT-based DICOM to STL conversion using software such as Mimics and Btk-3D®. Customized titanium meshes and other meshes like Poly Ether-Ether Ketone (PEEK) meshes were produced via techniques including direct metal laser sintering (DMLS), selective laser melting (SLM), and five-axis milling. Although titanium remained the predominant material, studies reported variations in mesh design, thickness, and sterilization protocols. The findings underscore that digital customization enhances surgical precision and efficiency in BR, with several studies demonstrating improved bone gain and reduced operative time compared to conventional approaches. Conclusions: This scoping review confirms that 3D techniques represent a promising advancement in BR. Customized digital workflows provide superior accuracy and support for BR procedures, yet variability in protocols and limited high-quality trials underscore the need for further clinical research to standardize techniques and validate long-term outcomes. Full article
(This article belongs to the Section Dentistry and Oral Health)
Show Figures

Figure 1

17 pages, 1960 KiB  
Article
Radiographic Evidence of Immature Bone Architecture After Sinus Grafting: A Multidimensional Image Analysis Approach
by Ibrahim Burak Yuksel, Fatma Altiparmak, Gokhan Gurses, Ahmet Akti, Merve Alic and Selin Tuna
Diagnostics 2025, 15(14), 1742; https://doi.org/10.3390/diagnostics15141742 - 9 Jul 2025
Viewed by 359
Abstract
Background: Radiographic evaluation of bone regeneration following maxillary sinus floor elevation commonly emphasizes volumetric gains. However, the qualitative microarchitecture of the regenerated bone, particularly when assessed via two-dimensional imaging modalities, such as panoramic radiographs, remains insufficiently explored. This study aimed to evaluate early [...] Read more.
Background: Radiographic evaluation of bone regeneration following maxillary sinus floor elevation commonly emphasizes volumetric gains. However, the qualitative microarchitecture of the regenerated bone, particularly when assessed via two-dimensional imaging modalities, such as panoramic radiographs, remains insufficiently explored. This study aimed to evaluate early trabecular changes in grafted maxillary sinus regions using fractal dimension, first-order statistics, and gray-level co-occurrence matrix analysis. Methods: This retrospective study included 150 patients who underwent maxillary sinus floor augmentation with bovine-derived xenohybrid grafts. Postoperative panoramic radiographs were analyzed at 6 months to assess early healing. Four standardized regions of interest representing grafted sinus floors and adjacent tuberosity regions were analyzed. Image processing and quantitative analyses were performed to extract fractal dimension (FD), first-order statistics (FOS), and gray-level co-occurrence matrix (GLCM) features (contrast, homogeneity, energy, correlation). Results: A total of 150 grafted sites and 150 control tuberosity sites were analyzed. Fractal dimension (FD) and contrast values were significantly lower in grafted areas than in native tuberosity bone (p < 0.001 for both), suggesting reduced trabecular complexity and less distinct transitions. In contrast, higher homogeneity (p < 0.001) and mean gray-level intensity values (p < 0.001) were observed in the grafted regions, reflecting a more uniform but immature trabecular pattern during the early healing phase. Energy and correlation values also differed significantly between groups (p < 0.001). No postoperative complications were reported, and resorbable collagen membranes appeared to support graft stability. Conclusions: Although the grafted sites demonstrated radiographic volume stability, their trabecular architecture remained immature at 6 months, implying that volumetric measurements alone may be insufficient to assess biological bone maturation. These results support the utility of advanced textural and fractal analysis in routine imaging to optimize clinical decision-making regarding implant placement timing in grafted sinuses. Full article
Show Figures

Figure 1

Back to TopTop