Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (222)

Search Parameters:
Keywords = meltwater

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 12821 KiB  
Article
The Identification and Diagnosis of ‘Hidden Ice’ in the Mountain Domain
by Brian Whalley
Glacies 2025, 2(3), 8; https://doi.org/10.3390/glacies2030008 - 15 Jul 2025
Viewed by 264
Abstract
Morphological problems for distinguishing between glacier ice, glacier ice with a debris cover (debris-covered glaciers), and rock glaciers are outlined with respect to recognising and mapping these features. Decimal latitude–longitude [dLL] values are used for geolocation. One model for rock glacier formation and [...] Read more.
Morphological problems for distinguishing between glacier ice, glacier ice with a debris cover (debris-covered glaciers), and rock glaciers are outlined with respect to recognising and mapping these features. Decimal latitude–longitude [dLL] values are used for geolocation. One model for rock glacier formation and flow discusses the idea that they consist of ‘mountain permafrost’. However, signs of permafrost-derived ice, such as flow features, have not been identified in these landsystems; talus slopes in the neighbourhoods of glaciers and rock glaciers. An alternative view, whereby rock glaciers are derived from glacier ice rather than permafrost, is demonstrated with examples from various locations in the mountain domain, 𝔻𝕞. A Google Earth and field examination of many rock glaciers shows glacier ice exposed below a rock debris mantle. Ice exposure sites provide ground truth for observations and interpretations stating that rock glaciers are indeed formed from glacier ice. Exposure sites include bare ice at the headwalls of cirques and above debris-covered glaciers; additionally, ice cliffs on the sides of meltwater pools are visible at various locations along the lengths of rock glaciers. Inspection using Google Earth shows that these pools can be traced downslope and their sizes can be monitored between images. Meltwater pools occur in rock glaciers that have been previously identified in inventories as being indictive of permafrost in the mountain domain. Glaciers with a thick rock debris cover exhibit ‘hidden ice’ and are shown to be geomorphological units mapped as rock glaciers. Full article
Show Figures

Figure 1

22 pages, 11512 KiB  
Article
Hazard Assessment of Highway Debris Flows in High-Altitude Mountainous Areas: A Case Study of the Laqi Gully on the China–Pakistan Highway
by Xiaomin Dai, Qihang Liu, Ziang Liu and Xincheng Wu
Sustainability 2025, 17(14), 6411; https://doi.org/10.3390/su17146411 - 13 Jul 2025
Viewed by 401
Abstract
Located on the northern side of the China–Pakistan Highway in the Pamir Plateau, Laqi Gully represents a typical rainfall–meltwater coupled debris flow gully. During 2020–2024, seven debris flow events occurred in this area, four of which disrupted traffic and posed significant threats to [...] Read more.
Located on the northern side of the China–Pakistan Highway in the Pamir Plateau, Laqi Gully represents a typical rainfall–meltwater coupled debris flow gully. During 2020–2024, seven debris flow events occurred in this area, four of which disrupted traffic and posed significant threats to the China–Pakistan Economic Corridor (CPEC). The hazard assessment of debris flows constitutes a crucial component in disaster prevention and mitigation. However, current research presents two critical limitations: traditional models primarily focus on single precipitation-driven debris flows, while low-resolution digital elevation models (DEMs) inadequately characterize the topographic features of alpine narrow valleys. Addressing these issues, this study employed GF-7 satellite stereo image pairs to construct a 1 m resolution DEM and systematically simulated debris flow propagation processes under 10–100-year recurrence intervals using a coupled rainfall–meltwater model. The results show the following: (1) The mudslide develops rapidly in the gully section, and the flow velocity decays when it reaches the highway. (2) At highway cross-sections, maximum velocities corresponding to 10-, 20-, 50-, and 100-year recurrence intervals measure 2.57 m/s, 2.75 m/s, 3.02 m/s, and 3.36 m/s, respectively, with maximum flow depths of 1.56 m, 1.78 m, 2.06 m, and 2.52 m. (3) Based on the hazard classification model of mudslide intensity and return period, the high-, medium-, and low-hazard sections along the highway were 58.65 m, 27.36 m, and 24.1 m, respectively. This research establishes a novel hazard assessment methodology for rainfall–meltwater coupled debris flows in narrow valleys, providing technical support for debris flow mitigation along the CPEC. The outcomes demonstrate significant practical value for advancing infrastructure sustainability under the United Nations Sustainable Development Goals (SDGs). Full article
Show Figures

