Assessing Increased Glacier Ablation Sensitivity to Climate Warming Using Degree-Day Method in the West Nyainqentanglha Range, Qinghai–Tibet Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methods
2.2.1. Data
- (1)
- Glacier mass balance and glacier area data
- (2)
- Meteorological data
2.2.2. Methods
The Mass Balance Model Based on Degree-Day Model (GMB_DDM)
3. Results
3.1. The Inverted DDFsice and GMB_DDM Simulations at Basin Scale
3.2. The DDFsice for >2 km2 Glaciers
4. Discussion
4.1. Uncertainty
4.2. Response of Glacier Ablation in the WNR to Climate Warming
4.3. The Influences Topographic Factors on DDFsice
4.4. Increasing Sensitivity of Glaciers Ablation to APT
4.5. Implications of Glacier Ablation Changes for Water Resource Sustainability
5. Conclusions
- (1)
- The temporal and spatial heterogeneity of WNR glacier changes, particularly the intensified negative MB after 2014 revealed using remote sensing data, can be well explained by the GMB_DDM model through the effects of ablation season warming (APT) and reductions in snowfall (SP).
- (2)
- DDFsice of glaciers in both the LRB and NCB during 2000–2020 are higher than that during 1976–2000, and the change rate of DDFice in the NCB (31% ± 10%) is higher than that in the LRB (21% ± 8%) from 1976–2000 to 2000–2020. Glacier ablation in the WNR is more sensitive to climate warming during 2000–2020 than 1976–2000, which may be caused by the increase in precipitation during ablation season and the decrease in glacier surface albedo. DDFsice in the LRB are higher than that in the NCB during both 1976–2000 and 2000–2020. We find that substantial errors in modeled regional MB could arise if DDFsice are held constant through time, without allowing for the changes that we observe.
- (3)
- The spatial pattern of DDFsice of individual glaciers remains similar between 1976–2000 and 2000–2020, but the DDFsice vary greatly within this population, with maximum values eight and six times greater than minimum values for the 1976–2000 and 2000–2020 periods, respectively. DDFsice are positively correlated with elevation, longitude, and latitude in the same region during 1976–2000 and 2000–2020, but uncorrelated with aspect and glacier area.
- (4)
- Glacier meltwater plays a vital role in sustaining water resources in high-altitude regions such as the LRB and NCB, which are essential for both ecological stability and human livelihoods. The accelerated rapid glacier retreat under ongoing climate change is altering hydrological patterns and threatening long-term water security. These changes highlight the urgent need for integrated, basin-scale monitoring systems and adaptive water governance frameworks that can account for changing cryospheric inputs and manage trade-offs between upstream and downstream users.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, K.; Liu, S.; Jiang, Z.; Xu, J.; Wei, J.; Guo, W. Recent Glacier Mass Balance and Area Changes in the Kangri Karpo Mountains from DEMs and Glacier Inventories. Cryosphere 2018, 12, 103–121. [Google Scholar] [CrossRef]
- Maurer, J.M.; Schaefer, J.M.; Rupper, S.; Corley, A. Acceleration of Ice Loss across the Himalayas over the Past 40 Years. Sci. Adv. 2019, 5, eaav7266. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Gao, M.; Liu, J.; Wang, J.; Wang, S.; Chen, X.; Liu, H. Understanding the Effects of Climate Warming on Streamflow and Active Groundwater Storage in an Alpine Catchment: The Upper Lhasa River. Hydrol. Earth Syst. Sci. 2020, 24, 1145–1157. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Liu, J.; Hu, Q. Changes of Precipitation-Runoff Relationship Induced by Climate Variation in a Large Glaciated Basin of the Tibetan Plateau. J. Geophys. Res. Atmos. 2021, 126, e2020JD034367. [Google Scholar] [CrossRef]
