Evolution of a Potentially Dangerous Glacial Lake on the Kanchenjunga Glacier, Nepal, Predictive Flood Models, and Prospective Community Response
Abstract
:1. Introduction
2. Setting
3. Materials and Methods
- Small (mass movement volume: 3 × 106 m3);
- Medium (mass movement volume: 5 × 106 m3);
- Large (mass movement volume: 7 × 106 m3);
- Worst-case scenario (mass movement volume: 15× 106 m3).
4. Results
5. Discussion
- Closely monitor the lower Kanchenjunga glacier and its continued changes during the coming decade. In collaboration with members of the KCA Management Council, regular field- and satellite-based monitoring of changes in the lower Kanchenjunga glacier should be conducted by Kathmandu-based entities such as the Department of Meteorology and Hydrology (DHM), the International Centre for Integrated Mountain Development (ICIMOD), and Kathmandu University;
- Develop inexpensive, locally appropriate, user-friendly early warning systems. Cell phone coverage, for example, is a simple, inexpensive alternative to sophisticated early warning systems that should be developed for the Ghunsa and other valleys in the KCA. During the 2013 Kosi River flood near Pokhara, hundreds of lives were saved when upstream witnesses called their family and friends downstream to warn them of the coming flood [52]. As a beginning, cell service throughout the entire KCA should continue to be developed for all villages and seasonal settlements as soon as possible, while other types of early warning systems are being assessed;
- Encourage the development of zoning policies that prohibit the construction of lodges and other infrastructure in high-risk floodplain regions. Where the infrastructure already exists, villages should be encouraged to install gabions (rock-filled wire cages) along susceptible river channel/village interfaces to divert the flow of water during a flood event. Gabions have been used with considerable success by susceptible tourist villages in the Sagarmatha (Mt. Everest) National Park to divert flood waters from englacial conduit flood events [11];
- Develop and implement local and national planning and training programs targeted at permafrost-related floods and other highland-lowland hazards. Between 2010 and 2015, several organizations conducted glacier hazard training programs for the Sagarmatha (Mt. Everest) National Park that are applicable to other high-altitude regions of Nepal [53]. Such training could be provided to residents of the KCA, as GLOFs and other glacier hazards represent a clear and growing threat to much of the population;
- Develop mechanisms whereby villagers in remote locations can notify authorities in Kathmandu about their cryospheric hazard concerns, requesting suitable analyses and timely feedback regarding any current or future dangers. In particular, continued refinement of the models presented in this paper is encouraged in order to develop a rapid, reliable, and inexpensive glacial lake analytical tool capable of providing insights and recommendations to affected communities in a timely manner.
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
KCA | Kanchenjunga Conservation Area |
GLOF | Glacial Lake Outburst Flood |
DHM | Department of Hydrology and Meteorology |
ICIMOD | International Centre for Integrated Mountain Development |
HEC-RAS | Hydrologic Engineering Center River Analysis System |
ALOS | Advanced Land Observing Satellite |
HMA | High Mountain Asia 8 m |