Figure 1

21 pages, 2386 KiB  
Article
Energy Efficiency Assessment of the Electrodialysis Process in Desalinating Rest Area Water Runoff
by Małgorzata Iwanek, Paweł Suchorab, Jacek Czerwiński, Dariusz Kowalski, Ewa Hołota, Beata Kowalska, Daniel Słyś, Agnieszka Stec, Izabela Anna Tałałaj and Paweł Biedka
Energies 2025, 18(13), 3424; https://doi.org/10.3390/en18133424 - 29 Jun 2025
Viewed by 553
Abstract
The efficient use of energy is a sign of conscious environmental responsibility. Sustainable management also refers to water resources, where emphasis is placed on the possibility of retaining rainwater at the point of the precipitation occurrence. This article focused on the reuse of [...] Read more.
The efficient use of energy is a sign of conscious environmental responsibility. Sustainable management also refers to water resources, where emphasis is placed on the possibility of retaining rainwater at the point of the precipitation occurrence. This article focused on the reuse of runoff from a rest area (RA) along the expressway, wherever drinking water quality is not required. The runoff from RAs can be significantly contaminated due to the traffic-related issues. The objective of this article was to evaluate the energy efficiency of preliminary treatment of raw meltwater from a selected rest area using electrodialysis for Cl and Na+ removal. The treatment was carried out under various conditions, including different solution temperatures (20 °C and 30 °C) and electric voltages (10 V, 20 V, 30 V). The energy efficiency assessment was preceded by a characterization of runoff quality and the analysis of pollutant removal efficiency in the electrodialysis process. The most energy-efficient variant was characterized with the 0.097 Wh/(mg/L) energy expenditure ratio and 93% efficiency removal for Cl and 0.147 Wh/(mg/L) and 90% for Na+. In this variant, the permissible Cl and Na+ concentrations limits were achieved after 27 min with an energy consumption of 57 Wh. In general, the observed highest energy efficiency occurred at the beginning of the electrodialysis process and decreased over time. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

21 pages, 6509 KiB  
Article
Assessing Increased Glacier Ablation Sensitivity to Climate Warming Using Degree-Day Method in the West Nyainqentanglha Range, Qinghai–Tibet Plateau
by Shuhong Wang, Jintao Liu, Hamish D. Pritchard, Xiao Qiao, Jie Zhang, Xuhui Shen and Wenyan Qi
Sustainability 2025, 17(11), 5143; https://doi.org/10.3390/su17115143 - 3 Jun 2025
Viewed by 445
Abstract
Limited surface energy and mass flux data hinder the understanding of glacier retreat mechanisms on the Qinghai–Tibet Plateau (QTP). Glaciers in the west Nyainqentanglha Range (WNR) supply meltwater to the densely populated Lhasa River basin (LRB) and Nam Co, the QTP’s second-largest endorheic [...] Read more.
Limited surface energy and mass flux data hinder the understanding of glacier retreat mechanisms on the Qinghai–Tibet Plateau (QTP). Glaciers in the west Nyainqentanglha Range (WNR) supply meltwater to the densely populated Lhasa River basin (LRB) and Nam Co, the QTP’s second-largest endorheic lake. In this study, we used a glacier mass balance model based on the degree-day method (GMB-DDM) to understand the response of glacier changes to climate warming. The spatiotemporal variation in degree-day factors for ice (DDFice; plural form: DDFsice) was assessed to characterize the sensitivity of glacier melt to warming over 44 years in the WNR. Our results demonstrate that the GMB_DDM effectively captured the accelerated mass loss and regional heterogeneity of WNR glaciers from 2000 to 2020, particularly the intensified negative balance after 2014. Moreover, glacier ablation was more sensitive to warming in the WNR during 2000–2020 than 1976–2000, with DDFice increases of 21% ± 8% in the LRB and 31% ± 10% in the Nam Co basin (NCB). Increased precipitation during the ablation season and reduced glacier surface albedo can explain the increased sensitivity to warming during 2000–2020. These findings could support sustainable water resource management in the LRB, NCB, and the surrounding areas of the QTP. Full article
Show Figures