- Ren, S.; Menenti, M.; Jia, L.; Zhang, J.; Zhang, J.; Li, X. Glacier Mass Balance in the Nyainqentanglha Mountains between 2000 and 2017 Retrieved from ZiYuan-3 Stereo Images and the SRTM DEM. Remote Sens. 2020, 12, 864. [Google Scholar] [CrossRef]
- Wang, S.; Liu, J.; Pritchard, H.D.; Ke, L.; Qiao, X. Characterizing Four Decades of Accelerated Glacial Mass Loss in the West Nyainqentanglha Range of the Tibetan Plateau. Hydrol. Earth Syst. Sci. 2023, 27, 933–952. [Google Scholar] [CrossRef]
- Ke, L.; Song, C.; Yong, B.; Lei, Y.; Ding, X. Which Heterogeneous Glacier Melting Patterns Can Be Robustly Observed from Space? A Multi-Scale Assessment in Southeastern Tibetan Plateau. Remote Sens. Environ. 2020, 242, 111777. [Google Scholar] [CrossRef]
- Hock, R. Glacier Melt: A Review of Processes and Their Modelling. Prog. Phys. Geogr. 2005, 29, 362–391. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Xia, J.; Shen, Y.; Kang, S. Study of Degree-Day Model from 2000 to 2016: The Main Progress and Key Issues. J. Glaciol. Geocryol. 2017, 39, 801–810. (In Chinese) [Google Scholar]
- Hock, R. Temperature Index Melt Modelling in Mountain Areas. J. Hydrol. 2003, 282, 104–115. [Google Scholar] [CrossRef]
- Li, H. Spatial and Temporal Transferability of Degree-Day Model and Simplified Energy Balance Model: A Case Study. Sci. Cold Arid. Reg. 2020, 12, 95–103. [Google Scholar]
- Huss, M.; Hock, R. A New Model for Global Glacier Change and Sea-Level Rise. Front. Earth Sci. 2015, 3, 1–22. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.D.A.; Bierkens, M.F.P.; Lutz, A.F.; Immerzeel, W.W. Impact of a Global Temperature Rise of 1.5 Degrees Celsius on Asia’s Glaciers. Nature 2017, 549, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Han, H.; Kang, S. The Temporal and Spatial Variation of Positive Degree-Day Factors on the Koxkar Glacier over the South Slope of the Tianshan Mountains, China, from 2005 to 2010. Sci. Cold Arid. Reg. 2017, 9, 425–431. [Google Scholar]
- Mihalcea, C.; Mayer, C.; Diolaiuti, G.; Lambrecht, A.; Smiraglia, C.; Tartari, G. Ice Ablation and Meteorological Conditions on the Debris-Covered Area of Baltoro Glacier, Karakoram, Pakistan. Ann. Glaciol. 2006, 43, 292–300. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Ding, Y. Observed Degree-Day Factors and Their Spatial Variation on Glaciers in Western China. Ann. Glaciol. 2006, 43, 301–306. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Wang, X. A Dataset of Spatial Distribution of Degree-Day Factors for Glaciers in High Mountain Asia. China Sci. Data 2019, 4, 1–10. [Google Scholar] [CrossRef]
- Kayastha, R.B.; Takeuchi, Y.; Nakawo, M.; Ageta, Y. Practical Prediction of Ice Melting beneath Various Thickness of Debris Cover on Khumbu Glacier, Nepal, Using a Positive Degree-Day Factor. In Symposium at Seattle 2000–Debris-Covered Glaciers; IAHS Publication: Wallingford, UK, 2000; Volume 264, pp. 71–81. [Google Scholar]
- Braithwaite, R.J.; Olesen, O.B. Seasonal Variation of Ice Ablation at the Margin of the Greenland Ice Sheet and Its Sensitivity to Climate Change, Qamanarssup Sermia, West Greenland. J. Glaciol. 1993, 39, 267–274. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Gao, H.; Zou, X.; Wazir, M.A. Variation of Degree-Day Factors and Its Affecting Factorsin the Upper Indus Basin. Arid. Zone Res. 2020, 37, 264–274. [Google Scholar] [CrossRef]