DEM | Digital Elevation Model |
References
- Benn, D.I.; Bolch, T.; Hands, K.; Gulley, J.; Luckman, A.; Nicholson, L.I.; Quincey, D.; Thompson, S.; Toumi, R.; Wiseman, S. Response of debris—Covered glaciers in the Mount Everest region to recent warming, and implications for outburst-flood hazards. Earth-Sci. Rev. 2012, 114, 156–174. [Google Scholar] [CrossRef]
- Begam, S. Potentially dangerous moraine-dammed glacial lakes for outburst in the Nepal Himalaya. In The Nature of Geomorphological Hazards in the Nepal Himalaya; Kalvoda, J., Novotnà, E., Eds.; Springer Nature: Cham, Switzerland, 2024. [Google Scholar]
- Byers, A.C.; Shugar, D.; Chand, M.; Portocarrero, C.; Shrestha, M.; Rounce, D.; Watanabe, T. Three recent and lesser-known glacier-related flood mechanisms in high-mountain environments. Mt. Res. Dev. 2022, 42, A12–A22. [Google Scholar] [CrossRef]
- Veh, G.; Wang, B.B.; Zirzow, A.; Schmidt, C.; Lützow, N.; Steppat, F.; Zhang, G.; Vogel, K.; Geertsema, M.; Clague, J.J.; et al. Progressively smaller glacier-lake outburst floods despite worldwide growth in lake area. Nat. Water 2025, 3, 271–283. [Google Scholar] [CrossRef]
- Bajracharya, S.R.; Maharjan, S.B.; Shrestha, F.; Sherpa, T.C.; Wagle, N.; Shrestha, A.B. Inventory of Glacial Lakes and Identification of Potentially Dangerous Glacial Lakes in the Koshi, Gandaki, and Karnali River Basins of Nepal, the Tibet Autonomous Region of China, and India; International Centre for Integrated Mountain Development: Kathmandu, Nepal, 2020. [Google Scholar]
- Benn, D.I.; Wiseman, S.; Hands, K.A. Growth and drainage of supraglacial lakes on debris-mantled Ngozumpa Glacier, Khumbu Himal, Nepal. J. Glaciol. 2001, 47, 626–638. [Google Scholar] [CrossRef]
- Mool, P.K.; Maskey, P.R.; Koirala, A.; Joshi, S.P.; Lizong, W.; Shrestha, A.B.; Eriksson, M.; Gurung, B.; Pokharel, B.; Khanal, N.R. Glacial Lakes and Glacial Lake Outburst Floods in Nepal; World Bank Group: Washington, DC, USA, 2011. [Google Scholar]
- Somos-Valenzuela, M.A.; McKinney, D.; Byers, A.; Rounce, D.; Portocarrero, C.; Lamsal, D. Assessing downstream flood impacts due to a potential GLOF from Imja Lake in Nepal. Hydrol. Earth Syst. Sci. Discuss. 2014, 11, 13019–13053. [Google Scholar] [CrossRef]
- Quincey, D.J.; Richardson, S.D.; Luckman, A.; Lucas, R.M.; Reynolds, J.M.; Hambrey, M.J.; Glasser, N.F. Early recognition of glacial lake hazards in the Himalaya using remote-sensing datasets. Glob. Planet. Change 2007, 56, 137–152. [Google Scholar] [CrossRef]
- Benn, D.; Gulley, J.; Luckman, A.; Adamek, A.; Glowacki, P.S. Englacial drainage systems formed by hydrologically driven crevasse propagation. J. Glaciol. 2009, 55, 513–523. [Google Scholar] [CrossRef]
- Rounce, D.; Byers, A.C.; Byers, E.A.; McKinney, D.C. Observations of a glacier outburst flood from Lhotse Glacier, Everest area, Nepal. Cryosphere 2017, 11, 443–449. [Google Scholar] [CrossRef]
- Westoby, M.J.; Glasser, N.F.; Brasington, J.; Hambrey, M.J.; Quincey, D.J.; Reynolds, J.M. Modelling outburst floods from moraine-dammed glacial lakes. Earth-Sci. Rev. 2014, 134, 137–159. [Google Scholar] [CrossRef]
- Byers, A.C.; Chand, M.B.; Lala, J.; Shrestha, M.; Byers, E.A.; Watanabe, T. Reconstructing the history of glacial lake outburst floods in the Kanchenjunga Conservation Area. Sustainability 2020, 12, 5407. [Google Scholar] [CrossRef]