Graphical abstract

13 pages, 3225 KiB  
Article
Glacier Retreat and Groundwater Recharge in Central Chile: Analysis to Inform Decision-Making for Sustainable Water Resources Management
by Verónica Urbina, Roberto Pizarro, Solange Jara, Paulina López, Alfredo Ibáñez, Claudia Sangüesa, Cristóbal Toledo, Madeleine Guillen, Héctor L. Venegas-Quiñones, Francisco Alejo, John E. McCray and Pablo A. Garcia-Chevesich
Sustainability 2025, 17(11), 4993; https://doi.org/10.3390/su17114993 - 29 May 2025
Viewed by 1232
Abstract
Glaciers worldwide are in retreat, and their meltwater can modulate mountain aquifers. We examined whether mass loss of the Juncal Norte Glacier (central Chile) has affected groundwater storage in the Juncal River basin between 1990 and 2022. Recession-curve modeling of daily streamflow shows [...] Read more.
Glaciers worldwide are in retreat, and their meltwater can modulate mountain aquifers. We examined whether mass loss of the Juncal Norte Glacier (central Chile) has affected groundwater storage in the Juncal River basin between 1990 and 2022. Recession-curve modeling of daily streamflow shows no statistically significant trend in basin-scale groundwater reserves (τ = 0.06, p > 0.05). In contrast, glacier volume declined significantly (−3.8 hm3/yr, p < 0.05), and precipitation at the nearby Riecillos station fell sharply during the 2008–2017 megadrought (p < 0.05) but exhibited no significant change beforehand. Given the simultaneous decreases in meteoric inputs (rain + snow) and glacier mass, one would expect groundwater storage to decline; its observed stability therefore suggests that enhanced glacier-melt recharge may be temporarily offsetting drier conditions. Isotopic evidence from comparable Andean catchments supports such glacio-groundwater coupling, although time lags of months to years complicate detection with recession models alone. Hence, while our results do not yet demonstrate a direct glacier–groundwater link, they are consistent with the hypothesis that ongoing ice loss is buffering aquifer storage. Longer records and tracer studies are required to verify this mechanism and to inform sustainable water resources planning. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

24 pages, 4948 KiB  
Article
The Evolution of Runoff Processes in the Source Region of the Yangtze River Under Future Climate Change
by Nana Zhang, Peng Jiang, Bin Yang, Changhai Tan, Wence Sun, Qin Ju, Simin Qu, Kunqi Ding, Jingjing Qin and Zhongbo Yu
Atmosphere 2025, 16(6), 640; https://doi.org/10.3390/atmos16060640 - 24 May 2025
Viewed by 393
Abstract
Climate change has intensified the melting of glaciers and permafrost in high-altitude cold regions, leading to more frequent extreme hydrological events. This has caused significant variations in the spatiotemporal distribution of meltwater runoff from the headwater cryosphere, posing a major challenge to regional [...] Read more.
Climate change has intensified the melting of glaciers and permafrost in high-altitude cold regions, leading to more frequent extreme hydrological events. This has caused significant variations in the spatiotemporal distribution of meltwater runoff from the headwater cryosphere, posing a major challenge to regional water security. In this study, the HBV hydrological model was set up and driven by CMIP6 global climate model outputs to investigate the multi-scale temporal variations of runoff under different climate change scenarios in the Tuotuo River Basin (TRB) within the source region of the Yangtze River (SRYR). The results suggest that the TRB will undergo significant warming and wetting in the future, with increasing precipitation primarily occurring from May to October and a notable rise in annual temperature. Both temperature and precipitation trends intensify under more extreme climate scenarios. Under all climate scenarios, annual runoff generally exhibits an upward trend, except under the SSP1-2.6 scenario, where a slight decline in total runoff is projected for the late 21st century (2061–2090). The increase in total runoff is primarily concentrated between May and October, driven by enhanced rainfall and meltwater contributions, while snowmelt runoff also shows an increase, but accounts for a smaller percentage of the total runoff and has a smaller impact on the total runoff. Precipitation is the primary driver of annual runoff depth changes, with temperature effects varying by scenario and period. Under high emissions, intensified warming and glacier melt amplify runoff, while low emissions show stable warming with precipitation dominating runoff changes. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