- Qiao, C.; He, X.; Ye, B. Study of the Degree-Day Factors for Snow and Ice on the Dongkemadi Glacier, Tanggula Range. J. Glaciol. Geocryol. 2010, 32, 257–264. (In Chinese) [Google Scholar]
- Laumann, T.; Reeh, N. Sensitivity to Climate Change of the Mass Balance of Glaciers in Southern Norway. J. Glaciol. 1993, 39, 656–665. [Google Scholar] [CrossRef]
- Zhu, L.P.; Xie, M.P.; Wu, Y.H. Quantitative Analysis of Lake Area Variations and the Influence Factors from 1971 to 2004 in the Nam Co Basin of the Tibetan Plateau. Chinese Sci. Bull. 2010, 55, 1294–1303. [Google Scholar] [CrossRef]
- Xie, J.; Liu, J.; Mingyuan, D.; Kang, S.; Wang, K. Analysis of the Observation Results of Temperature and Precipitation over an Alpine Mountain, the Lhasa River Basin. Progress. Geogr. 2009, 28, 223–230. (In Chinese) [Google Scholar]
- Yao, T.D.; Li, Z.G.; Yang, W.; Guo, X.J.; Zhu, L.P.; Kang, S.C.; Wu, Y.H.; Yu, W.S. Glacial Distribution and Mass Balance in the Yarlung Zangbo River and Its Influence on Lakes. Chinese Sci. Bull. 2010, 55, 2072–2078. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Y.; Zhu, L.; Wang, J.; Li, J.; Chen, D. Estimation and Trend Detection of Water Storage at Nam Co Lake, Central Tibetan Plateau. J. Hydrol. 2011, 405, 161–170. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, G.; Chen, W.; Xu, F. Response of Glacial Lakes to Glacier and Climate Changes in the Western Nyainqentanglha Range. Sci. Total Environ. 2020, 735, 139607. [Google Scholar] [CrossRef]
- Yu, W.; Yao, T.; Kang, S.; Pu, J.; Yang, W.; Gao, T.; Zhao, H.; Zhou, H.; Li, S.; Wang, W.; et al. Different Region Climate Regimes and Topography Affect the Changes in Area and Mass Balance of Glaciers on the North and South Slopes of the Same Glacierized Massif (the West Nyainqentanglha Range, Tibetan Plateau). J. Hydrol. 2013, 495, 64–73. [Google Scholar] [CrossRef]
- Li, G.; Lin, H. Recent Decadal Glacier Mass Balances over the Western Nyainqentanglha Mountains and the Increase in Their Melting Contribution to Nam Co Lake Measured by Differential Bistatic SAR Interferometry. Glob. Planet. Change 2017, 149, 177–190. [Google Scholar] [CrossRef]
- Consortium R 7.0 Randolph Glacier Inventory—A Dataset of Global Glacier Outlines, Version 7.0; NSIDC National Snow and Ice Data Center: Boulder, CO, USA, 2023.
- Wu, X.; Su, J.; Ren, W.; Lü, H.; Yuan, F. Statistical Comparison and Hydrological Utility Evaluation of ERA5-Land and IMERG Precipitation Products on the Tibetan Plateau. J. Hydrol. 2023, 620, 129384. [Google Scholar] [CrossRef]
- Chandrasekar, V.; Le, M. Evaluation of Profile Classification Module of GPM-DPR Algorithm after Launch. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 5174–5177. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, D.; Qin, Z.; Zheng, Y.; Guo, J. Assessment of the GPM and TRMM Precipitation Products Using the Rain Gauge Network over the Tibetan Plateau. J. Meteorol. Res. 2018, 32, 324–336. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Wang, S.; Liu, J.; Wang, J.; Qiao, X.; Zhang, J. Evaluation of GPM IMERG V05B and TRMM 3B42V7 Precipitation Products over High Mountainous Tributaries in Lhasa with Dense Rain Gauges. Remote Sens. 2019, 11, 2080. [Google Scholar] [CrossRef]
- Verma, P.; Ghosh, S.K. Study of GPM-Imerg Rainfall Data Product for Gangotri Glacier. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2018, 42, 383–388. [Google Scholar] [CrossRef]
- Muñoz Sabater, J. ERA5-Land Hourly Data from 1950 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2019. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=overview (accessed on 20 March 2025).