- Byers, A.; Shrestha, M.; Zackary, A.; Coburn, B.; Watanabe, T.; Chand, M.B.; Byers, E. The changing ecology of a high Himalayan valley: Kanchenjunga Conservation Area. Sustainability 2024, 16, 2434. [Google Scholar] [CrossRef]
- Tambe, S.; Rawat, G. The alpine vegetation of the Khangchendzonga landscape, Sikkim Himalaya. Mt. Res. Dev. 2010, 30, 266–274. [Google Scholar] [CrossRef]
- Thapa, R. Kanchenjunga: The Unique Gift of Nature; Kanchan Printing Press: Kathmandu, Nepal, 2009. [Google Scholar]
- Sudmeier-Rieux, K.; McAdoo, B.G.; Devkota, S.; Rajbhandari, P.C.L.; Howell, J.; Sharma, S. Invited perspectives: Mountain roads in Nepal at a new crossroads. Nat. Hazards Earth Syst. Sci. 2019, 19, 655–660. [Google Scholar] [CrossRef]
- Gurung, G. 11-Day Trek is Now a Day’s Drive in Nepal. Nepali Times, 1 January 2020. [Google Scholar]
- Synnott, M. The King of Mustang Will See You Now; National Geographic: Washington, DC, USA, 2023. [Google Scholar]
- Asahi, K.; Watanabe, T. Past and recent glacier fluctuations in Kanchenjunga Himal, Nepal. J. Nepal Geol. Soc. 2000, 22, 481–490. [Google Scholar] [CrossRef]
- Racoviteanu, A.E.; Arnaud, Y.; Williams, M.W.; Manley, W.F. Spatial patterns in glacier characteristics and area changes from 1962 to 2006 in the Kanchenjunga–Sikkim area. Cryosphere 2015, 9, 505–523. [Google Scholar] [CrossRef]
- Hooker, J.D. Himalayan Journals: Notes of a Naturalist in Bengal, the Sikkim and Nepal Himalayas, the Khasia Mountains, &c; John Murray: London, UK, 1855; Volume 1. [Google Scholar]
- Freshfield, D.W. Round Kangchenjunga: A Narrative of Mountain Travel and Exploration; Forgotten Books: London, UK, 1903. [Google Scholar]
- Byers, A.C.; Somos-Valenzuela, M.; Shugar, D.H.; McGrath, D.; Chand, M.B.; Avtar, R. Ice-debris avalanche in the Nupchu Valley, Kanchenjunga Conservation Area. Cryosphere 2024, 18, 711–717. [Google Scholar] [CrossRef]
- Chhetri, K.C. Glacier-Lake Inventory and Lake Outburst Flood Hazard Assessment in the Kanchenjunga Conservation Area, Nepal. Master’s Thesis, Jacksonville State University, Jacksonville, AL, USA, 2024. [Google Scholar]
- Watanabe, T. Geo-ecological studies in the Kanchenjunga Conservation Area, eastern Nepal Himalayas. Glob. Environ. Res. 2006, 10, 87–98. [Google Scholar]
- Haeberli, W.; Schaub, Y.; Huggel, C. Increasing risks related to landslides from degrading permafrost. Geomorphology 2017, 293, 405–417. [Google Scholar] [CrossRef]
- Shugar, D.H.; Jacquemart, M.; Shean, D.; Bhushan, S.; Upadhyay, K.; Sattar, A.; Schwanghart, W.; McBride, S.; de Vries, M.V.W.; Mergili, M.; et al. A massive rock-and-ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 2021, 373, 300–306. [Google Scholar] [CrossRef]
- Haritashya, U.; Kargel, J.; Shugar, D.; Leonard, G.; Strattman, K.; Watson, C.; Shean, D.; Harrison, S.; Mandli, K.; Regmi, D. Evolution and Controls of Large Glacial Lakes in the Nepal Himalaya. Remote. Sens. 2018, 10, 798. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W.; An, B. A conceptual model for glacial-lake bathymetric distribution. Cryosphere 2023, 17, 5137–5154. [Google Scholar] [CrossRef]
- Farinotti, D.; Huss, M.; Fürst, J.J.; Landmann, J.; Machguth, H.; Maussion, F.; Pandit, A. A consensus estimate for the ice-thickness distribution of all glaciers on Earth. Nat. Geosci. 2019, 12, 168–173. [Google Scholar] [CrossRef]
- Linsbauer, A.; Frey, H.; Haeberli, W.; Machguth, H.; Azam, M.F.; Allen, S. Modelling glacier-bed overdeepenings and possible future lakes for the Himalaya–Karakoram region. Ann. Glaciol. 2016, 57, 119–130. [Google Scholar] [CrossRef]