13 pages, 6387 KiB  
Article
Evolution of a Potentially Dangerous Glacial Lake on the Kanchenjunga Glacier, Nepal, Predictive Flood Models, and Prospective Community Response
by Alton C. Byers, Sonam Rinzin, Elizabeth Byers and Sonam Wangchuk
Water 2025, 17(10), 1457; https://doi.org/10.3390/w17101457 - 12 May 2025
Viewed by 2116
Abstract
During a research expedition to the Kanchenjunga Conservation Area (KCA), eastern Nepal, in April–June 2024, local concern was expressed about the rapid development of meltwater ponds upon the terminus of the Kanchenjunga glacier since 2020, especially in terms of the possible formation of [...] Read more.
During a research expedition to the Kanchenjunga Conservation Area (KCA), eastern Nepal, in April–June 2024, local concern was expressed about the rapid development of meltwater ponds upon the terminus of the Kanchenjunga glacier since 2020, especially in terms of the possible formation of a large and potentially dangerous glacial lake. Our resultant study of the issue included informal interviews with local informants, comparison of time series satellite composite images acquired by Sentinel-2 Multispectral Instrument, and modeling of different lake development, outburst flood scenarios, and prospective downstream impacts. Assuming that the future glacial lake will be formed by the merging of present-day supraglacial ponds, filling the low-gradient area beneath the present-day glacier terminal complex, we estimated the potential volume of a Kanchenjunga proglacial lake to be 33 × 106 m3. Potential mass movement-triggered outburst floods would travel downstream distances of almost 120 km even under the small magnitude scenario, and under the worst-case scenario would reach the Indo-Gangetic Plain and cross the border into India, exposing up to 90 buildings and 44 bridges. In response, we suggest that the lower Kanchenjunga glacier region be regularly monitored by both local communities and Kathmandu-based research entities over the next decade. The development of user-friendly early warning systems, hazard mapping and zoning programs, cryospheric hazards awareness building programs, and construction of locally appropriate flood mitigation measures are recommended. Finally, the continued development and refinement of the models presented here could provide governments and remote communities with a set of inexpensive and reliable tools capable of providing the basic information needed for communities to make informed decisions regarding hazard mitigation, adaptive, and/or preventive measures related to changing glaciers. Full article
(This article belongs to the Special Issue Study of Hydrological Mechanisms: Floods and Landslides)
Show Figures