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The First High-Resolution Meteorological Forcing Dataset for Land Process Studies over China. Sci. Data 2020, 7, 1–11. [Google Scholar] [CrossRef]
- Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C.C.K. On Downward Shortwave and Longwave Radiations over High Altitude Regions: Observation and Modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150, 38–46. [Google Scholar] [CrossRef]
- Rounce, D.R.; Hock, R.; Shean, D.E. Glacier Mass Change in High Mountain Asia Through 2100 Using the Open-Source Python Glacier Evolution Model (PyGEM). Front. Earth Sci. 2020, 7, 1–20. [Google Scholar] [CrossRef]
- Xiao, P.; Hu, R.; Zhang, Z.; Qin, S. China Daily Snow Albedo Product Data Set (2000–2020); National Tibetan Plateau Data Center: Lanzhou, China, 2022. [Google Scholar]
- Braithwaite, R.J.; Zhang, Y. Sensitivity of Mass Balance of Five Swiss Glaciers to Temperature Changes Assessed by Tuning a Degree-Day Model. J. Glaciol. 2000, 46, 7–14. [Google Scholar] [CrossRef]
- Chen, R.S.; Liu, J.F.; Song, Y.X. Precipitation Type Estimation and Validation in China. J. Mt. Sci. 2014, 11, 917–925. [Google Scholar] [CrossRef]
- Wu, Q.; Shichang, K.; Yongjun, Z.; Gao, T. The Characteristics of the Positive Degree-Day Factors of the Zhadang Glacieron the Nyaingentanglha Range of Tibetan Plateau, and Its Application. J. Glaciol. Geocryol. 2010, 32, 891–897. (In Chinese) [Google Scholar]
- Uyanık, G.K.; Güler, N. A Study on Multiple Linear Regression Analysis. Procedia Soc. Behav. Sci. 2013, 106, 234–240. [Google Scholar] [CrossRef]
- Idochi, O.; Jude, O.; Amarachi, O.; Uwabunkonye, B. Parametric Versus Non-Parametric Simple Linear Regression on Data with and Without Outliers. Int. J. Innov. Sci. Math. 2016, 4, 175–180. [Google Scholar]
- Immerzeel, W.W.; Wanders, N.; Lutz, A.F.; Shea, J.M.; Bierkens, M.F.P. Reconciling High-Altitude Precipitation in the Upper Indus Basin with Glacier Mass Balances and Runoff. Hydrol. Earth Syst. Sci. 2015, 19, 4673–4687. [Google Scholar] [CrossRef]
- Lutz, A.F.; Immerzeel, W.W.; Kraaijenbrink, P.D.A.; Shrestha, A.B.; Bierkens, M.F.P. Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes. PLoS ONE 2016, 11, e0165630. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Tang, G.; Long, D.; Yong, B.; Zhong, L.; Wan, W.; Hong, Y. Similarity and Error Intercomparison of the GPM and Its Predecessor-TRMM Multisatellite Precipitation Analysis Using the Best Available Hourly Gauge Network over the Tibetan Plateau. Remote Sens. 2016, 8, 569. [Google Scholar] [CrossRef]
- Li, D.; Yang, K.; Tang, W.; Li, X.; Zhou, X.; Guo, D. Characterizing Precipitation in High Altitudes of the Western Tibetan Plateau with a Focus on Major Glacier Areas. Int. J. Climatol. 2020, 40, 5114–5127. [Google Scholar] [CrossRef]