- Rounce, D.R.; McKinney, D.C.; Lala, J.M.; Byers, A.C.; Watson, C.S. A new remote hazard and risk assessment framework for glacial lakes in the Nepal Himalaya. Hydrol. Earth Syst. Sci. 2016, 20, 3455–3475. [Google Scholar] [CrossRef]
- Dubey, S.; Sattar, A.; Goyal, M.K.; Allen, S.; Frey, H.; Haritashya, U.K.; Huggel, C. Mass-movement hazard and exposure in the Himalaya. Earth’s Future 2023, 11, e2022EF003253. [Google Scholar] [CrossRef]
- Mergili, M.; Fischer, J.T.; Krenn, J.; Pudasaini, S.P. r.avaflow v1—An advanced open-source framework for two-phase mass flows. Geosci. Model Dev. 2017, 10, 553–569. [Google Scholar] [CrossRef]
- Sattar, A.; Cook, K.L.; Rai, S.K.; Berthier, E.; Allen, S.; Rinzin, S.; Van Wyk de Vries, M.; Haeberli, W.; Kushwaha, P.; Shugar, D.H.; et al. The Sikkim flood of October 2023: Drivers, causes and impacts of a multihazard cascade. Science 2025, 387, eads2659. [Google Scholar] [CrossRef]
- Zheng, G.; Mergili, M.; Emmer, A.; Allen, S.; Bao, A.; Guo, H.; Stoffel, M. The 2020 glacial lake outburst flood at Jinwuco, Tibet: Causes, impacts, and implications for hazard and risk assessment. Cryosphere 2021, 15, 3159–3180. [Google Scholar] [CrossRef]
- Allen, S.K.; Sattar, A.; King, O.; Zhang, G.; Bhattacharya, A.; Yao, T.; Bolch, T. Glacial lake outburst flood hazard under current and future conditions: Worst-case scenarios in a transboundary Himalayan basin. Nat. Hazards Earth Syst. Sci. 2022, 22, 3765–3785. [Google Scholar] [CrossRef]
- Sattar, A.; Allen, S.; Mergili, M.; Haeberli, W.; Frey, H.; Kulkarni, A.V.; Haritashya, U.K.; Huggel, C.; Goswami, A.; Ramsankaran, R. Modeling potential GLOF process chains and effects from artificial lake-level lowering at Gepang Gath Lake, Indian Himalaya. J. Geophys. Res. Earth Surf. 2023, 128, e2022JF006826. [Google Scholar] [CrossRef]
- Mergili, M.; Pudasaini, S.P. r.avaflow—The Mass-Flow Simulation Tool (Software Portal). Available online: https://www.landslidemodels.org/r.avaflow/ (accessed on 12 April 2025).
- Gaphaz. Assessment of Glacier and Permafrost Hazards in Mountain Regions: Technical Guidance Document; IACS/IPA Standing Group on Glacier and Permafrost Hazards: London, UK, 2017. [Google Scholar]
- Sattar, A.; Goswami, A.; Kulkarni, A.V.; Emmer, A.; Haritashya, U.K.; Allen, S.; Frey, H.; Huggel, C. Future GLOF hazard of the South Lhonak Lake, Sikkim Himalaya. Geomorphology 2021, 388, 107783. [Google Scholar] [CrossRef]
- Ceiwr-Hec. HEC-RAS River Analysis System, 2-D Modelling User’s Manual; Hydrologic Engineering Center, USACE: Davis, CA, USA, 2021. [Google Scholar]
- Rinzin, S.; Zhang, G.; Sattar, A.; Wangchuk, S.; Allen, S.K.; Dunning, S.; Peng, M. GLOF hazard, exposure, vulnerability and risk assessment of potentially dangerous glacial lakes in the Bhutan Himalaya. J. Hydrol. 2023, 619, 129311. [Google Scholar] [CrossRef]
- Shean, D.E.; Alexandrov, O.; Moratto, Z.M.; Smith, B.E.; Joughin, I.R.; Porter, C.; Morin, P. An automated, open-source pipeline for mass production of stereo-satellite DEMs. ISPRS J. Photogramm. Remote Sens. 2016, 116, 101–117. [Google Scholar] [CrossRef]
- Shean, D.E.; Bhushan, S.; Montesano, P.; Rounce, D.R.; Arendt, A.; Osmanoglu, B. A systematic, regional assessment of High Mountain Asia glacier mass balance. Front. Earth Sci. 2020, 7, 363. [Google Scholar] [CrossRef]
- Japan Aerospace Exploration Agency. ALOS World 3-D 30-Meter DEM (V3.2); Japan Aerospace Exploration Agency: Tokyo, Japan, 2021.