Figure 1

18 pages, 7773 KiB  
Article
Expanding Lake Area on the Changtang Plateau Amidst Global Lake Water Storage Declines: An Exploration of Underlying Factors
by Da Zhi, Yang Pu, Chuan Jiang, Jiale Hu and Yujie Nie
Atmosphere 2025, 16(4), 459; https://doi.org/10.3390/atmos16040459 - 16 Apr 2025
Viewed by 409
Abstract
The remarkable expansion of lake areas across the Changtang Plateau (CTP, located in the central Tibetan Plateau) since the late 1990s has drawn considerable scientific interest, presenting a striking contrast to the global decline in natural lake water storage observed during the same [...] Read more.
The remarkable expansion of lake areas across the Changtang Plateau (CTP, located in the central Tibetan Plateau) since the late 1990s has drawn considerable scientific interest, presenting a striking contrast to the global decline in natural lake water storage observed during the same period. This study systematically investigates the mechanisms underlying lake area variations on the CTP by integrating glacierized area changes derived from the Google Earth Engine (GEE) platform with atmospheric circulation patterns from the ERA5 reanalysis dataset. Our analysis demonstrates that the limited glacier coverage on the CTP exerted significant influence only on glacial lakes in the southern region (r = −0.65, p < 0.05). The widespread lake expansion across the CTP predominantly stems from precipitation increases (r = 0.74, p < 0.01) associated with atmospheric circulation changes. Enhanced Indian summer monsoon (ISM) activity facilitates anomalous moisture transport from the Indian Ocean to the southwestern CTP, manifesting as increased specific humidity (Qa) in summer. Simultaneously, the weakened westerly jet stream reinforces moisture convergence across the CTP, driving enhanced annual precipitation. By coupling glacier coverage variations with atmospheric processes, this research establishes that precipitation anomalies rather than glacial meltwater primarily govern the extensive lake expansion on the CTP. These findings offer critical insights for guiding ecological security strategies and sustainable development initiatives on the CTP. Full article
Show Figures

Figure 1

26 pages, 11207 KiB  
Article
Glacier, Wetland, and Lagoon Dynamics in the Barroso Mountain Range, Atacama Desert: Past Trends and Future Projections Using CA-Markov
by German Huayna, Edwin Pino-Vargas, Jorge Espinoza-Molina, Carolina Cruz-Rodríguez, Fredy Cabrera-Olivera, Lía Ramos-Fernández, Bertha Vera-Barrios, Karina Acosta-Caipa and Eusebio Ingol-Blanco
Hydrology 2025, 12(3), 64; https://doi.org/10.3390/hydrology12030064 - 20 Mar 2025
Cited by 1 | Viewed by 1048
Abstract
Glacial retreat is a major global challenge, particularly in arid and semi-arid regions where glaciers serve as critical water sources. This research focuses on glacial retreat and its impact on land cover and land use changes (LULC) in the Barroso Mountain range, Tacna, [...] Read more.
Glacial retreat is a major global challenge, particularly in arid and semi-arid regions where glaciers serve as critical water sources. This research focuses on glacial retreat and its impact on land cover and land use changes (LULC) in the Barroso Mountain range, Tacna, Peru, which is a critical area for water resources in the hyperarid Atacama Desert. Employing advanced remote sensing techniques through the Google Earth Engine (GEE) cloud computing platform, we analyzed historical trends (1985–2022) using Landsat satellite imagery. A normalized index classification was carried out to generate LULC maps for the years 1986, 2001, 2012, and 2022. Future projections until 2042 were developed using Cellular Automata–Markov (CA–Markov) modeling in QGIS, incorporating six predictive environmental variables. The resulting maps presented an overall accuracy (OA) greater than 83%. Historical analysis revealed a dramatic glacier reduction from 44.7 km2 in 1986 to 7.4 km2 in 2022. In contrast, wetlands expanded substantially from 5.70 km2 to 12.14 km2, indicating ecosystem shifts potentially driven by glacier meltwater availability. CA–Markov chain modeling projected further glacier loss to 3.07 km2 by 2042, while wetlands are expected to expand to 18.8 km2 and bodies of water will reach 4.63 km2. These future projections (with accuracies above 84%) underline urgent implications for water management, environmental sustainability, and climate adaptation strategies, particularly with regard to downstream hydrological risks and ecosystem resilience. Full article
Show Figures