- Liu, L.; Gu, H.; Xie, J.; Xu, Y.P. How Well Do the ERA-Interim, ERA-5, GLDAS-2.1 and NCEP-R2 Reanalysis Datasets Represent Daily Air Temperature over the Tibetan Plateau? Int. J. Climatol. 2021, 41, 1484–1505. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Pokhrel, P. The Study of Temporal and Spatail Variability of Degree Day Factor of Snowmelt in Colorado. Master’s Thesis, University of North Texas, Denton, TX, USA, 2016. [Google Scholar]
- Han, H.; WangJ, I.; Wang, X.; Zhang, P. Study of the Positive Degree-Day Factor of Ice Cliff Ablation in Debris-Covered Area of the Koxkar Glacier. J. Glaciol. Geocryol. 2009, 31, 620–627. (In Chinese) [Google Scholar]
- Ambach, W. Interpretation of the Positive-Degree-Days Factor by Heat Balance Characteristics—West Greenland. Nord. Hydrol. 1988, 19, 217–224. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W. Spatial Variability in Degree-Day Factors in Yarlung Zangbo River Basin in China. J. Univ. Chin. Acad. Sci. 2018, 35, 704–711. (In Chinese) [Google Scholar]
- Ming, J.; Cachier, H.; Xiao, C.; Qin, D.; Kang, S.; Hou, S.; Xu, J. Black Carbon Record Based on a Shallow Himalayan Ice Core and Its Climatic Implications. Atmos. Chem. Phys. 2008, 8, 1343–1352. [Google Scholar] [CrossRef]
- Qu, B.; Ming, J.; Kang, S.C.; Zhang, G.S.; Li, Y.W.; Li, C.D.; Zhao, S.Y.; Ji, Z.M.; Cao, J.J. The Decreasing Albedo of the Zhadang Glacier on Western Nyainqentanglha and the Role of Light-Absorbing Impurities. Atmos. Chem. Phys. 2014, 14, 11117–11128. [Google Scholar] [CrossRef]
- Li, Y.; Ding, Y.; Shangguan, D.; Wang, R. ScienceDirect Regional Differences in Global Glacier Retreat from 1980 to 2015. Adv. Clim. Change Res. 2020, 10, 203–213. [Google Scholar] [CrossRef]
- Oerlemans, J.; Fortuin, J.P.F. Sensitivity of Glaciers and Small Ice Caps to Greenhouse Warming. Science 1992, 258, 115–117. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Nakawo, M.; Hashimoto, S.; Sakai, A. Preferential Exchange Rate Effect of Isotopic Fractionation in a Melting Snowpack. Hydrol. Process 2008, 22, 3734–3740. [Google Scholar] [CrossRef]
- Zhou, S.; Nakawo, M.; Hashimoto, S.; Sakai, A. The Effect of Refreezing on the Isotopic Composition of Melting Snowpack. Hydrol. Process 2008, 22, 873–882. [Google Scholar] [CrossRef]
- Qi, W.; Feng, L.; Kuang, X.; Zheng, C.; Liu, J.; Chen, D.; Tian, Y.; Yao, Y. Divergent and Changing Importance of Glaciers and Snow as Natural Water Reservoirs in the Eastern and Southern Tibetan Plateau. J. Geophys. Res. Atmos. 2022, 127, 1–20. [Google Scholar] [CrossRef]
- Miles, E.; McCarthy, M.; Dehecq, A.; Kneib, M.; Fugger, S.; Pellicciotti, F. Health and Sustainability of Glaciers in High Mountain Asia. Nat. Commun. 2021, 12, 2868. [Google Scholar] [CrossRef]
- Pritchard, H.D. Asia’s Shrinking Glaciers Protect Large Populations from Drought Stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef]
- Xie, J. Distribution of Water and Heat in Lhasa River Basin and Its Hydrological Effects. Doctoral Dissertation, Graduate School of Chinese Academy of Sciences, Beijing, China, 2010. [Google Scholar]
- Zhou, S.; Kang, S.; Chen, F.; Joswiak, D.R. Water Balance Observations Reveal Significant Subsurface Water Seepage from Lake Nam Co, South-Central Tibetan Plateau. J. Hydrol. 2013, 491, 89–99. [Google Scholar] [CrossRef]