- Worni, R.; Huggel, C.; Stoffel, M. Glacial lakes in the Indian Himalayas--from an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes. Sci Total Env. 2013, 468–469, S71–S84. [Google Scholar] [CrossRef]
- Zheng, G.; Allen, S.K.; Bao, A.; Ballesteros-Cánovas, J.A.; Huss, M.; Zhang, G.; Li, J.; Yuan, Y.; Jiang, L.; Yu, T.; et al. Increasing risk of glacial lake outburst floods from future Third Pole deglaciation. Nat. Clim. Change 2021, 11, 411–417. [Google Scholar] [CrossRef]
- GAPHAZ. Assessment of Glacier and Permafrost Hazards in Mountain Regions; Technical Guidance Document; Standing Group on Glacier and Permafrost Hazards in Mountains (GAPHAZ) of the International Association of Cryospheric Sciences (IACS) and the International Permafrost Association (IPA): Leeds, UK, 2017; p. 72. [Google Scholar]
- Komori, J.; Koike, T.; Yamanokuchi, T.; Tshering, P. Glacial Lake Outburst Events in the Bhutan Himalayas. Glob. Environ. Res. 2012, 16, 12. [Google Scholar]
- Kargel, J.S. One Scientist’s Search for the Causes of the Deadly Seti River Flash Flood. NASA Earth Observatory: Notes from the Field. 2014. Available online: https://earthobservatory.nasa.gov/blogs/fromthefield/2014/01/24/setiriverclues/comment-page-1/ (accessed on 12 April 2025).
- Byers, A.; Thakali, S. Khumbu Local Adaptation Plan of Action (LAPA): Sagarmatha National Park, Solukhumbu District; USAID: Washington, DC, USA, 2016. [Google Scholar]
GLOF Scenario | Flow Depth (m) | Flow Velocity (m s−1) | Building (Count) | Bridge (Count) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
All | KC | GS | All | KC | GS | All | KC | GS | ||
Small | 5 | 3 | 3 | 5 | 7 | 4 | 16 | 7 | 0 | 30 |
Medium | 9 | 4 | 4 | 5 | 7 | 4 | 45 | 14 | 18 | 40 |
Large | 11 | 6 | 7 | 5 | 7 | 6 | 89 | 20 | 54 | 41 |
Worst case | 14 | 9 | 11 | 6 | 10 | 8 | 90 | 21 | 54 | 44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byers, A.C.; Rinzin, S.; Byers, E.; Wangchuk, S. Evolution of a Potentially Dangerous Glacial Lake on the Kanchenjunga Glacier, Nepal, Predictive Flood Models, and Prospective Community Response. Water 2025, 17, 1457. https://doi.org/10.3390/w17101457
Byers AC, Rinzin S, Byers E, Wangchuk S. Evolution of a Potentially Dangerous Glacial Lake on the Kanchenjunga Glacier, Nepal, Predictive Flood Models, and Prospective Community Response. Water. 2025; 17(10):1457. https://doi.org/10.3390/w17101457
Chicago/Turabian StyleByers, Alton C., Sonam Rinzin, Elizabeth Byers, and Sonam Wangchuk. 2025. "Evolution of a Potentially Dangerous Glacial Lake on the Kanchenjunga Glacier, Nepal, Predictive Flood Models, and Prospective Community Response" Water 17, no. 10: 1457. https://doi.org/10.3390/w17101457
APA StyleByers, A. C., Rinzin, S., Byers, E., & Wangchuk, S. (2025). Evolution of a Potentially Dangerous Glacial Lake on the Kanchenjunga Glacier, Nepal, Predictive Flood Models, and Prospective Community Response. Water, 17(10), 1457. https://doi.org/10.3390/w17101457