Figure 1

16 pages, 3350 KiB  
Article
Bacterial Distribution in the Glacier Borehole Meltwater on the Eastern Broknes Peninsula of the Larsemann Hills and Adjacent Lake Water, East Antarctica
by Hongpeng Cui, Jibin Han, Bing Li, Youhong Sun, Da Gong, Xiaopeng Fan, Talalay Pavel, Dayi Zhang, Liang Gao and Hongchen Jiang
Microorganisms 2025, 13(3), 679; https://doi.org/10.3390/microorganisms13030679 - 18 Mar 2025
Viewed by 522
Abstract
The distribution and assembly mechanisms of microorganisms in Antarctic lakes and glaciers remain poorly understood, despite their ecological significance. This study investigates the bacterial diversity and community composition in glacier borehole meltwater samples from the eastern Broknes Peninsula of the Larsemann Hills and [...] Read more.
The distribution and assembly mechanisms of microorganisms in Antarctic lakes and glaciers remain poorly understood, despite their ecological significance. This study investigates the bacterial diversity and community composition in glacier borehole meltwater samples from the eastern Broknes Peninsula of the Larsemann Hills and adjacent lake water samples in East Antarctica using high—throughput 16S rRNA gene sequencing. The results show that bacterial diversity in glacier borehole meltwater increased with depth, but remained lower than in lake water. Significant compositional differences were observed between lake and glacier borehole bacterial communities, with higher relative abundances of Actinobacteria, Bacteroidia, Cyanobacteriia, and Verrucomicrobiae in glacier borehole water samples, while Alphaproteobacteria, Gammaproteobacteria, OLB14 (phylum Chloroflexi), Acidimicrobiia, and Thermoleophilia were more abundant in lake samples. These differences were attributed to distinct community assembly mechanisms: stochastic processes (ecological drift and dispersal limitation) dominated in lakes, while both stochastic (ecological drift and homogeneous dispersal) and deterministic (homogeneous selection) processes played key roles in glacier boreholes. This study enhances our understanding of bacterial community assembly and distribution patterns in Antarctic glacier ecosystems, providing insights into microbial biodiversity and biogeochemical cycling in these extreme environments. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Graphical abstract

13 pages, 1215 KiB  
Review
A Review of the Properties, Transport, and Fate of Organophosphate Esters in Polar Snow and Ice
by Xiang Zou
Sustainability 2025, 17(6), 2493; https://doi.org/10.3390/su17062493 - 12 Mar 2025
Cited by 1 | Viewed by 986
Abstract
Organophosphate esters (OPEs) are emerging organic pollutants widely used as industrial flame retardants and plasticizers in recent years. These compounds have been detected in various environmental media. Snow, a fundamental component of glaciers, plays a key role in the effective removal of organic [...] Read more.
Organophosphate esters (OPEs) are emerging organic pollutants widely used as industrial flame retardants and plasticizers in recent years. These compounds have been detected in various environmental media. Snow, a fundamental component of glaciers, plays a key role in the effective removal of organic pollutants from the atmosphere. Consequently, glacier accumulation zones receive substantial deposits containing OPEs, making them significant sinks for OPEs. The presence of OPEs in snow and ice serves as a natural archive for studying their environmental behavior and fate. This review examines the occurrence, sources, and impacts of OPEs in polar and middle-to-low-latitude glaciers based on a comprehensive analysis of the existing literature. Studies indicate that OPE concentrations in snow and ice are generally low, primarily influenced by long-range atmospheric and oceanic transport, with additional contributions from local anthropogenic activities. With global warming, snow and ice meltwater has become a secondary source of OPEs, posing a threat to the cryosphere ecosystems. As research on OPEs in snow and ice is still in its early stages, this review provides valuable insights into their environmental behavior and future research directions. Full article
Show Figures