MB (m w.e. a−1) During 1976–2000 | MB (m w.e. a−1) During 2000–2020 | |||
---|---|---|---|---|
This Study | Wang et al. [6] | This Study | Wang et al. [6] | |
The WNR | −0.26 ± 0.05 | −0.26 ± 0.09 | −0.43 ± 0.06 | −0.34 ± 0.14 |
LRB | −0.23 ± 0.05 | −0.25 ± 0.10 | −0.39 ± 0.07 | −0.44 ± 0.16 |
NCB | −0.30 ± 0.08 | −0.31 ± 0.15 | −0.49 ± 0.10 | −0.37 ± 0.12 |
1976–2000 | 2000–2020 | ΔDDFice (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
DDFice (mm d−1 °C−1) | Bias (%) | DDFice (mm d−1 °C−1) | Bias (%) | ||||||||
LRB | 7.15 ± 0.55 | 6.92 ± 0.51 | 7.39 ± 0.54 | −3% ± 7% | 3% ± 7% | 8.62 ± 0.62 | 8.32 ± 0.64 | 8.94 ± 0.63 | −3% ± 6% | 4% ± 6% | 21% ± 8% |
NCB | 6.02 ± 0.58 | 5.80 ± 0.54 | 6.26 ± 0.52 | −4% ± 8% | 4% ± 8% | 7.88 ± 0.71 | 7.55 ± 0.66 | 8.23 ± 0.74 | −4% ± 8% | 4% ± 8% | 31% ± 10% |
Using glacier outline | 1976 and 2000 | 1976 | 2000 | 1976 | 2000 | 2000 and 2020 | 2000 | 2020 | 2000 | 2020 |
Basin | Period |
Accumulated MB
(mm w.e.) | Method |
Calculated Accumulated MB
(mm w.e.) | Bias |
---|---|---|---|---|---|
LRB | 1976–2000 | −5520 | using DDFice in the LRB during 2000–2020 | −10,215 | −85% |
using DDFice in the NCB during 1976–2000 | −1947 | 65% | |||
2000–2020 | −13,710 | using DDFice in the LRB during 1976–2000 | −3994 | 51% | |
using DDFice in the LRB during 2000–2020 based on glacier area in 2020 | −9099 | −11% | |||
NCB | 1976–2000 | −7200 | using DDFice in the NCB during 2000–2020 | −14,361 | −99% |
using DDFice in the LRB during 1976–2000 | −11,541 | −60% | |||
2000–2020 | −17,490 | using DDFice in the NCB during 1976–2000 | −4171 | 59% | |
using DDFice in the NCB during 2000–2020 based on glacier area in 2020 | −11,452 | −11% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Liu, J.; Pritchard, H.D.; Qiao, X.; Zhang, J.; Shen, X.; Qi, W. Assessing Increased Glacier Ablation Sensitivity to Climate Warming Using Degree-Day Method in the West Nyainqentanglha Range, Qinghai–Tibet Plateau. Sustainability 2025, 17, 5143. https://doi.org/10.3390/su17115143
Wang S, Liu J, Pritchard HD, Qiao X, Zhang J, Shen X, Qi W. Assessing Increased Glacier Ablation Sensitivity to Climate Warming Using Degree-Day Method in the West Nyainqentanglha Range, Qinghai–Tibet Plateau. Sustainability. 2025; 17(11):5143. https://doi.org/10.3390/su17115143
Chicago/Turabian StyleWang, Shuhong, Jintao Liu, Hamish D. Pritchard, Xiao Qiao, Jie Zhang, Xuhui Shen, and Wenyan Qi. 2025. "Assessing Increased Glacier Ablation Sensitivity to Climate Warming Using Degree-Day Method in the West Nyainqentanglha Range, Qinghai–Tibet Plateau" Sustainability 17, no. 11: 5143. https://doi.org/10.3390/su17115143
APA StyleWang, S., Liu, J., Pritchard, H. D., Qiao, X., Zhang, J., Shen, X., & Qi, W. (2025). Assessing Increased Glacier Ablation Sensitivity to Climate Warming Using Degree-Day Method in the West Nyainqentanglha Range, Qinghai–Tibet Plateau. Sustainability, 17(11), 5143. https://doi.org/10.3390/su17115143