Figure 1

13 pages, 2358 KiB  
Article
Early-Holocene Episodic Sedimentary Process on the East Hainan Coast: High-Resolution Chronological Refinement, Titanium Intensity and Flux Implications
by Mianjin Chen, Xiao Sun, Yang Li, Yulong Xue, Wenzhe Lyu, Xuemu Wang and Yan Li
J. Mar. Sci. Eng. 2025, 13(3), 527; https://doi.org/10.3390/jmse13030527 - 10 Mar 2025
Viewed by 705
Abstract
Episodic sedimentary processes with significant changes in sedimentation rate have occurred on the East Hainan Coast, the inner shelf of the South China Sea, since the Last Glacial Maximum. In particular, the early-Holocene (~11.5–8.7 ka) rapid sedimentation at a mean rate of ~4.90 [...] Read more.
Episodic sedimentary processes with significant changes in sedimentation rate have occurred on the East Hainan Coast, the inner shelf of the South China Sea, since the Last Glacial Maximum. In particular, the early-Holocene (~11.5–8.7 ka) rapid sedimentation at a mean rate of ~4.90 m/ka is crucial to understand the processes of terrigenous input to the ocean, carbon cycling and climate control in coastal-neritic sedimentary evolution. However, the chronological framework and the detailed environmental evolution remain uncertain. In this study, core sediments collected from the East Hainan Coast (code: NH01) were used to revisit the characteristics of luminescence signals by comparing the dating results using the blue-light stimulated luminescence (blue-OSL) ages and previously published post-infrared blue-light stimulated luminescence (pIR-blue OSL) ages. The results showed that both the ages agreed with each other for the fine-grained quartz fraction. The refined chronology of the early-Holocene deposits on the East Hainan Coast with higher resolution suggested that the sedimentation rate was ~0.60 m/ka before 10.97 ka, while it increased abruptly to ~5.89 m/ka during the period of 10.97–9.27 ka. According to the refined OSL chronology and the high-resolution (~2.5 cm) titanium intensity using X-ray fluorescence (XRF) scanning, the rapid sedimentation during the early Holocene was likely controlled by increased terrigenous input. The variation in Ti flux reflected the differential response between two meltwater pulse (MWP) events under the combined effects of enhanced early-Holocene monsoons and localized freshwater input. These findings highlight the compound controls of global ice-volume change, monsoon dynamics and coastal geomorphic evolution on sedimentary processes. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

21 pages, 7094 KiB  
Article
Accelerated Glacier Thinning and Area Loss in the Wind River Range, Wyoming (1968–2019): Climate and Topographic Drivers
by Yanan Li, Raihan Jamil and Jeffrey VanLooy
Remote Sens. 2025, 17(5), 916; https://doi.org/10.3390/rs17050916 - 5 Mar 2025
Viewed by 825
Abstract
Glacier meltwater influences streamflow and various activities in the western US. The Wind River Range (WRR) in Wyoming, which contains the largest glacial mass in the Rocky Mountains of the conterminous US, has been retreating since the Little Ice Age. This study examines [...] Read more.
Glacier meltwater influences streamflow and various activities in the western US. The Wind River Range (WRR) in Wyoming, which contains the largest glacial mass in the Rocky Mountains of the conterminous US, has been retreating since the Little Ice Age. This study examines long-term changes in WRR glaciers (>0.2 km2) over 1968–2019 and investigates their relationship with climatic and topographic factors. Using USGS topographic maps, satellite imagery, DEM datasets, and GPS surveys, we analyzed glacier area and surface elevation changes. Our results show a 19.2 ± 0.9% glacier area reduction from 1972 to 2019, with a 10.6 ± 0.3% decline from 2000–2019. Glacier thinning was most pronounced between 2000 and 2019 at −0.58 ± 0.11 m y−1, with lower-elevation glaciers thinning faster. Small, south-facing glaciers retreated more rapidly, while slope effects were mixed. Increasing spring temperatures and a shift toward more spring precipitation falling as rain has likely exacerbated glacier loss since 2000. Such accelerated melting has significant implications for water availability and ecosystem health if warming continues, affecting agricultural, industrial, and recreational water use. Understanding these trends is key for future water resource management and ecosystem sustainability in the region. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

23 pages, 6275 KiB  
Article
The Evolution and Drivers of Hydrochemistry in Nam Co Lake, the Third Largest Lake on the Tibetan Plateau, over the Last 20 Years
by Wenhao Ren, Yanyan Gao, Hui Qian, Wengang Qu, Xiaoxin Shi, Yaoming Ma, Zhongbo Su and Weiqiang Ma
Sustainability 2025, 17(5), 2180; https://doi.org/10.3390/su17052180 - 3 Mar 2025
Cited by 1 | Viewed by 761
Abstract
The Tibetan Plateau, a critical regulator of the global water cycle and climate system, represents a highly sensitive region to environmental changes, with significant implications for sustainable development. This study focuses on Nam Co Lake, the third largest lake on the Tibetan Plateau, [...] Read more.
The Tibetan Plateau, a critical regulator of the global water cycle and climate system, represents a highly sensitive region to environmental changes, with significant implications for sustainable development. This study focuses on Nam Co Lake, the third largest lake on the Tibetan Plateau, and investigates the hydrochemical evolution of the lake and the driving mechanisms in regard to the lake–river–groundwater system within the Nam Co Basin over the last 20 years. Our findings provide critical insights for sustainable water resource management in regard to fragile alpine lake ecosystems. The hydrochemical analyses revealed distinct temporal patterns in the total dissolved solids, showing an increasing trend during the 2000s, followed by a decrease in the 2010s. Piper diagrams demonstrated a gradual change in the anion composition from the Cl type to the HCO3 type over the study period. The ion ratio analyses identified rock weathering (particularly silicate, halite, sulfate, and carbonate weathering), ion exchange, and evaporation processes as primary controlling processes, with notable differences between water bodies: while all four weathering processes contributed to the lake’s water chemistry, only halite and carbonate weathering influenced river and groundwater compositions. The comparative analysis revealed more pronounced ion exchange processes in lake water than in river and groundwater systems. Climate change impacts were manifested through two primary mechanisms: (1) enhanced evaporation, leading to elevated ion concentrations and isotopic enrichment; and (2) temperature-related effects on the water chemistry through increased dilution from precipitation and glacial meltwater. Understanding these mechanisms is essential for developing adaptive strategies to maintain water security and ecosystem sustainability. The relationships established between climate drivers and hydrochemical responses provide a scientific basis for predicting future changes and informing sustainable management practices for inland lake systems across the Tibetan Plateau. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

21 pages, 15325 KiB  
Article
Spatiotemporal Variations in Sea Ice Albedo: A Study of the Dynamics of Sea Ice Albedo in the Sea of Okhotsk
by Yingzhen Zhou, Wei Li, Nan Chen, Takenobu Toyota, Yongzhen Fan, Tomonori Tanikawa and Knut Stamnes
Remote Sens. 2025, 17(5), 772; https://doi.org/10.3390/rs17050772 - 23 Feb 2025
Viewed by 587
Abstract
This study utilizes a novel albedo retrieval framework combining radiative transfer modeling with scientific machine learning (RTM-SciML) to investigate sea ice dynamics in the Sea of Okhotsk. By validating albedo estimates derived from the MODIS sensor against in situ pyranometer measurements near the [...] Read more.
This study utilizes a novel albedo retrieval framework combining radiative transfer modeling with scientific machine learning (RTM-SciML) to investigate sea ice dynamics in the Sea of Okhotsk. By validating albedo estimates derived from the MODIS sensor against in situ pyranometer measurements near the Hokkaido coast, we achieved a robust Pearson coefficient of 0.86 and an RMSE of 0.089 for all sea ice types, with even higher correlations for specific surfaces like snow-covered ice (Pearson-r = 0.89) and meltwater/open water (Pearson-r = 0.90). This confirms the framework’s efficacy across varying surface conditions. Cross-sensor comparisons between MODIS and the Second-Generation Global Imager (SGLI) further demonstrated its consistency, achieving an overall Pearson-r of 0.883 and RMSE of 0.036. Integrating these albedo estimates with sea ice concentration data from the Advanced Microwave Scanning Radiometer 2 (AMSR-2), we analyzed the complex role of the Sea of Okhotsk’s polynya systems and ice interactions in regional climate processes. Our results highlight the synergistic advantage of pairing optical sensors, like MODIS and SGLI, with microwave sensors, offering a more comprehensive understanding of evolving sea ice conditions and paving the way for future climate and cryosphere studies. Full article
(This article belongs to the Special Issue Monitoring Sea Ice Loss with Remote Sensing Techniques)
Show Figures

Figure 1

Back to TopTop